三相桥式全控整流电路

合集下载

三相桥式全控整流电路及工作原理

三相桥式全控整流电路及工作原理

三相桥式全控整流电路及工作原理
三相桥式全控整流电路是一种常用的电力电子变换电路,广泛应用于交流调速、直流传动、直流无刷电机等领域。

它具有输出电压可调、功率因数可控和双向传输功率等特点。

1. 电路结构
三相桥式全控整流电路由六个可控硅整流器()组成,三个正并联,另外三个反并联。

每个可控硅整流器的阳极与交流电源的一相相连,阴极与负载相连。

整流器的栅极连接到相应的脉冲发生电路,用于控制导通时间。

2. 工作原理
在每个周期内,三相交流电源的三相电压有两相电压大于另一相电压。

整流电路利用这一特性,使两相较高电压的可控硅整流器导通,从而将这两相电压的正半周经整流器输出到负载。

通过控制每个整流器的导通时间,可以调节输出电压的幅值和相位。

当某一相电压达到最大值时,该相的两个整流器将导通。

随着时间推移,其他两相电压将超过该相电压,相应的整流器也将导通。

如此循环,每个整流器在每个周期内均有一段导通时间。

通过调节每个整流器的导通时间,即控制脉冲发生电路对栅极施加脉冲的时间,可以控制输出电压的幅值。

同时,还可以改变脉冲施加的相位角,从而控制功率因数。

3. 特点
(1) 输出电压可连续调节
(2) 功率因数可控
(3) 双向传输功率
(4) 电路结构相对简单
三相桥式全控整流电路通过控制整流器的导通时间和相位,可以实现对输出电压和功率因数的精确控制,是一种非常重要和实用的电力电子变换电路。

三相桥式全控整流电路

三相桥式全控整流电路

8.2.6 三相桥式全控整流电路三相桥式全控整流电路相当于一组共阴极的三相半波和一组共阳极的三相半波可控整流电路串联起来构成的。

习惯上将晶闸管按照其导通顺序编号,共阴极的一组为VT1、VT3和VT5,共阳极的一组为VT2、VT4和VT6。

其电路如图8.22所示图8.22 三相桥式电阻性负载全控整流电路对于图8.22的电路,可以像分析三相半波可控整流电路一样,先分析若是不可控整流电路的情况,即把晶闸管都换成二极管,这种情况相当于可控整流电路的时的情况。

即要求共阴极的一组晶闸管要在自然换相点1、3、5点换相,而共阳极的一组晶闸管则会在自然换相点2、4、6点换相。

因此,对于可控整流电路,就要求触发电路在三相电源相电压正半周的1、3、5点的位臵给晶闸管VT1、VT3和VT5送出触发脉冲,而在三相电源相电压负半周的2、4、6点的位臵给晶闸管VT2、VT4和VT6送出触发脉冲,且在任意时刻共阴极组和共阳极组的晶闸管中都各有一只晶闸管导通,这样在负载中才能有电流通过,负载上得到的电压是某一线电压。

其波形如图8.23所示。

为便于分析,可以将一个周期分成6个区间,每个区间图8.23 三相桥式电阻性负载a=0°时波形区间,u相电位最高,在时刻,即对于共阴极组的u 相晶闸管VT1的的时刻,给其加触发脉冲,VT1满足其导通的两个条件,同时假设此时共阳极组阴极电位最低的晶闸管VT6已导通,这样就形成了由电源u相经VT1、负载及VT6回电源v相的一条电流回路。

