三相桥式全控整流电路的性能研究.

合集下载

三相全控桥整流实验报告

三相全控桥整流实验报告

三相全控桥整流实验报告三相全控桥整流实验报告引言:在现代电力系统中,整流技术起着至关重要的作用。

而三相全控桥整流器作为一种常用的电力电子装置,广泛应用于工业、交通等领域。

本实验旨在通过对三相全控桥整流器的实验研究,探索其原理和性能。

一、实验目的本实验的主要目的是:1. 理解三相全控桥整流器的工作原理;2. 掌握三相全控桥整流器的实验操作方法;3. 研究三相全控桥整流器的性能特点。

二、实验原理三相全控桥整流器由六个可控硅组成,分别连接在三相交流电源的三相线上。

通过控制可控硅的导通角,可以实现对交流电的整流。

具体原理如下:1. 当可控硅导通角为0°-120°时,整流器工作在第一象限,输出为正半波整流;2. 当可控硅导通角为120°-240°时,整流器工作在第二象限,输出为负半波整流;3. 当可控硅导通角为240°-360°时,整流器工作在第三象限,输出为正半波整流。

三、实验步骤1. 搭建实验电路:按照实验原理连接三相全控桥整流器、三相交流电源和负载电阻;2. 调整可控硅的导通角:通过控制触发脉冲的相位,调整可控硅的导通角度,观察输出波形;3. 测量电流和电压:使用示波器测量负载电阻上的电流和电压,并记录数据;4. 改变负载电阻:逐渐改变负载电阻的大小,观察输出波形的变化,并记录数据;5. 分析实验结果:根据测得的电流和电压数据,分析三相全控桥整流器的性能特点。

四、实验结果与分析通过实验,我们得到了一系列关于三相全控桥整流器的实验结果。

在不同的可控硅导通角度下,我们观察到了不同的输出波形。

当导通角度为0°-120°时,输出为正半波整流;当导通角度为120°-240°时,输出为负半波整流;当导通角度为240°-360°时,输出为正半波整流。

这证实了实验原理中的理论预测。

同时,我们还发现,随着负载电阻的增加,输出电压和电流的幅值均减小。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告一、实验目的本实验旨在通过搭建三相桥式全控整流电路,理解电力电子整流技术的基本原理,掌握三相桥式全控整流电路的工作过程,探究整流电路的输出特性,为进一步研究和应用电力电子技术打下基础。

二、实验原理三相桥式全控整流电路是一种常见的整流电路,其工作原理基于三相半波可控整流电路。

在该电路中,三相交流电通过6个晶闸管(或二极管)整流,将交流电转换为直流电。

6个晶闸管分为三组,每组两个,分别与三相交流电的每一相相连。

通过控制晶闸管的导通时刻,可以控制电流的流向和大小,从而实现整流的目的。

三、实验步骤1.搭建三相桥式全控整流电路。

使用电源、电阻、二极管、晶闸管等元器件搭建电路。

注意确保连接正确、安全可靠。

2.连接输入电源,调整输入电压,使输入电压在允许范围内。

3.触发晶闸管,控制其导通时刻。

可以使用脉冲信号发生器触发晶闸管,通过改变触发脉冲的相位来控制晶闸管的导通时刻。

4.观察并记录输出电压和电流的变化情况。

可以使用示波器等设备观察输出波形,并记录相关数据。

5.改变触发脉冲的相位,观察输出电压和电流的变化情况,并记录数据。

6.分析实验数据,探究整流电路的工作特性和输出特性。

四、实验结果与分析1.实验结果在实验过程中,我们观察到了整流电路的输出电压和电流的变化情况。

当触发脉冲的相位角增加时,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,输出电压和电流的平均值减小。

