高三数学校本教材试卷(一)
高三数学三十六套试卷

一、选择题(每题5分,共50分)1. 函数f(x) = x^3 - 3x在区间[-2, 2]上的最大值和最小值分别是:A. 0和-2B. 0和2C. -2和0D. 2和-22. 若等差数列{an}的首项为2,公差为3,则第10项an等于:A. 29B. 30C. 31D. 323. 已知向量a = (1, 2),向量b = (2, -1),则向量a·b的值为:A. 5B. -5C. 3D. -34. 若圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径为:A. 2B. 3C. 4D. 55. 若函数f(x) = |x - 2| + |x + 1|在x = 0时的导数不存在,则x = 0是函数的:A. 极大值点B. 极小值点C. 转折点D. 无极值点二、填空题(每题5分,共50分)6. 函数y = 2x^3 - 3x^2 + 2x在x = 1时的导数为______。
7. 等差数列{an}的首项为3,公差为2,则第5项an等于______。
8. 向量a = (2, -3),向量b = (4, 6),则向量a与向量b的夹角余弦值为______。
9. 圆的标准方程为(x - 1)^2 + (y + 2)^2 = 4,则该圆的圆心坐标为______。
10. 函数f(x) = x^2 - 4x + 4在区间[0, 4]上的最大值和最小值分别是______和______。
三、解答题(每题15分,共60分)11. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,求f(x)的极值点及极值。
12. 已知等差数列{an}的首项为3,公比为2,求该数列的前10项和。
13. 已知向量a = (3, 4),向量b = (-2, 1),求向量a与向量b的模长及夹角。
14. 已知圆的方程为x^2 + y^2 - 6x + 8y + 12 = 0,求该圆的半径、圆心坐标及与x轴、y轴的交点。
高三数学一卷模拟试卷答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得最小值,则a,b,c应满足的关系是()A. a > 0,b = 0,c任意B. a < 0,b = 0,c任意C. a > 0,b任意,c > 0D. a < 0,b任意,c > 0答案:B解析:因为f(x) = ax^2 + bx + c是一个二次函数,其顶点坐标为(-b/2a, f(-b/2a))。
当a < 0时,函数开口向下,顶点为最大值;当a > 0时,函数开口向上,顶点为最小值。
题目要求函数在x=1时取得最小值,所以a < 0,且因为顶点坐标x=-b/2a=1,所以b=-2a。
因此,b和c可以任意取值。
2. 下列各数中,有理数是()A. √2B. πC. 3.14D. -1/3答案:D解析:有理数是可以表示为两个整数比的数。
√2和π是无理数,3.14是π的近似值,而-1/3可以表示为两个整数的比,因此是有理数。
3. 已知等差数列{an}的首项a1=3,公差d=2,则第10项a10等于()A. 23B. 25C. 27D. 29答案:C解析:等差数列的通项公式为an = a1 + (n-1)d。
将a1=3,d=2,n=10代入公式,得到a10 = 3 + (10-1)2 = 3 + 18 = 21。
4. 已知函数y = x^2 - 4x + 4,其图像的对称轴是()A. x = -1B. x = 0C. x = 1D. x = 2答案:C解析:二次函数y = ax^2 + bx + c的对称轴是x = -b/2a。
将a=1,b=-4代入公式,得到对称轴x = -(-4)/21 = 1。
5. 若向量a = (2, 3),向量b = (4, 6),则向量a与向量b的夹角θ的余弦值cosθ等于()A. 1/2B. 1/4C. 1/3D. 1/5答案:A解析:向量a与向量b的夹角θ的余弦值可以通过点积公式计算:cosθ = (a·b) / (|a|·|b|)。
高三数学一测试卷

一、选择题(每题5分,共50分)1. 若函数f(x) = x^3 - 3x + 2在区间[0, 3]上单调递增,则f(x)在区间[-3, 0]上的单调性是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项a10等于:A. 29B. 32C. 35D. 383. 函数y = log2(x + 3)的图像与直线y = x相交于点P,则点P的坐标是:A. (1, 2)B. (2, 1)C. (3, 2)D. (2, 3)4. 在△ABC中,∠A = 60°,∠B = 45°,则sinC的值为:A. √3/2B. 1/2C. √2/2D. 1/√25. 若复数z = 2 + 3i,则|z|的值为:A. 5B. 2C. 3D. 16. 已知函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a的取值范围是:A. a > 0B. a < 0C. a ≠ 0D. a = 07. 已知等比数列{an}的首项a1 = 3,公比q = 2,则第5项a5等于:A. 48B. 96C. 192D. 3848. 若复数z = 1 - i,则z的共轭复数是:A. 1 + iB. 1 - iC. -1 + iD. -1 - i9. 在函数y = x^2 - 4x + 4的图像上,存在一点P,使得k = 2是直线OP的斜率,则点P的坐标是:A. (2, 0)B. (0, 2)C. (4, 0)D. (0, 4)10. 若向量a = (1, 2),向量b = (3, 4),则向量a·b的值为:A. 5B. 7C. 9D. 11二、填空题(每题5分,共50分)11. 已知函数f(x) = 2x - 1在x = 3时取得最小值,则f(x)在区间(-∞, 3]上的最大值是______。
