现代控制理论实验内容
现代控制理论实验(1)

《现代控制理论实验》一.实验目的1、掌握组态王软件开发工程的步骤2、学会设备通讯的连接方法3、开发一个计算机-智能仪表控制系统的单回路控制系统4、绘制一条温度控制曲线二.实验设备计算机,仪表结构实验控制箱,电加热炉,组态王软件三.实验内容与实验步骤第一步:建立一个新工程在工程浏览器中双击“新建工程”图标,建立一个新工程,进入“组态王”工程浏览器。
第二步:设备连接本次实验硬件设备选用理化公司生产的CD901数字温度控制器。
点击工程浏览器树形菜单下面的----设备----COM1---右面的新建图标,选择“智能仪表-理化-CD901-串口”,定义地址为10或11(右侧回路地址为0010,左侧回路地址为0011)。
双击工程浏览器左侧树形菜单中的“COM1”,对智能仪表CD901进行通讯配置:波特率:9600 数据位:8奇偶校验:无停止位: 1通讯超时:3000 豪秒通讯方式:RS232(将通讯配置截图粘贴于此处)第三步:图形界面的设计双击我们设计的画面或新建一个画面,进入“组态王”开发系统,这时开始设计界面。
界面应包含一条温度曲线用以采集并绘出实时温度,两个按钮用以启动和停止程序,两处字符显示用以表示给定温度值和实时温度值,另外需在界面显示编程人的班级、学号、姓名等信息。
用到的控件应包括:一个“X-Y轴曲线”控件,2个矩形、2个按钮,以及必要的文本。
如图所示:(将设计界面截图粘贴于此处)第四步:构造数据库在这个工程中需要定义6个变量,变量属性如下表:其中PV 表示温度的采样值,SV表示温度的给定值,AUTO_TUNING表示自动切换值,H_P表示加热比例带,on 用来设置开始标志,runtime表示当前时间。
第五步:动画连接文本:双击SV对应的文本“sv”,在“模拟量输出”和“模拟量输入”选项卡的“变量名”处选择\\本站点\SV,“模拟量输出”选项的整数位、小数位分别选择3位、0位,“模拟量输入”选项的最大值、最小值处分别选择300、0;双击PV对应的文本“pv”,在“模拟值输出”选项卡的“变量名”处选择“\\本站点\PV”,“模拟量输出”选项的整数位、小数位分别选择3位、2位。
现代控制理论实训报告

一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。
为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。
本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。
通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。
二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。
2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。
3. 提高团队合作意识,锻炼动手能力和沟通能力。
三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。
2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。
3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。
4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。
四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。
2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。
3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。
(2)求解状态转移矩阵,并进行可控性和可观测性分析。
(3)设计状态反馈和观测器,优化控制系统性能。
(4)利用MATLAB进行仿真,观察控制系统动态特性。
(5)根据仿真结果,调整控制器参数,提高控制系统性能。
4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。
五、实训成果1. 掌握了现代控制理论的基本概念和方法。
2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。
现代控制理论实验报告

现代控制理论实验报告实验一系统能控性与能观性分析一、实验目的1.理解系统的能控和可观性。
二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台;三、实验容二阶系统能控性和能观性的分析四、实验原理系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。
对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。
反之,当时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。
系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。
为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式:平衡时:由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。
基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。
反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。
由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω)五、实验步骤1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。
将阶跃信号发生器选择负输出。
2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。
然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。
此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。
3.将短路帽分别接到1K、3K处,重复上面的实验。
现代控制理论实验报告

现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论实验指导书甄选范文.

现代控制理论实验指导书哈尔滨理工大学现代控制理论实验报告姓名:袁一鸣班级:13级自动化— 3 班学号:1330130325日期:2016.7.4实验一控制系统的能控性和能观性一实验目的1.掌握能控性和能观性的概念,学会用MATLAB判断能控性和能观性;2. 掌握系统的结构分解,学会用MATLAB 进行分解;3.掌握系统能控标准型和能观标准型,学会用MATLAB 进行变换。
二 实验设备PC 机一台,装有MATLAB 软件。
三 实验内容1. 系统方程为,x Ax Bu y Cx =+=式中,0061011016A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦;310B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]001C =,试按能控性进行分解。
2. 系统方程为,x Ax Bu y Cx =+=。
式中,121021132A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦;011B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦;[]101C =,求线性变换矩阵,将其变换成能控标准型和能观标准型。
四 实验原理1 线性定常系统能控性和能观性判据系统状态空间描述为x Ax Bu y Cx =+⎧⎨=⎩1) N 阶线性定常系统状态完全能控的充要条件是:能控性矩阵21[]n c Q B AB A B A B -=的秩为n 。
能控性矩阵可用MATLAB 提供的函数ctrb()自动产生,其调用格式为ctrb(A,B)。
能控性矩阵的秩可用MATLAB 提供的函数rank()求出。
2) N 阶线性定常系统状态完全能观的充要条件是:能观性矩阵21o n C CA Q CA CA -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的秩为n 。
能观性矩阵可用MATLAB 提供的函数obsv()自动产生,其调用格式为obsv(A,B)。
2 线性系统的结构分解1) 按能控性分解:如果系统状态不完全能控,可通过非奇异变换分解为能控和不能控两部分,当能控矩阵的秩()c rank Q n <时,可以使用函数命令ctrbf()对线性系统进行能控性分解,其调用格式为,,,,(,,)A B C T K ctrbf A B C ⎡⎤=⎣⎦,其中T 为相似变换矩阵,K 为一个相量,()sum K 可以求出能控的状态分量的个数。
现代控制理论实验

