2019年成人高考高起点《数学(理)》点、直线和平面的位置定理_750
点与直线与平面的公理和定理

点与直线与平面的公理和定理在几何学中,点、直线和平面是最基本的概念。
它们是几何学的基础,是其他几何概念的基础。
点、直线和平面的公理和定理是几何学的基础,它们是几何学的基本规则和原则。
点的公理和定理点是几何学中最基本的概念之一。
点没有大小和形状,只有位置。
点的公理和定理包括:1. 任意两个点之间都可以画一条直线。
2. 任意两个点之间只有一条直线。
3. 任意三个不共线的点可以确定一个平面。
4. 任意两个点之间的距离是唯一的。
5. 任意两个点之间的距离可以用勾股定理计算。
直线的公理和定理直线是由无数个点组成的,它是一条没有弯曲的路径。
直线的公理和定理包括:1. 一条直线上的任意两个点可以确定这条直线。
2. 一条直线上的任意两个点之间的距离是唯一的。
3. 一条直线可以无限延伸。
4. 两条不平行的直线必定相交于一点。
5. 两条平行的直线之间的距离是恒定的。
平面的公理和定理平面是由无数个点和直线组成的,它是一个没有厚度的二维图形。
平面的公理和定理包括:1. 任意三个不共线的点可以确定一个平面。
2. 一条直线和一个点可以确定一个平面。
3. 两条不平行的直线必定相交于一点,这个点在平面上。
4. 两条平行的直线在平面上不相交。
5. 一条直线和一个平面最多只有一个公共点。
总结点、直线和平面是几何学中最基本的概念,它们的公理和定理是几何学的基础。
这些公理和定理是几何学的基本规则和原则,它们帮助我们理解和解决几何问题。
在学习几何学时,我们需要深入理解这些公理和定理,掌握它们的应用方法,才能更好地理解和应用几何学知识。
点、直线、平面之间的位置关系(知识梳理)

的位置关系-@>% )一平面1.平面的概念平面是一个只描述而不加定义的最基本的原始概念,常见的桌面㊁黑板面㊁海面都给我们以平面的形象.立体几何里所说的平面就是从这样一些物体中抽象出来的.但是几何里所说的平面是无限延展的.2.平面的基本性质三个公理及公理2的三个推论如下:公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.公理2:经过不在同一条直线上的三点有且只有一个平面.推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面. 推论3:经过两条平行直线,有且只有一个平面.公理3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.二空间两条直线的位置关系1.空间两条直线的位置关系(1)相交直线:在同一平面内,有且仅有一个公共点.(2)平行直线:在同一平面内,没有公共点.(3)异面直线:不同在任何一个平面内,没有公共点.(4)异面直线所成的角:如图51所示,直线a ,b是异面直线,经过空间一点O ,分别引直线a 'ʊa ㊁b 'ʊb ,相交直线a ',b '所成的锐角(或直角)叫作异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,则称这两条异面直线互相垂直.abαabαOOaa b图512.平行公理与等角定理(1)平行公理(公理4):平行于同一直线的两条直线相互平行.(2)等角定理:空间中如果一个角的两边和另一个角的两边分别对应平行,那么这两个角相等或互补.三直线和平面、平面和平面的位置关系1.一条直线和一个平面的位置关系有且只有以下三种:(1)直线在平面内 有无数个公共点;(2)直线和平面相交 有且只有一个公共点;(3)直线和平面平行 没有公共点.2.两个平面的位置关系只有两种(1)平行 没有公共点;(2)相交 有一条公共直线.四直线和平面平行的判定与性质1.直线和平面平行的判定定理(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)判定定理的符号表示:a⊄α}⇒aʊαb⊂αaʊb2.直线和平面平行的性质定理(1)性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和两平面的交线平行.(2)性质定理的符号表示aʊαa⊂βαɘβ=b}⇒aʊb五平面与平面平行的判定与性质1.平面与平面平行的判定定理(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.(2)判定定理的符号表示:a⊂αb⊂αaɘb=A aʊβbʊβüþýïïïïïï⇒αʊβ2.平面与平面平行的性质定理(1)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(2)性质定理的符号表示:αʊβγɘα=a γɘβ=b }⇒a ʊb 六直线和平面垂直的判定与性质1.直线和平面垂直的定义如果一条直线l 和一个平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直,记作l ʅα,直线l 叫作平面α的垂线,平面α叫作直线l 的垂面.2.直线和平面垂直的判定(1)直线和平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与这个平面垂直.判定定理的符号表示:a ⊂αb ⊂αa ɘb =P l ʅal ʅbüþýïïïïïï⇒l ʅα(2)如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,即a ʊba ʅα}⇒b ʅα3.直线和平面垂直的性质(1)直线和平面垂直的性质定理:垂直于同一个平面的两条直线平行.性质定理的符号表示:a ʅαb ʅα}⇒a ʊb(2)如果一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意一条直线.