若假设电流流出绕组的方向为正,则此时u相绕组的电流为正,v相绕组上的电流为负。

在负载电阻上就得到了整流后的直流输出电压,且,为三相交流电源的线电压之一。

过后到时刻,进入区间,这时u相相电压仍是最高,但对于共阳极组的晶闸管来说,由于w相相电压为最负,即VT2的阴极电位将变得最低。

所以在自然换相点2点,即时,给晶闸管VT2加触发脉冲,使其导通,同时由于VT2的导通,使VT6承受了反向的线电压而关断了。

三相桥式全控整流电路

三相桥式全控整流电路

摘要整流电路就是把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。

整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。

关键词:整流,变压,触发,过电压,保护电路目录第1章三相桥式整流原理 (3)第2章系统主电路 (4)2.1 三相全控桥的工作原理 (4)2.2阻感负载时的波形分析 (4)第3章触发电路设计 (6)3.1芯片的连接 (6)3.2 触发电路原理说明 (7)第4章保护电路的设计 (9)4.1 晶闸管的保护电路 (9)4.2 直流侧阻容保护电路 (10)第5章参数的计算 (11)5.1 整流变压器参数 (11)5.2 晶闸管参数 (12)第6章MATLAB 建模与仿真 (13)6.1 MATLAB建模 (13)6.2 MATLAB 仿真 (15)6.3 仿真结构分析 (17)心得体会 (18)第1章三相桥式整流原理目前,在各种整流电路中,应用最为广泛的是三相桥式全控整流电路。

习惯将电路中阴极连在一起的三个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连在一起的三个晶闸管(VT4、VT6、VT2)称为共阳极组。

三相桥式全控整流电路通过变压器与电网连接,经过变压器的耦合,晶闸管电路得到一个合适的输入电压,是晶闸管在较大的功率因素下运行。

本设计中,主电路由三大部分构成,分别为主电路、触发电路、保护电路。

三相桥式全控整流电路

三相桥式全控整流电路

三相桥式全控整流电路
三相桥式全控整流电路是一种典型的多相变流器结构。

其概念是利用三个桥式变换器,并将三相电源转换成多脉冲的直流电压或电流。

三相桥式全控整流电路可以满足多种多种
应用场合的需求。

三相桥式全控整流电路具有输出电流均衡、无影响源特性和可靠性等优点。

结构简单,尺寸小,失压开关控制,可靠性高,功率非常低,因此可以有效减少处理器的使用,降低
成本。

控制电路精确,可以实现功率的精确控制,提高了净输出功率的效率。

电阻元件高
度可调,可以对输出电流进行良好的控制,从而获得更好的控制性能。

三相桥式全控整流电路结构简单,可以有效控制输出电流,并且可以满足输出频率和
脉宽调节等多种需求。

但它也有一定的局限性,如功率范围较小,无法处理较大的功率负载。

三相桥式全控整流电路是一种常用的多相变流器。

它结构简单,控制精度高,稳定性好,可以有效解决处理多种应用场景的需求,在工业自动化等领域有广泛的应用。

三相桥式全控整流电路

三相桥式全控整流电路

12
三、定量分析
➢ 4. 整流变压器视在功率计算
➢ 1). 流过整流变压器二次侧的电流在前面已经算得:
i
I
d
2π/3
0
π
2π/3

ωt
TR二次侧电流有效值: TR二次侧电压有效值:
I2
2 3 Id
0.816Id
U2
Ud 2.34
TR二次侧视在功率:
S2
3U 2I2
3
Ud 2.34
0.816
I
O
id O iVT1 O
t
t
t t
返回
22
图-7
三相桥式全控整流电路
带阻感负载a=30时的波形
ud1 = 30°ua
ub
uc
O ud2 ud
t1
ⅠⅡ uab uac
Ⅲ ⅣⅤⅥ ubc uba uca ucb uab uac
O
id O ia O
t
t
t t
返回
23
三相桥式整流电路
图-8
带阻感负载,a=90时的波形
14
四、归纳比较
2. 全控器件也可组成可控整流电路
超前相角控制的波形不同于滞后 相角控制区别:前者的控制角α由自 然换相点向左计算;后者的控制角α 由自然换相点向右计算。六只晶体管 工作顺序与负载电压关系与晶闸管相 同。
整流变压器二次侧绕组相电流iU 基波电流ia1超前于电源相电压uU一 个Ф角(Ф=α),实现了超前相角
= 90°
ud1
ub
uc
ua
O
ud2 ud
t1
uab
ⅠⅡ uac ubc
ⅢⅣ uba uca