现代控制理论实验引言现代控制理论是在工程控制领域中发展起来的一种理论体系,其应用范围非常广泛。
为了帮助学生更好地理解和掌握现代控制理论,学校开设了现代控制理论实验课程。
该实验课程旨在通过具体的实验操作,帮助学生巩固理论知识,培养实际操作能力,并能应用现代控制理论解决实际问题。
本文将介绍现代控制理论实验的内容、目的、实验装置和实验步骤。
实验内容现代控制理论实验主要包括以下内容: 1. PID控制器的设计与实现:通过调节比例、积分和微分参数,设计一个PID 控制器,并将其实现在实验装置上,观察控制效果。
2. 状态反馈控制器的设计与实现:利用状态观测器和状态反馈器,设计一个状态反馈控制器,并将其实现在实验装置上,观察控制效果。
3. 频域方法的应用:通过频域分析方法,设计一个控制器,使得实验装置的频率响应满足特定要求。
4. 鲁棒控制方法的应用:利用鲁棒控制方法设计一个控制器,能够在系统参数变化时保持系统的稳定性和性能。
实验目的现代控制理论实验的主要目的是培养学生的实践能力和问题解决能力。
具体目标包括: 1. 理解现代控制理论的基本原理与方法; 2. 掌握现代控制理论的实验操作技巧; 3. 理解研究现代控制理论的方法和途径; 4. 能够设计、实现和调试现代控制器,并分析控制效果; 5. 学会通过实验结果验证和改进控制算法。
实验装置现代控制理论实验装置主要包括:电机系统、传感器、数据采集卡、计算机控制软件和控制器实现装置。
电机系统是实验装置的核心部件,它模拟了真实的控制对象。
传感器用于感知电机系统的转速、位置或其他关键参数。
数据采集卡负责将传感器采集到的数据传输给计算机进行处理。
计算机控制软件包括了实验的开发工具和界面,可以实时控制电机系统并显示实验结果。
控制器实现装置是通过软件或硬件方式实现控制器,在实验中使用。
实验步骤本节将介绍现代控制理论实验的基本步骤。
具体步骤如下:步骤一:系统建模与参数辨识首先需要对实验装置进行数学建模,并通过实验数据对模型参数进行辨识。
现代控制理论实验

现代控制理论实验华北电力大学实验报告||实验名称状态空间模型分析课程名称现代控制理论基础||专业班级:自动化1203 学生姓名:孟令虎学号:201209020216 成绩:指导教师:刘鑫屏老师实验日期: 2015.4.24一、实验目的l.加强对现代控制理论相关知识的理解;2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境三、实验内容1、 模型转换例 1.把传递函数模型转化为状态空间模型3248G s =81912s s s s ++++()。
解:程序如下num=[4 8]; den=[1 8 19 12];[A,B,C,D]=tf2ss(num,den); G=ss(A,B,C,D) 运行结果: A =-8 -19 -12 1 0 0 0 1 0 B = 1 0 0 C =0 4 8 D =0 结果为112233-8 -19 -1211 0 010 1 00x x x x u x x ∙∙∙⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦,[]1230 4 8x y x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例2.把状态空间模型转化为传递函数模型A=0 1 00 0 1-6 -11 -6⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B=001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C= []2 3 0 D=0。
解:程序如下:clearA=[0 1 0;0 0 1;-6 -11 -6]; B=[0;0;1]; C=[3 2 0]; D=0; iu=1;[num,den] = ss2tf(A,B,C,D,iu); sys=tf(num,den) 运行结果为:Transfer function: 2 s + 3---------------------- s^3 + 6 s^2 + 11 s + 62、 状态方程状态解和输出解例1.单位阶跃输入作用下的状态响应A=0 1 00 0 1-6 -11 -6⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦B=001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦C=[]2 3 0 D=0。
现代控制理论实验04