(3)过一点有且只有一条直线和已知平面垂直;过一点有且只有一个平面和已知直线垂直.(4)如果一条直线与两个平面都垂直,那么这两个平面平行.七平面与平面垂直的判定与性质1.两个平面垂直的定义(1)二面角:从一条直线出发的两个半平面所形成的空间图形叫作二面角.这条直线叫作二面角的棱,两个半平面叫作二面角的面.(2)二面角的平面角:在二面角α-l -β的棱l 上任取一点O ,以O 为垂足,在两个半平面内分别作垂直于棱的射线O A 和O B ,则射线O A 和O B 所成的角øA O B叫作二面角α-l -β的平面角.(3)直二面角:平面角是直角的二面角叫作直二面角(4)两个平面垂直的定义:两个平面相交,如果它们所成的二面角是直二面角,那么就说这两个平面互相垂直.2.两个平面垂直的判定定理(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)判定定理的符号表示:a ⊂αa ʅβ}⇒αʅβ3.两个平面垂直的性质定理(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(2)性质定理的符号表示:αʅβ,αɘβ=l b ⊂α,b ʅl}⇒b ʅβ。
2019年河南成人高考高起点数学(理)真题及答案

1 x2 2019年河南成人高考高起点数学(理)真题及答案本试卷分第 I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分 150 分。
考试时间 120 分钟。
第Ⅰ卷(选择题,共 85 分)一、选择题(本大题共 17 小题,每小题 5 分,共 85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集 U={1,2,3,4}集合 M={3,4},则C U M =【 】A.{2,3}B.{2,4}C.{1,2}D.{1,4} 2. 函数 y=cos4x 的最小正周期为【 】A. B. C. D. 2 2 4 3.设甲:b=0;乙:函数 y=kx+b 的图像经过坐标原点,则【】A. 甲是乙的充分条件但不是必要条件B. 甲是乙的充要条件C. 甲是乙的必要条件但不是充分条件D. 甲既不是乙的充分条件也不是乙的必要条件4. 已知tan1.则tan(【 】2 A.-3 B.1 34C.3D. 1 35. 函数 y 的定义域是【】A. x x 1B. x x 1C. x 1 x 1D. x x 16. 设 0<x<1,则 【 】A. log 2 x0 B. 0 2x 1C. log 1 x0 2D.1 2x 27. 不等式 x 1 1 的解集为 【】2 2 A. x x 0或x 1C. x x 1B. x 1 x 0D. x x 0)3 y8. 甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排法共有 【 】 A.4 种 B.2 种 C.8 种 D.24 种9.若向量 a =(1,1),b =(1,一 1),则 1 a 3b 【 】2 2A.(1.2)B.(-1.2)C.(1,-2)D.(-1,-2)110. log 1162 (2)0 【 】A.2B.4C.3D.511. 函数 y x 2 4x 5 的图像与 x 轴交于 A ,B 两点,则|AB|=A.3B.4C.6D.512.下列函数中,为奇函数的是 【 】A. y 2x13.双曲线 x 9 B.y=-2x+3 C. y x 232- 1的焦点坐标是 【 】16 D.y=3cosxA.(0,- ),(0, )B.(- ,0),( ,0)C.(0,-5),(0,5)D.(-5,0),(5,0)14.若直线mx y 1 0 与直线4x 2 y 1 0 平行,则 m=【】A.-1B .0C.2D.115.在等比数列a n 中, 若a 4a 5 6, 则a 2a 3a 6a 7 【 】A.12B.36C.24D.7216.已知函数 f x 的定义域为 R ,且 f (2x ) 4x 1, 则 f (1) 【 】A.9B.5C.7D.3 17. 甲、乙各自独立地射击一次,已知甲射中 10 环的概率为 0.9,乙射中 10 环的概率为 0.5,则甲、乙都射中 10 环的概率为 【 】 A.0.2 B.0.45 C.0.25 D.0.75第Ⅱ卷(非选择题,共 65 分) 二、填空题(本大题共 4 小题,每小题 4 分,共 16 分)18.椭圆 x 4 + y 21的离心率为。
2019高中数学高考真题分类:考点34-空间点、直线、平面之间的位置关系

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。
考点34 空间点、直线、平面之间的位置关系一、选择题1. (2018·广东高考文科·T8)设l 为直线,,αβ是两个不同的平面,下列A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【解题指南】本题考查空间推力论证能力,应熟练运用平行与垂直的判定与性质,还要能举出反例.【解析】选B. 对于选项A ,若//,//l l a b ,则平面,a b 可能相交,此时交线与l 平行,故A 错误;对于选项B ,垂直于同一条直线的两个平面平行(直线是公垂线);对于选项C ,能推出两个平面相交且两个平面垂直;对于选项D ,//l β,,l l ββ⊥⊂都可能.2.(2018·广东高考理科·T6)设,m n 是两条不同的直线,,αβ是两个不同的平面,下列A .若αβ⊥,,m n αβ⊂⊂,则m n ⊥B .若//αβ,,m n αβ⊂⊂,则//m nC .若m n ⊥,,m n αβ⊂⊂,则αβ⊥D .若m α⊥,//m n ,//n β,则αβ⊥【解题指南】本题考查空间推力论证能力,应熟练运用平行与垂直的判定定理与性质.【解析】选D.