三相桥式全控整流电路

三相桥式全控整流电路

输出电压与输入电压的关系
01
输出电压与输入电压的有效值成 正比,与触发脉冲的相位角有关 。
02
当触发脉冲在合适的相位角触发 晶闸管时,输出电压接近于输入
电压的最大值。
随着触发脉冲相位角的减小,输 出电压逐渐减小。
03
当触发脉冲相位角为0度时,输出 电压为0。
04
03
电路参数
整流元件的参数选择
额定电压
整流元件的额定电压应大 于电路的最大输出直流电 压。
额定电流
整流元件的额定电流应大 于电路的最大输出直流电 流。
反向耐压
整流元件的反向耐压应大 于电路的最大反向电压。
变压器的参数选择
额定功率
变压器的额定功率应大于电路的最大输出功率。
匝数比
变压器的匝数比应与电路的输入输出电压要求 相匹配。
磁芯材料
变压器的磁芯材料应具有较高的磁导率和较低的损耗,以提高变压器的效率。
常见故障与排除方法
故障1
整流输出电压异常
排除方法
检查输入电源是否正常,检查整流管是否损坏 ,检查电路连接是否良好。
故障2
可控硅不导通
排除方法
检查触发脉冲是否正常,检查可控硅控制极的连接 是否正确。
电路发热严重
故障3
排除方法
检查电路的散热情况,确保散热器安装良好,检查负载 是否过重。
维护与保养建议
滤波电容器的参数选择
电容量
滤波电容器的电容量应根据电路的输出电流和电压纹波的要求进 行选择。
耐压值
滤波电容器的耐压值应大于电路的最大输出直流电压。
温度特性
滤波电容器的温度特性应与电路的工作温度要求相匹配。
04
电路分析

三相桥式全控整流电路

三相桥式全控整流电路

1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。

整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。

三相桥式全控整流电路

三相桥式全控整流电路

1系统概述整流电路是电力电子电路中最早出现的一种,它将交流电变为直流电,应用十分广泛,电路形式多种多样,各具特色。

可从各种角度对整流电路进行分类,主要分类方法有:按组成的器件可分为不可控、半控、全控三种。

由电力二极管等不可控器件构成的整流电路叫做不可控整流电路,由晶闸管等半控器件构成的整流电路称为半控型整流电路,由门极可关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应晶体管(Power MOSFET)以及绝缘栅双极晶体管(IGBT)等全控型器件构成等的整流电路称为全控整流电路。

按电路结构可分为桥式电路和零式电路。

按交流输入相数分为单相电路和多相电路。

按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

本系统属于三相桥式全控整流电路,而三相可控整流电路一般有三相半波可控整流电路、三相桥式全控整流电路。

三相半波可控整流电路只需要三个晶闸管,若带阻感负载,则只在正半周开通。

三相半波可控整流电路的特点是简单,但输出脉动大,变压器二次测电流中含直流分量,造成变压器铁心直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的。

因此,实际中一般不采用半波整流,而采用全波整流。

三相可控整流电路中应用较多的是三相桥式全控整流电路,共六个晶闸管组成三对桥臂。

由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。

在u2一个周期内,整流电压波形脉动6次,脉动次数多于半波整流电路,该电路属于双脉波整流电路。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器绕组的利用率也高。

1.1总体方案设计现要设计一三相桥式半控整流电路,带直流电动机负载,电压调节范围为0~220V。

整个系统可分为主电路和触发电路两部分,总体结构框图如下图1所示:1.2系统工作原理在系统主电路中,首先由主变压器将电网电压变换为需要的交流电压,接着由整流桥将交流电转化为直流电供给直流电动机负载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
三相桥式全控整流电路的特点(1)
(1)2管同时通形成供电回路,其中 共阴极组和共阳极组各1,且不
能为同一相器件。
(2)对触发脉冲的要求:
按 VT1-VT2-VT3-VT4-VT5-VT6 的 顺 序 , 相 位 依 次 差
60。
共阴极组VT1 、VT3 、VT5 的脉冲依次差120,共阳
ud的波形 更平直
u2 i2 ud

0


t
a)
i2的上升 平缓
b)
2.4.2 电容滤波的三相不可控整流 电路
1. 基本原理
ud u ab u uac d VD1 VD3 VD5 id T ia a b c iC ud + iR C R id ia 3
0
t
VD4 VD6 VD2 a)
2.阻感负载(L很 大)
当 60 时, ud波形连续,电路的工 作情况与带电阻负载时 十分相似,区别在于负 载不同时,同样的整流 输出电压加到负载上, 得到的负载电流id波形 不同。当电感足够大的 时候,负载电流的波形 可近似为一条水平线。