12. 若等差数列{an}的首项a1 = 5,公差d = -2,则第10项a10与第15项a15的差是______。
高三开学考试数学试题(附详解)

高三上学期开学考试数学试题一、单选题(每小题5分,共40分)1.已知集合{}1,2,4A =,集合{},2B a a =+,若A B B = ,则=a ()A .0B .12C .1D .2【答案】D【详解】由集合{}1,2,4A =,集合{},2B a a =+,因为A B B = ,可得B A ⊆,当1a =时,则23a +=,此时{}1,3B =,此时不满足B A ⊆,舍去;当2a =时,则24a +=,此时{}2,4B =,此时满足B A ⊆;当4a =时,则26a +=,此时{}4,6B =,此时不满足B A ⊆,舍去,综上可得,2a =.故选:D.2.命题:p :R,0x x x ∀∈+≥的否定为()A .R,0x x x ∃∈+≥B .,0x R x x ∃∈+≤C .R,0x x x ∃∈+<D .R,0x x x ∀∈+<【答案】C【详解】命题R x ∀∈,0x x +≥的否定为R x ∃∈,0x x +<.故选:C.3.下列函数为奇函数且在()0,1上为减函数的是()A .()()sin f x x =-B .()tan f x x=C .()cos f x x=D .()sin f x x=【答案】A【详解】依题意,对于A :()()sin sin f x x x =-=-为奇函数且在()0,1上为减函数,故A 正确;对于B :()tan f x x =为奇函数,在()0,1上为增函数,故B 错误;对于C :()cos f x x =为偶函数,故C 错误;对于D :()sin f x x =为奇函数,在()0,1上为增函数,故D 错误.故选:A.4.设,a b 为实数,则“0a b <<”是“11a b <”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【详解】当“0a b <<”时,则0,0b a ab ->>,则0b a ab ->,所以11a b>,所以“0a b <<”无法推出“11a b<”,当11a b<,即0b aab -<时,有可能0a b <<,但不会有0a b <<,所以“11a b>”无法推出“0a b <<”.所以“0a b <<”是“11a b>”既不充分也不必要条件.故选:D.5.若不等式224221mx mx x x +-<+-对任意实数x 均成立,则实数m 的取值范围是()A .()2,2-B .(]10,2-C .()[),22,-∞-+∞ D .(],2-∞-【答案】B【详解】依题意,不等式224221mx mx x x +-<+-对任意实数x 均成立,即不等式()()22230m x m x -+--<恒成立,当2m =时,不等式可化为30-<恒成立,当2m <时,()()222122820m m m m ∆=-+-=+-()()1020m m =+-<,解得102m -<<,综上所述,m 的取值范围是(]10,2-.故选:B6.已知ππππ()sin 3333f x x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,则(1)(2)(2023)++⋅⋅⋅+f f f 的值为()A .BC .1D .0【答案】B【详解】因为ππππππππ()sin cos 2sin 2sin 33333333f x x x x x⎡⎤⎛⎫⎛⎫⎛⎫=++=+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 的周期为2π6π3=,因为π(1)2sin 3f ==2π(2)2sin3f ==3π(3)2sin 03f ==,4π(4)2sin3f ==5π(5)2sin 3f ==6π(6)2sin 03f ==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,所以[](1)(2)(2016)337(1)(2)(6)(1)++⋅⋅⋅+=⨯++⋅⋅⋅++=f f f f f f f ,故选:B7.已知∆ABC 中,2AC =,sin tan A B =,π(0,]3∈A ,则边AB 的最小值为()A .2B .3C .2D .52【答案】B【详解】ABC 中,2AC =,sin tan A B =,则sin cos sin A B B =,则cos 2a B b ==,则22422a c a ac+-=,整理得22440a c c +--=,又ABC 中,π0,3A ⎛⎤∈ ⎥⎝⎦,则2241cos ,142c a A c +-⎡⎫=∈⎪⎢⎣⎭,整理得2222420440c a c c a c ⎧+--≥⎨+--<⎩,又2244a c c =+-,代入整理得223040c c c c ⎧-≥⎨-<⎩,解之得34c ≤<.