实验结果表明,通过控制触发脉冲的相位角,可以有效地控制整流电路的输出电压和电流。

2.结果分析根据实验结果,我们可以得出以下结论:(1)三相桥式全控整流电路可以实现整流的功能,将交流电转换为直流电。

(2)通过控制触发脉冲的相位角,可以控制晶闸管的导通时刻,进而控制输出电压和电流的大小。

当触发脉冲的相位角增加时,晶闸管的导通时间增加,输出电压和电流的平均值增加;当触发脉冲的相位角减小时,晶闸管的导通时间减少,输出电压和电流的平均值减小。

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论

三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。

其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。

二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。

控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。

三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。

当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。

四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。

但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。

五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。

实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。

因此,在参数设计时需要重点考虑这些因素。

同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。

六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。

同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。

七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。

本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。

通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。

但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。

单三相桥式全控整流电路

单三相桥式全控整流电路

C.流过晶闸管电流有效值
I VT
U 1 2U 2 ( sint) 2 d t 2 2 R 2R
sin 2a a 2
2.三相桥式全控整流电路,带电阻负载的工作情况:
2.1 电路结构
图-2 三相桥式全控整流电路带电阻负载时的电路
2
单/三相桥式全控整流电路的性能研究
u d u 2
)和电流,且波形相位
1.3 基本数量关系
a.直流输出电压平均值
Ud
1


2U 2 sin td (t )
0.9U 2
1 cos 0.45U 2 1 cos 2
2 2U 2 1 cos 2
b.输出电流平均值
Id
Ud U 1 cos a 0.45U 2 1 cos 0 .9 2 . R R 2 R
时段 共阴级组中导 通的晶闸管 共阴级组中导 通的晶闸管 整流输出电压
I VT1
II VT1
III VT3
IV VT3
V VT5
VI VT5
VT6
VT2
VT2
VT4
VT4
VT6
ua-ub=uab ua-uc=uac
ub-uc=ubc
ub-ua=ub
uc-ua=uca
பைடு நூலகம்
uc-ub=ucb
2.4 基本数量关系
10
1
单/三相桥式全控整流电路的性能研究
向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4 承受反向电压也不导通。 (4)在 u 2 负半波的(π+a ~2π)区间,在ωt=π+a 时刻,触发晶闸管 VT2、 VT3 使其元件导通,负载电流沿 b→VT3→R→VT2→a →T 的二次绕组→b 流通,电源电压沿 正半周期的方向施加到负载电阻上,负载上有输出电压( 相同。

三相全控桥式整流电路实验报告doc

三相全控桥式整流电路实验报告doc

三相全控桥式整流电路实验报告篇一:实验一、三相桥式全控整流电路实验实验一、三相桥式全控整流电路实验一、实验目的1. 熟悉三相桥式全控整流电路的接线、器件和保护情况。

2. 明确对触发脉冲的要求。

3. 掌握电力电子电路调试的方法。

4. 观察在电阻负载、电阻电感负载情况下输出电压和电流的波形。

二、实验类型本实验为验证型实验,通过对整流电路的输出波形分析,验证整流电路的工作原理和输入与输出电压之间的数量关系。

三、实验仪器1.MCL-III教学实验台主控制屏。

2.MCL—33组件及MCL35组件。

3.二踪示波器 4.万用表 5.电阻(灯箱)四、实验原理实验线路图见后面。

主电路为三相全控整流电路,三相桥式整流的工作原理可参见“电力电子技术”的有关教材。

五、实验内容和要求1. 三相桥式全控整流电路2. 观察整流状态下,模拟电路故障现象时的波形。

实验方法:1.按图接好主回路。

2.接好触发脉冲的控制回路。

将给定器输出Ug接至MCL-33面板的Uct端,将MCL-33 面板上的Ublf接地。

打开MCL-32的钥匙开关,检查晶闸管的脉冲是否正常。

(1)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60的幅度相同的双脉冲。

(2)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲60,则相序正确,否则,应调整输入电源。

3.三相桥式全控整流电路(1)电路带电阻负载(灯箱)的情况下:调节Uct(Ug),使?在30o~90o范围内,用示波器观察记录?=30O、60O、90O 时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

ou??= 30°uuia?tOuab=30O?ti a?=90O?tuuabacOuabuac??= 60°u(2)电路带阻感负载的情况下:在负载中串入700mH 的电感调节Uct(Ug),使?在30o~90o范围内,用示波器观察记录?=30O、60O、90O时,整流电压ud=f(t),晶闸管两端电压uVT=f(t)的波形,并用万用表记录相应的Ud和交流输入电压U2数值。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告Prepared on 24 November 2020实验三三相桥式全控整流电路实验一.实验目的1.熟悉MCL-18, MCL-33组件。