α=0º
α=30º

当 时,由 于电感L的作用,电 源电压过零后,晶 闸管仍然导通,直 到下一个晶闸管触 发导通为止。这样, 输出电压波形出现 负的部分。
–使功率因数降低。
常用于小功率单相交流输入的场合,如目前大量普及 的微机、电视机等家电产品的开关电源中。 放电 1. 工作原理及波形分析 充电
id VD1 i2 u1 u2 VD2 VD3 i,ud iC iR C R 0 i ud
2.4电容滤波的不可控整流电路 2.4.1 电容滤波的单相不可控整流电路 (1)
2.5整流电路的谐波(harmonics)和功率 因数
1、 许多电力电子装置要消耗无功功率(reactive),会 对公用电网带来不利影响: 1)无功功率会导致电流增大和视在功率增加,导致设 备容量增加。 2)无功功率增加,会使总电流增加,从而使设备和线 路的损耗增加。
3)使线路压降增大,冲击性无功负载还会使电压剧烈 波动。
• 自然换相点为相电压(或线电压)的交 点。 • 必须使用双窄脉冲或宽脉冲(见下页)。
三相桥式全控整流的触发要求(续)
(a)变压器副边
三相电压波形
(b)宽脉冲触发
(c)双窄脉冲触发
1.带电阻负载
时,各晶闸 管均在自然换相点处换 相,各自然换相点既是 相电压的交点,同时也 是线电压的交点。 输出整流电压ud为 这两个相电压相减,是 线电压中最大的一个, 因此输出整流电压ud波 形为线电压在正半周期 的包络线。
d 2
2.4.1
时的特性。
通常在设计时根据负载的情况选择电容C值, RC (3 ~ 5)T / 2 T为交流电源的周期,此时输出电压为:
Ud≈1.2 U2
2.4.1
电容滤波的单相不可控整流 电路
2)电流平均值 输出电流平均值IR为:
IR = Ud /R Id =IR 二极管电流iD平均值为: ID = Id / 2=IR/ 2 )
电容滤波的三相不可控整流电路
2. 主要数量关系
1)输出电压平均值 Ud在(2.34U2 ~2.45U2)之间变化 2)电流平均值 输出电流平均值IR为: IR = Ud /R Id=IR (2-51) (2-52) (2-53)
二极管电流平均值为Id的1/3,即:
ID = Id / 3=IR/ 3 3)二极管承受的电压 二极管承受的最大反向电压为线 6U2 电压的峰值,为 。
2U 2
(2-47) (2-48) (2-49
3)二极管承受的电压
2.4.1
电容滤波的单相不可控整流电路(2)
感容滤波的二极管整流电路
实际应用为抑制电流冲击,在直流侧串入小电感, 但分析复杂。 ud波形更平直,电流i2的上升段平缓了许多,这对 于电路的工作是有利的
id VD1 i2 u1 u2 VD2 L + uL VD3 iC + ud VD4 i2,u2,ud iR R C
感容滤波的三相不可控整流电路
有电感时,电流波形的前沿平缓了许多,有利于电路的 正常工作。
ia VD1VD3VD5 T ia a b c VD4VD6VD2 a) c) id O R b)
t
iC iR ud+ C
ia O
t
• 图2-32 考虑电感时电容滤波的三相桥式整流电路及其波形 a)电路原理图 b)轻载时的交流侧电流波形 c)重载时的交流侧电流波形
图2-17 三相桥式 全控整流电路原理图
共阳极组——阳 极连接在一起的 3个晶闸管(VT4, VT6,VT2)
三相桥式全控整流电路的触发要求
• 本组内SCR每隔 120换流一次;
共阴极与共阳极组的换流点相隔 60 。
• SCR的导通顺序:
(6-1) (1-2) (2-3) (3-4) (4-5) (56)
O b)
t
图2-30 电容滤波的三相桥式不可控整流电 路及其波形
返回
2.4.2 电容滤波的三相不可控整流电路
临界条件:
ia O id O a)
RC 3
ia
t O
id
t
t O
b)
t
时的电流波形 3
图2-31 电容滤波的三相桥式整流电路当 RC等于和小于 b) RC< a) RC= 3
ud (0) 2U 2 sin 1 t ud (0) C iC d t u 2 0
(2-37) (2-38)
式中,ud(0)为VD1、VD4开始导通时刻直流侧电压值。
电容滤波的单相不可控整流电路(求出 和 )
将u2代入并求解得: 而负载电流为:
iR u2 R 2U 2 sin(t ) R
管承受最大正、反向电压的关系也相同。
续:
当 0 时,晶闸管从 自然换相点向后移角开 始换相。