对于选项A,分别在两个垂直平面内的两条直线平行、相交、异面都可能,但未必垂直;对于选项B,分别在两个平行平面内的两条直线平行、异面都可能;对于选项C,两个平面分别经过两垂直直线中的一条,不能保证两个平面垂直;对于选项D ,m α⊥,//m n ,则n α⊥;又因为//n β,则β内存在与n 平行的直线l ,因为n α⊥,则l α⊥,由于,l l αβ⊥⊂,所以αβ⊥.3.(2018·江西高考理科·T8)如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD ,正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m ,n ,那么m+n=( )A.8B.9C.10D.11【解析】选A.取CD 中点G ,连接EG,FG,可知CD ⊥平面EFG,因为AB//CD ,所以AB ⊥平面EFG,容易知道平面EFG 与正方体的左右两个侧面平行,所以EF 与正方体的两个侧面平行,观察可知n=4;又正方体的底面与正四面体的底面共面,所以过点A 可作AH//CE,易知CE 与正方体的上下两个底面平行,与其他四个面相交,所以m=4,即得m+n=8.4.(2018·安徽高考理科·T3)在下列A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线【解析】选A.B,C,D 是经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的5.(2018·北京高考文科·T8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A.3个B.4个C.5个D.6个【解题指南】根据几何体的特点,分别求出点P 到各顶点的距离。
成人高考高数学(一)8

成人高考高数学(一)8.平面与直线
1.知识范围
(1)常见的平面方程
点法式方程一般式方程
(2)两平面的位置关系(平行、垂直和斜交)
(3)点到平面的距离
(4)空间直线方程
标准式方程(又称对称式方程或点向式方程)一般式方程参数式方程
(5)两直线的位置关系(平行、垂直)
(6)直线与平面的位置关系(平行、垂直和直线在平面上)
2.要求
(1)会求平面的点法式方程、一般式方程。
会判定两平面的垂直、平行。
会求两平面间的夹角。
(2)会求点到平面的距离。
(3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。
会判定两直线平行、垂直。
(4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。
高中数学空间点、直线、平面之间的位置关系专题讲解

空间点、直线、平面之间的位置关系考纲解读 1.以常见几何体为模型,利用公理或推论判断线面位置关系;2.利用等角定理及平面求角的方法求异面直线所成的角.[基础梳理]1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间两条直线的位置关系 (1)位置关系分类:位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.(2)平行公理(公理4)和等角定理:①平行公理:平行于同一条直线的两条直线互相平行.②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (3)异面直线所成的角:①定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫作异面直线a 与b 所成的角(或夹角);②范围:⎝⎛⎦⎤0,π2 . 3.空间直线与平面、平面与平面的位置关系[三基自测]1.下列命题中,真命题是()A.空间不同三点确定一个平面B.空间两两相交的三条直线确定一个平面C.两组对边相等的四边形是平行四边形D.和同一直线都相交的三条平行线在同一平面内答案:D2.如图所示,在正方体ABCD A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30°B.45°C.60° D.90°答案:C3.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直答案:D4.(必修2·2.1练习改编)两两相交的三条直线最多可确定________个平面.答案:35.(2017·高考全国卷Ⅲ改编)在正方体ABCD A1B1C1D1中,与平面A1AC平行的棱有________.答案:D1D、B1B考点一平面的基本性质|易错突破[例1](1)如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个是()(2)如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC 与平面β的交线是()A.直线AC B.直线ABC.直线CD D.直线BC[解析](1)A,B,C图中四点一定共面,D中四点不共面.(2)由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.[答案](1)D(2)C[易错提醒]1.由元素确定平面时,要看元素满足的条件.(1)由点确定平面:三点不共线;(2)由点和线确定平面:点不在直线上;(3)由线确定平面:两条相交线,两条平行线.2.多点共线或多线共点问题:点为平面的公共点,线为平面的交线.3.共面、共线、共点问题的证明(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.(2)证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.(3)证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.