2.熟悉三相桥式全控整流电路的接线及工作原理。

二.实验内容1.MCL-18的调试2.三相桥式全控整流电路3.观察整流状态下,模拟电路故障现象时的波形。

三.实验线路及原理实验线路如图3-12所示。

主电路由三相全控整流电路组成。

触发电路为数字集成电路,可输出经高频调制后的双窄脉冲链。

三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。

四.实验设备及仪器1.MCL—Ⅱ型电机控制教学实验台主控制屏。

2.MCL-18组件3.MCL-33组件4.MEL-03可调电阻器(900)6.二踪示波器7.万用表五.实验方法1.按图3-12接线,未上主电源之前,检查晶闸管的脉冲是否正常。

(1)打开MCL-18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33的双脉冲观察孔,应有间隔均匀,相互间隔60o 的幅度相同的双脉冲。

(3)用示波器观察每只晶闸管的控制极、阴极,应有幅度为1V —2V 的脉冲。

注:将面板上的Ublf 接地(当三相桥式全控整流电路使用I 组桥晶闸管VT1~VT6时),将I 组桥式触发脉冲的六个琴键开关均拨到“接通”, 琴键开关不按下为导通。

(4)将给定输出Ug 接至MCL-33面板的Uct 端,在Uct=0时,调节偏移电压Ub ,使=90o 。

(注:把示波器探头接到三相桥式整流输出端即U d 波形, 探头地线接到晶闸管阳极。

)2.三相桥式全控整流电路 (1) 电阻性负载按图接线,将Rd 调至最大450 (900并联)。

三相调压器逆时针调到底,合上主电源,调节主控制屏输出电压U uv 、U vw 、U wu ,从0V 调至70V(指相电压)。

调节Uct ,使 在30o ~90o 范围内变化,用示波器观察记录=30O 、60O 、90O 时,整流电压u d =f (t ),晶闸管两端电压u VT =f (t )的波形,并记录相应的Ud 和交流输入电压U 2 数值。

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告

三相桥式全控整流电路实验报告实验报告:三相桥式全控整流电路一、实验目的1.了解三相桥式全控整流电路的工作原理;2.掌握三相桥式全控整流电路的实际应用;3.熟悉实验中相关的仪器设备使用和操作;4.通过实验,加深对三相桥式全控整流电路的认识和理解。

二、实验原理1.三相交流电源通过三相桥式整流器,经过电感L1平滑滤波,然后由IGBT或晶闸管等元件构成的全控整流桥对交流电进行整流;2.控制信号通过控制电路产生,并通过触发电路以一定的脉冲方式送入IGBT或晶闸管触发端,从而实现对整流桥的控制。

三、实验所需器材和材料三相交流电源、电感、电容、IGBT或晶闸管、示波器、台式多功能电源等。

四、实验步骤及调试过程1.搭建三相桥式全控整流电路。

2.将三相交流电源连接到整流电路的输入端。

3.连接示波器,通过示波器观察输入和输出波形。

4.连接控制电路,根据实验要求对整流电路进行控制。

5.进行相应的实验数据采集和记录。

五、实验数据记录和分析1.实验中记录了输入电压、输出电压、输出电流等数据。

2.通过分析记录的数据,可以得出整流电路的性能指标,例如:输出电流的大小、纹波系数、效率等。

3.通过数据的分析可以得出实验结果。

六、实验结果分析1.通过数据分析得出输入输出电流的关系,验证了三相桥式全控整流电路的工作原理。

2.通过实验结果可以得出整流电路的性能指标,并对实验结果进行评价。

3.通过实验结果的分析可以对整流电路进行改进和优化。

七、实验结论八、实验中遇到的问题和解决方法1.连接电路时,需要注意电源的极性和电路的连接顺序,否则会导致电路不能正常工作。

解决方法是仔细查阅电路图和实验指导书,正确连接电路。

2.控制电路的参数设置不当,导致无法对整流电路进行控制。

解决方法是按照实验要求对控制电路进行参数调整,确保其能够正常工作。

3.示波器波形不清晰,无法正确观察到输入和输出波形。

解决方法是检查示波器和连接线路,确保其连接良好,并对示波器参数进行适当调整。

三相全控桥式整流电路、单相桥式可控整流电路实验报告

三相全控桥式整流电路、单相桥式可控整流电路实验报告

三相全控桥式整流电路、单相桥式可控整流电路实验报告实验目的:1. 了解三相全控桥式整流电路的工作原理,掌握其操作方法和参数调节;2. 了解单相桥式可控整流电路的工作原理,掌握其操作方法和参数调节。