30 如
时,晶闸管导 通顺序不变,相位后移 30°,电压波形由三段组 成。 60 波形如图
90 波形如图
U FM 6U 2 2
U RM 6U 2

移相范围120
3)晶闸管电压、电流等的定量分析与三相半波时一致。
补充例2.5:
• 三相桥式全控整流电路,阻感负载。已知: U2 = 100V,R =5,L的值极大。当 =30º 时,计算输出Ud,Id,IVT,I2的值。 并画出相电压ud1和ud2,管压uVT1和输出电 压ud以及电流id,ia的波形。
解:计算相应的数值如下:
60 阻感负载或电阻负载
Ud 1
时,

3

2 3 3
6U 2 sintd (t ) 2.34U 2 cos
2)阻感负载时,变压器二次侧电流有效值:
1 2 2 2 2 2 2 I2 ( I d ( I d ) ) I d 0.816I d 2 3 3 3
共阴极组
图2-17 三相桥式 全控整流电路原理图
共阳极 组
2.2.2
三相桥式全控整流电路(2)
导通顺序:
VT1-VT2
三相桥是应用最为广泛的整流电路
共 阴 极 组 —— 阴 极连接在一起的 3个晶闸管(VT1 , VT3,VT5)
-VT3- VT4
-VT5-VT6
一次 侧为 三角 形联 结
二次侧为 星形联结
三相桥式全控整流电路
• 结构:
——由两个(一个为共阴极,
一个为共阳极)三相半波整
流电路组成。 • 优点: ——变压器绕组无直流磁势; ——变压器绕组正负半周都工 作,效率高。
2.2.2三相桥式全控整流电路
目前在各种整流电路中, 应用最为广泛的是三相桥式 全控整流电路,其原理如图, 习惯将其中阴极连接在一起 的3个晶闸管(VTl、VT3、 VT5)称为共阴极组;阳极 连接在一起的3个晶闸管 (VT4、VT6、VT2)称为共 阳极组。按此编号,晶闸管 的导通顺序为VT1—VT2— VT3一VT4一VT5一VT6。
2、电力电子装置还会产生谐波,对公用电网产生危 害,包括:
1)谐波使电网中的元件产生附加的谐波损耗,降低效率,大
量的3次谐波流过中性线会使线路过热甚至发生火灾。
2)谐波会引起电网中局部的并联谐振和串联谐振,从而使谐 波放大。 3)谐波会导致继电保护和自动装臵的误动作,并使电气测量 仪表计量不准确。 4)谐波影响各种电气设备的正常工作,使电机发生机械振动、 噪声和过热,使变压器局部严重过热,使电容器、电缆等设备 过热、使绝缘老化、寿命缩短以至损坏。 5)谐波会对邻近的通信系统产生干扰。
U d 2.34U 2 cos 2.34 100 cos 30 202.64V
Id
I VT
Ud 40.5 A R
3 I d 23.4 A 3
2 I d 33.05A 3
I2
三相桥式全控整流电路小结
• 结构特点:
——由两个(一个为共阴极,一个为共阳极)三相半波
实际上变压器绕组总有漏感,该漏感可用一个集中的电感 LB表示,并将其折算到变压器二次侧,因此换相过程不能瞬间完 成,而是会持续一段时间。 以三相半波为例分析 考虑变压器漏感时的换相 过程.换相过程持续的时间 用电角度 表示,称为换 相重叠角. 随其他参数变 化的规律: 1)Id越大则越大。 2)XB越大则越大。
RC已知时,即可由式(2-41)和式(2-42)求出 , 。显然 和 仅由乘积RC决定。
电容滤波的单相不可控整流 电路 主要的数量关系(图2-26)
1)输出电压平均值 整流电压平均值Ud 可根据前述波形及有关计算公式 推导得出,但推导繁琐。空载时, 。重 Ud 2U2 载时,U 逐渐趋近于0.9U ,即趋近于接近电阻负载
相关文档
最新文档