故AB 的最小值为3.故选:B8.已知 1.4a =,0.41.1e b =,0.5e c =,则,,a b c 的大小关系是()A .a b c <<B .a c b <<C .b c a <<D .c b a <<【答案】A【详解】构造函数()()1.5e xf x x =-,则()0.4b f =,()0.5c f =,且()()0.5e x f x x '=-,当0.5x <时,()0f x ¢>,函数()f x 在(),0.5-∞上单调递增,当0.5x >时,()0f x '<,函数()f x 在()0.5,+∞上单调递减,所以()()0.40.5b f f c =<=;设()e 1x g x x =--,则()e 1xg x '=-,当0x <时,()0g x '<,函数()g x 在(),0∞-上单调递减,当0x >时,()0g x '>,函数()g x 在()0,∞+上单调递增,所以()e 100xx g --≥=故e 1x x ≥+,所以0.41.1e 1.11.4 1.4>⨯>,即a b <.综上,a b c <<,故选:A .二、多选题(每小题5分,共20分)9.已知实数a ,b 满足等式1123ab⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则下列不可能成立的有()A .a b =B .0b a >>C .0b a >>D .0a b>>【答案】CD【详解】作出函数12xy ⎛⎫= ⎪⎝⎭和13xy ⎛⎫= ⎪⎝⎭的图象如图所示:设1123a bm ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭= ,0m >,当1m >时,由图可知0a b <<;当1m =时,由图可知0a b ==;当01m <<时,由图可知0a b >>,故选:CD.103)A 22︒︒B .2cos 15sin15cos 75︒︒-︒C .2tan151tan 15︒-︒D .1tan151tan15+︒-︒【答案】AD【详解】对于A 222sin(1545)2sin 603︒︒︒︒︒=+==A 项成立;对于B 项,2223cos 15sin15cos 75cos 15sin 15cos(215)cos302︒︒︒︒︒︒︒-=-=⨯==,故B 项不成立;对于C 项,22222sin151sin 30tan15sin15cos1513cos152tan 30sin 151tan 15cos 15sin 15cos3021cos 15︒︒︒︒︒︒︒︒︒︒︒︒︒=====---C 项不成立;对于D 项,1tan15tan 45tan15tan(4515)tan 6031tan151tan 45tan15︒︒︒︒︒︒︒︒︒++==+==--,故D 项成立.故选:AD.11.已知函数π()cos()0,0,||2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,将()f x 的图像向左平移π4个单位长度,再向上平移1个单位长度后得到函数()g x 的图像,则()A .π()2cos 23f x x ⎛⎫=- ⎪⎝⎭B .π()2cos 216g x x ⎛⎫=++ ⎪⎝⎭C .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称D .()g x 在π5π,π(Z)1212k k k π⎡⎤-++∈⎢⎥⎣⎦上单调递减【答案】ABD【详解】由图像可知函数()f x 的最大值为2,最小值为2-,所以2A =,2,2362T T ππππ=-=⇒=,又22T πωω=⇒=,又(22cos(2)266f ππϕ=⇒⨯+=所以2(Z)2(Z)33k k k k ππϕπϕπ+=∈⇒=-∈,又π||2ϕ<,所以3πϕ=-所以π()2cos 23f x x ⎛⎫=- ⎪⎝⎭,故A 正确,将()f x 的图像向左平移π4个单位长度,再向上平移1个单位长度后得π()2cos 2++1=2cos 2+1436g x x x ππ⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故B 选项正确,由2+(Z)(Z)6262k x k k x k πππππ=+∈⇒=+∈所以()g x 的图像关于点π,16⎛⎫⎪⎝⎭对称,故C 错误.由22+2(Z)6k x k k ππππ≤≤+∈即π5ππ(Z)1212k x k k π-+≤≤+∈所以选项D 正确故选:ABD.12.已知函数()f x 定义域为R ,()1f x +是奇函数,()()()1g x x f x =-,函数()g x 在[)1,+∞上递增,则下列命题为真命题的是()A .()()11f x f x --=-+B .函数()g x 在(],1-∞上递减C .若21a b <-<,则()()()1g g b g a <<D .