实验器材:1.交流电源2.三相全控桥式整流电路实验板3.单相桥式可控整流电路实验板4.电压表5.电流表6.示波器实验原理:三相全控桥式整流电路:三相全控桥式整流电路是一种用于将三相交流电压转换为直流电压的电路,其具有能控制电压和电流的特点,可应用于照明、通讯、电器控制等领域。

其电路图如下所示:该电路由三相控制电路和全控桥整流电路两部分构成。

控制电路由三组相位移为120°的控制电压(或电流)分别作用于三个晶闸管VT1~VT3,进一步控制电路接在桥式管VM的控制端上,使电路从无控状态变为全控状态。

当三相控制信号都为正信号时,三相桥式整流电路接收到的输入电压为正的交流电压,所输出的电压也为正的直流电压。

反之,当三相控制信号都为负信号时,三相桥式整流电路输出的电压也为负的直流电压。

由此可见,三相全控桥式整流电路可以根据控制信号的不同,输出正负的直流电压。

单相桥式可控整流电路:单相桥式可控整流电路是一种将单相交流电压转换为直流电压的电路,其具有能控制电压和电流的特点,可应用于照明、通讯、电器控制等领域。

其电路图如下所示:该电路由单相控制电路和可控桥式整流电路两部分构成。

控制电路由控制信号分别作用于两个晶闸管VT1和VT2上,使电路从无控状态变为可控状态。

当控制信号为正信号时,桥式整流电路接收到正交流电压,以正半周向电路输出正的直流电压,反之亦然。

由此可见,单相桥式可控整流电路可以根据控制信号的不同,输出正负的直流电压。

实验步骤:1. 接线检查:检查三相全控桥式整流电路实验板和单相桥式可控整流电路实验板的接线是否正确。

2. 电路调节:(1)打开交流电源开关,调节电源电压为220V、频率为50Hz。

(2)打开三相全控桥式整流电路实验板和单相桥式可控整流电路实验板的电源开关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相桥式全控整流电路的性能研究一、原理及方案三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。

变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。

保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。

采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。

结构框图如图1-1所示。

整个设计主要分为主电路、触发电路、保护电路三个部分。

框图中没有表明保护电路。

当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。

图1-1 三相桥式全控整流电路结构图二、主电路的设计及器件选择实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。

1.三相全控桥的工作原理如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。

习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。

共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。

晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。

变压器为Y∆-型接法。

变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网KP1KP3KP5图1 三相桥式全控整流电路图2-1 三相桥式全控整流电路带(阻感)负载原理图2. 三相全控桥的工作特点⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。

⑵对触发脉冲的要求:按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差。

共阴极组VT1、VT3、VT5的脉冲依次差。

共阳极组VT4、VT6、VT2也依次差。

同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

⑶ud一周期脉动6次,每次脉动的波形都一样, 故该电路为6脉波整流电路。

⑷晶闸管承受的电压波形与三相半波时相同,晶闸管承受最大正、反向电压的关系也相同。

3. 阻感负载时的波形分析三相桥式全控整流电路大多用于向阻感负载和反电动势阻感负载供电(即用于直流电机传动),下面主要分析阻感负载时的情况,因为带反电动势阻感负载的情况,与带阻感负载的情况基本相同。