杨晓丹 | 现代控制理论 | 2015年4月14日实验4 PI 参数对系统的影响一、实验内容及目的用PI 控制器控制一阶对象,并加入扰动n1和n2,更改kp 和ki 的值,观察系统的静态误差,以及扰动误差。
实验研究系统型别和定值误差,不同位置扰动误差之间的关系,以及静态误差与不同环节之间的增益的关系。
二、实验方案内容控制对象传递函数为 1.1()201G s S =+,PI 控制器传递函数为()c kiG s kp s=+,在PI 控制器和一阶系统间加入扰动n1,在系统输出Y 上加入扰动n2。
1. 控制器型别对误差的影响kp=1,观察ki=0和1时系统的误差。
1) 令r=1,n1=0,n2=0,观察定值误差。
2) 令r=1,n1=0.1,n2=0,观察扰动误差。
3)令r=0,n1=0,n2=0.1,观察扰动误差。
2. 控制对象型别对误差的影响kp=1,ki=0, 将控制对象传递函数改为 1.1()(201)G s s s =+,与前一项实验对比。
1) 令r=1,n1=0,n2=0,观察定值误差。
2) 令r=1,n1=0.1,n2=0,观察扰动误差。
3)令r=0,n1=0,n2=0.1,观察扰动误差。
3. 各环节增益对误差的影响 1)将kp 的值从1到5间隔1增大a)令r=1,n1=0,n2=0,观察定值误差。
b)令r=1,n1=0.1,n2=0,观察扰动误差。
c)令r=0,n1=0,n2=0.1,观察扰动误差。
2)将控制对象的增益从1到1.5间隔0.1增大a)令r=1,n1=0,n2=0,观察定值误差。
b)令r=1,n1=0.1,n2=0,观察扰动误差。
c)令r=0,n1=0,n2=0.1,观察扰动误差。
代码如下:clc;clear all;close all;kp=1;ki=0;kd=0;k2=1.1;xi=0;r=1;n1=0;n2=0;y=0;st=200;dt=0.1;lp=st/dt;Y=zeros(lp,1);e=r;e0=0;for i=1:lpxp=e*kp;xi=xi+e*ki*dt;xd=kd*(e-e0)/dt;u=xp+xi+xd+n1;y=y+(k2*u-y)/20*dt;Y(i)=y+n2;t(i)=i*dt;e=r-Y(i);e0=e;endrs=num2str(r);n1s=num2str(n1);n2s=num2str(n2);css=['r=',rs,' n1=',n1s,' n2=',n2s]; [z,z,z,z,z,z,g]=value(Y,dt);plot(t,Y);title(css);legend(g,4);三、实验结果及分析1.控制器型别对误差的影响1)ki=0时2)ki=1时ki=0时,在没有干扰的情况下系统存在静态误差,两种干扰存在时都有扰动误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验平台采用 MATLAB 及 Simulink 工具 注意:实验过程中要善于应用 MATLAB 控制系统工具箱的工具
现代控制理论实验内容(4 学时)
已知系统传递函数 W ( s ) 6( s 1) s ( s 2)( s 3)
1. 用 Simulink 对该系统进行实现 能控性实现 串联实现 能观性实现(选做) 并联实现(选做)
2. 以上述系统的串联实现为基础,实验研究: 系统在初始条件作用下的状态响应和输出响应 系统在阶跃输入信号作用下的状态响应和输出响应 分以上述系统的串联实现为基础,设计状态反馈控制器 要求:系统输出的最大超调量,调节时间 ts秒 仿真分析系统的实际工作效果,由系统输出的实际阶跃响应曲线计算最 大超调量、调节时间、稳态误差等系统的性能参数 分析该系统在输出比例控制下是否会存在稳态误差?状态反馈控制下是 否会存在稳态误差?分析出现这种差异的原因, 讨论消除状态反馈稳态误差的方 法。 4. 以上述系统的串联实现为基础,设计系统的全维状态观测器,观测器极点全 为 仿真分析在原系统和观测器系统初始条件相同和不同时,观测状态与原 状态变量的差值随时间变化的情况, 例如改变观测器极点配置到, 结果有何不 同? 5. 结合以上 3、4 的结果,应用观测状态实现状态反馈控制 对比分析实际状态反馈与观测状态反馈系统控制效果的异同 6. 选做降维观测器设计及状态反馈