[纠错训练]1.如图,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC,则A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,同理O在平面ACC1A1与平面AB1D1的交线上,所以A,M,O三点共线.故选A.答案:A2.(2018·大连模拟)给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是________.解析:①正确,因为直线在平面外即直线与平面相交或直线平行于平面,所以最多有一个公共点.②正确,a,b有交点,则两平面有公共点,则两平面相交.③正确,两平行直线可确定一个平面,又直线与两平行直线的两交点在这两平行直线上,所以过这两交点的直线也在平面内,即三线共面.④错误,这三条直线可以交于同一点,但不在同一平面内.答案:①②③考点二空间直线的位置关系|方法突破命题点1异面直线的判定[例2](2018·德州模拟)在图中,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).[解析]图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面,所以在图②④中GH与MN异面.[答案]②④[方法提升]异面直线的判定方法(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.此法在异面直线的判定中经常用到.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.[跟踪训练]1.(2018·赣州模拟)如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.解析:还原成正四面体知GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE与MN为异面直线,且所成的角为90°,即DE与MN垂直.答案:②③④命题点2平行和垂直的判定[例3](1)(2018·衡水中学模拟)如图所示,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行(2)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面[解析](1)连接C1D,BD(图略).∵N是D1C的中点,∴N是C1D的中点,∴MN∥BD.又∵CC1⊥BD,∴CC1⊥MN,故A,C正确.∵AC⊥BD,MN∥BD,∴MN⊥AC,故B正确.故选D.(2)如图长方体ABCDA1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.[答案](1)D(2)B[方法提升]1.线线平行或垂直的判定方法(1)对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理来判断.(2)对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直. 2.注意几个“唯一”结论(1)过直线外一点有且只有一条直线与已知直线平行. (2)过直线外一点有且只有一个平面与已知直线垂直. (3)过平面外一点有且只有一个平面与已知平面平行. (4)过平面外一点有且只有一条直线与已知平面垂直.[跟踪训练]2.(2018·东营模拟)如图,在正方体ABCD A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2F A ,则EF 与BD 1的位置关系是( )A .相交但不垂直B .相交且垂直C .异面D .平行解析:连接D 1E 并延长,与AD 交于点M , 因为A 1E =2ED ,可得M 为AD 的中点, 连接BF 并延长,交AD 于点N , 因为CF =2F A ,可得N 为AD 的中点, 所以M ,N 重合,且ME ED 1=12,MF BF =12,所以ME ED 1=MF BF ,所以EF ∥BD 1.答案:D考点三 异面直线所成的角|方法突破[例4] (1)直三棱柱ABC A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°(2)如图,在三棱锥A BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.[解析] (1)如图,可补成一个正方体,由AC 1∥BD 1,得BA 1与AC 1所成角的大小为∠A 1BD 1.又易知△A 1BD 1为正三角形,∴∠A 1BD 1=60°. 即BA 1与AC 1成60°的角.(2)如图所示,连接ND ,取ND 的中点E ,连接ME ,CE ,则ME ∥AN ,则异面直线AN ,CM 所成的角即为∠EMC . 由题可知CN =1,AN =22, ∴ME = 2.又CM =22, DN =22,NE =2,∴CE =3, 则cos ∠CME =CM 2+EM 2-CE 22CM ×EM=8+2-32×22×2=78.[答案] (1)C (2)78[方法提升]求异面直线所成角的方法[母题变式]在本例(1)中,将∠BAC =90°改为∠BAC =60°,其余条件不变,求AC 1与BC 所成的角的余弦值.解析:如图,取AC 的中点D .C 1C 的中点E ,AB 的中点F ,连接DF ,DE ,EF ,CF . ∴DE ∥AC 1,DF ∥BC ,∴DE 与DF 所成的锐角或直角是AC 1与BC 所成的角. 不妨设AB =2,∴DE =12AC 1=2,DF =1,CF =3,在Rt △CEF 中,EF =2,在△EDF 中,cos ∠EDF =2+1-422=-122=-24.∴AC 1与BC 所成角的余弦值为24.1.