当α≤60度时,ud波形连续,电路的工作情况与带电阻负载时十分相似,各晶闸管的通断情况、输出整流电压ud波形、晶闸管承受的电压波形等都一样。

区别在于负载不同时,同样的整流输出电压加到负载上,得到的负载电流 id 波形不同,电阻负载时 ud 波形与 id 的波形形状一样。

而阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。

图2-2和图2-3分别给出了三相桥式全控整流电路带阻感负载α=0度和α=30度的波形。

图2-2中除给出ud波形和id波形外,还给出了晶闸管VT1电流 iVT1 的波形,可与带电阻负载时的情况进行比较。

由波形图可见,在晶闸管VT1导通段,iVT1波形由负载电流 id 波形决定,和ud波形不同。

图2-3中除给出ud波形和 id 波形外,还给出了变压器二次侧a相电流 ia 的波形,在此不做具体分析。

图2-2 触发角为0度时的波形图图2-3 触发角为30时的波形图当α>60度时,阻感负载时的工作情况与电阻负载时不同,电阻负载时ud 波形不会出现负的部分,而阻感负载时,由于电感L的作用,ud波形会出现负的部分。

图2-4给出了α=90度时的波形。

若电感L值足够大,ud中正负面积将基本相等,ud平均值近似为零。

这说明,带阻感负载时,三相桥式全控整流电路的α角移相范围为90度。

图2-4 触发角为90时的波形图三、触发电路设计控制晶闸管的导通时间需要触发脉冲,常用的触发电路有单结晶体管触发电路,设计利用KJ004构成的集成触发器实现产生同步信号为锯齿波的触发电路。

3.1 集成触发电路本系统中选择模拟集成触发电路KJ004,KJ004可控硅移相触发电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。

KJ004器件输出两路相差180度的移相脉冲,可以方便地构成全控桥式触发器线路。

KJ004电路具有输出负载能力大、移相性能好、正负半周脉冲相位均衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点。

原理图如下:图3-1 KJ004的电路原理图3.2 KJ004的工作原理如图3-1 KJ004的电路原理图所示,点划框内为KJ004的集成电路部分,它与分立元件的同步信号为锯齿波的触发电路相似。

V1~V4等组成同步环节,同步电压uS经限流电阻R20加到V1、V2基极。

在uS的正半周,V1导通,电流途径为(+15V-R3-VD1-V1-地);在uS负半周,V2、V3导通,电流途径为(+15V-R3-VD2-V3-R5-R21―(―15V))。

因此,在正、负半周期间。

V4基本上处于截止状态。

只有在同步电压|uS|<0.7V时,V1~V3截止,V4从电源十15V经R3、R4取得基极电流才能导通。

电容C1接在V5的基极和集电极之间,组成电容负反馈的锯齿波发生器。

在V4导通时,C1经V4、VD3迅速放电。

当V4截止时,电流经(+15V-R6-C1-R22-RP1-(-15V))对C1充电,形成线性增长的锯齿波,锯齿波的斜率取决于流过R22、RP1的充电电流和电容C1的大小。