[考点三](2016·高考全国卷Ⅰ)平面α过正方体ABCD A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A.32 B.22C.33D.13解析:在原正方体的前方补一个正方体(如图),故平面α为平面AMQ ,∴α∩平面ABCD =m =AM ,∴AM ∥B 1D 1,即m ∥B 1D 1,同理n ∥D 1C ,∴m ,n 所成角为∠CD 1B1.又△CD 1B 1为正三角形,∴∠CD 1B 1=60°,∴m ,n 所成角的正弦值为32,故选A.答案:A2.[考点二](2016·高考全国卷Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)解析:对于①,α,β可以平行,也可以相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l⊂α,n∥l,又m⊥α,所以m⊥l,所以m ⊥n,故正确.对于③,因为α∥β,所以α,β没有公共点.又m⊂α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n 与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.答案:②③④。
2019年上海成考高起点《数学》(理)真题及答案

第 I 卷(选择题,共 85 分) 一、选择题:本大题共 17 小题,每小题 5 分,共 85 分。在每个小题给出的 四个选项中,选出- -项符合题目要求的。 1.设全集 U=({,23.4),集合 M=(3,4,则 CuM = A.{2,3}B.{2,4]}C(1,4}D.(1,2} [答案] D . [解析]求补集,是集合缺少的部分,应该选 D 2.函数 y = cos4x 的最小正周期为 A.I B,π D.2π [答案] c [解析]本题考查了三角函数的周期的知识点最小正周期.设用: b=0;乙:函 数 y= kx + b 的图像经过坐标原点,则 A.甲是乙的充分条件但不是必要条件 B.用是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件
[答案] C [解析]本题考查了充分条件和必要条件的知识点, 4.已知 tana=1/2,则 tan(a+π/4)= A.-3 B.一 1/3 c.1/2 D.3 [答案] D 5.函数 y=√1-x2“的定义域是 A. {x|x≥-1} B. {xIx≤1}C. {x|x≤-1} D. {x|-1≤x≤1} .[答案] D [解析] 1-x°≥0 时,原函数有意义,即 x°≤1 即(x1-1≤x≤1}6.设 0 物 D. log;x> 0[答案] B [解析] 1<2*<2,logx> 0,logax<0 7.不等式|x +第>当的解集为 A. {x|-1- -1] , C. {1>0 或 x<-1}D. {xkx<0}[答案] C
[解析] |x+当≥当解得 x+ξ<←或 x+>即{x|x>0 或 x<-1} 8.甲、乙、丙、丁 4 人排成一行,其中甲、乙必须排在两端,则不同的排 法共有 A.3 种 B. 8 种 C.4 种 D.24 种 [答案] C [解析]甲乙站在两边,有 2 种排法,丙丁站在中间有 2 种排法,总计: 2*3=4. 9,若向量 a=(1,), b=(1,-1), 则 1/2a-3/2b=; A. (-1,2) B. (1,-2) C. (1,2) D. (-1,-2) 【答案】 A 11,y=x2- 4x- 的图像与 x 轴交于 A.B 两点,则丨 AB 丨= A.3 B4 C.5
高考数学-点线面位置关系

空间中点、直线、平面之间的位置关系【基础知识回顾】一、四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
符号语言:,,,A l B l A B l ααα∈∈∈∈ ⇒ ∈且。
公理2:过不在一条直线上的三点,有且只有一个平面。
三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。
符号语言:,,P P l P l αβαβ∈∈⇒=∈I且。
公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。
符号语言://,////a l b l a b ⇒且。
二、空间中直线与直线之间的位置关系1.概念:异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。
已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。
(易知:夹角范围090θ<≤︒)定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。
(注意:会画两个角互补的图形)2.位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点3.空间中直线与平面之间的位置关系直线与平面的位置关系有三种://l l A l ααα⊂⎧⎪=⎧⎨⎨⎪⎩⎩I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点4.空间中平面与平面之间的位置关系平面与平面之间的位置关系有两种://l αβαβ⎧⎨=⎩I 两个平面平行()没有公共点两个平面相交()有一条公共直线【考点例题解析】考点1、四个定理以及点、直线、面的位置关系(1命题判断2判断点、直线、面位置关系) 例1.(2012年高考(四川文))下列命题正确的是( )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行例2错误!未指定书签。