根据V4导通的情况可知,在同步电压正、负半周均有相同的锯齿波产生,并且两者有固定的相位关系。

V6及外接元件组成移相环节。

锯齿波电压uC5、偏移电压Ub、移相控制电压UC分别经R24、R23、R26在V6基极上叠加。

当ube6>+0.7V时,V6导通。

设uC5、Ub为定值,改变UC,则改变了V6导通的时刻,从而调节脉冲的相位。

V7等组成了脉冲形成环节。

V7经电阻R25获得基极电流而导通,电容C2由电源+15V经电阻R7、VD5、V7基射结充电。

当V6由截止转为导通时,C2所充电压通过V6成为V7基极反向偏压,使V7截止。

此后C2经(+15V-R25-V6-地)放电并反向充电,当其充电电压uc2≥+1.4V时,V7又恢复导通。

这样,在V7集电极就得到固定宽度的移相脉冲,其宽度由充电时间常数R25和C2决定。

V8、V12为脉冲分选环节。

在同步电压一个周期内,V7集电极输出两个相位差为180°的脉冲。

脉冲分选通过同步电压的正负半周进行。

如在us正半周V1导通,V8截止,V12导通,V12把来自V7的正脉冲箝位在零电位。

同时,V7正脉冲又通过二极管VD7,经V9~V11放大后输出脉冲。

在同步电压负半周,情况刚好相反,V8导通,V12截止,V7正脉冲经V13~V15放大后输出负相脉冲。

说明:1) KJ004中稳压管VS6~VS9可提高V8、V9、V12、V13的门限电压,从而提高了电路的抗干扰能力。

二极管VD1、VD2、VD6~VD8为隔离二极管。

2) 采用KJ004元件组装的六脉冲触发电路,二极管VD1~VD12组成六个或门形成六路脉冲,并由三极管V1~V6进行脉冲功率放大。

3) 由于V8、V12的脉冲分选作用,使得同步电压在一周内有两个相位上相差的脉冲产生,这样,要获得三相全控桥式整流电路脉冲,需要六个与主电路同相的同步电压。

因此主变压器接成D,yn11及同步变压器也接成D,yn11情况下,集成触发电路的同步电压uSa、uSb、uSc分别与同步变压器的uSA、uSB、uSC相接RP1~RP3为锯齿波斜率电位器,RP4~RP6为同步相位3.3 集成触发器电路图三相桥式全控触发电路由3个KJ004集成块和1个KJ041集成块(KJ041内部是由12个二极管构成的6个或门)及部分分立元件构成,可形成六路双脉冲,再由六个晶体管进行脉冲放大即可,分别连到VT1,VT2,VT3,VT4,VT5,VT6的门极。

6路双脉冲模拟集成触发电路图如图3-2所示:图3-2 集成触发电路图四、仿真1.MATLAB 建模⑴ 三相桥式全控整流器的建模、参数设置三相桥式全控整流器的建模可以直接调用通用变换器桥(6-pulse thyristor )仿真模块。

参数设定如图5-1所示:图5-1 通用桥参数设置图-15V+15V123456⑵同步电源与6脉冲触发器的封装同步电源与6脉冲触发器模块包括同步电源和6脉冲触发器两个部分,6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。

具体步骤如下:①建立一个新的模型窗口,命名为TBCF;②打开相应的模块组,复制5个int1(系统输入端口)、一个out1(系统输出端口、3个voltage Measurement(电压测量模块)、1个6-Pulse Generator (脉冲触发器)。

按图5-2连线。

图4-2 触发器模块连接图③进行封装,封装图如图5-3所示。

图4-3 封装图⑶三相桥式全控整流电路的建模、参数设置建立一个新的模型窗口,命名为ban2。

将三相桥式全控整流器和同步6脉冲触发器子系统复制到ban2模型窗口中。

通过合适的连接,最后连接成如图5-4所示的命名为修改版的三相桥式全控整流器电路仿真模型。

相关参数说明:交流电压源Ua、Ub、Uc等于U2为179.6V,频率为50Hz,Ua相序为0度,Ub相序为-120度,Uc相序为-240度。

RC中的参数为:R为1欧,L为0H,C为(1e-6)F。

RL 中的参数为:R的参数为0.721欧,L(平波电抗器)的参数为4.4mH。

DC的参数为-220V可设为任意值。

图4-4 三相桥式全控整流电路仿真图2. MATLAB 仿真打开仿真参数窗口,选择ode123tb算法,将相对误差设置1e-3,仿真开始时间设置为0,停止时间设置为0.04秒。

在下面的仿真图中Ud、Id为负载电压(V)和负载电流(A)。

⑴触发角为0度是的波形图4-5 触发角为0度时ud、id的波形图⑵触发角为30度时的波形图4-6 触发角为30度时ud、id的波形图⑶触发角为90度时的波形图4-7 触发角为90度时ud、id的波形图3. 仿真结构分析由仿真出的触发角分别为0度、30度和90度的Ud、Id波形图和图2-2、图2-3、图2-4比较可知,三相桥式全控整流电路接反电动势负载时,在负载电感足够大以使负载电流连续的情况下,电路工作情况与电感负载时相似,电路中各处电压、电流波形均相同、仅在计算Id时有所不同,接反电动势阻感负载时的Id为:R EU I d d -=﹙公式17﹚三相有源逆变α=300 U d波形三相有源逆变α=600 U d波形三相有源逆变α=900 U d波形U d =f (α)曲线(电阻——电感性负载)U d /U 2=f (α)曲线(电阻——电感性负载)对实验结果实验中某些现象的分析讨论:实验中可以看出,不管α为何值,负载电压U d 都是线电压的一部分,相当于以线电压为幅值一周期有6个脉动波的六相半波整流电路。

相关文档
最新文档