若()()1g a g a >+,则12a <【答案】BCD【详解】对于A ,因为()1f x +是奇函数,所以()()11f x f x -+=-+,故A 错误;因为()1f x +是奇函数,所以()y f x =的图象关于点()1,0对称,即有()()=2f x f x --,所以()()()()()()()()2122121g x x f x x f x x f x g x ⎡⎤-=---=--=-=⎣⎦,所以()y g x =的图象关于直线1x =对称,函数()g x 在[)1,x ∞∈+上单调递增,所以()g x 在(],1x ∈-∞上单调递减,故B 正确;因为21a b <-<,所以()()()12g g b g a <-<,即()()()1g g b g a <<,故C 正确;因为()()1g a g a >+,且1a a <+,由函数()y g x =的图象关于直线1x =对称,得()112a a ++<,解得12a <,故C 正确.故选:BCD.三、填空题(每小题5分,共20分)13.扇形的圆心角为60︒,半径为4,则扇形的面积为;.【答案】8π3【详解】因为扇形的圆心角为60︒,转化为弧度为π3,所以该扇形的面积为21π8π4233⨯⨯=.故答案为:8π3.14.已知()f x 是定义域为R 的奇函数,当0x >时,5()log 1f x x =+,则(5)f -=;【答案】-2【详解】()f x 是定义域为R 的奇函数,当0x >时,5()log 1f x x =+,则有()5(5)(5)log 512f f -=-=-+=-.故答案为:-215.已知函数()πcos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在区间7π,2π6ω⎛⎤⎥⎝⎦上有且只有2个零点,则ω的取值范围是;.【答案】4[,311)6【详解】因为7π,2π6x ω⎛⎤∈⎥⎝⎦,所以πππ,2π66x ωω⎛⎤-∈- ⎥⎝⎦,因为函数()πcos (0)6f x x ωω⎛⎫=-> ⎪⎝⎭在区间7π,2π6ω⎛⎤⎥⎝⎦上有且只有2个零点,所以5ππ7π2π262ω≤-<,解得43116ω≤<,故答案为:4[,311)6.16.已知11,23a b >>,127a b +=,则312131a b +--的最小值.【答案】20【详解】令11,2131x y a b ==--,则1226711x y a b x y +=+=++,去分母化简得:57xy x y --=,所以(1)(5)12x y --=,所以3133(1)(5)88202131x y x y a b +=+=-+-+≥+=--,当且仅当24,311a b ==时,等号成立.故答案为:20四、解答题17.(本题满分10分)∆ABC 中,角,,A B C 所对应的边分别为,,a b c cos 2sin cos B c A A =.(Ⅰ)求角A 的大小;(Ⅱ)若∆ABC的面积为a 是,b c 的等差中项,求∆ABC 的周长.17.【详解】(Ⅰ)cos 2sin cos B c A A =-,cos 2sin sin cos A B C A B A =-,cos cos 2sin sin 0A B B A C A +-=,()2sin sin 0A B C A +-=,2sin sin 0C C A -=,(),0,πC A ∈ ,sin 0C ∴≠,sin A ∴=π3A ∴=或23π.………5分(Ⅱ)因为ABC的面积为1sin 2S bc A ==16bc ∴=,………6分由边a 是,b c 的等差中项,得2b c a +=,且A 不是最大的角,π3A ∴=,………7分22222π2cos ()3()483a b c bc b c bc b c =+-=+-=+- ,22448a a ∴=-,216a ∴=,4a ∴=,28b c a ∴+==,所以ABC 的周长为8412b c a ++=+=.………10分18.(本题满分12分)已知数列{n a }是递增的等比数列,且23141227,a a a a +=⋅=.(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 为数列{n a }的前n 项和,11++=n n n n a b S S ,求数列{n b }的前n 项和n T .18.【详解】(Ⅰ)根据题意,设该等比数列的公比为q ,若23141227,a a a a +=⋅=,则有211122311312927a q a q a q a q a q =⎧+=⎧⇒⎨⎨==⎩⎩或121933a q q a q =⎧⇒=⎨=⎩或13q =.………3分又由数列{n a }是递增的等比数列,则3q =,则有11a =,则数列{n a }的通项公式1113n n n a a q --==;………6分(Ⅱ)由(1)可得13n n a -=,则()113112nnn a q S q--==-,则1111111n n n n n n n n n n a S S b S S S S S S +++++-===-,………9分则1212231111111n n n n T b b b S S S S S S +=+++=-+-++-= 111111123313131n n n n S S ++++--=-=--………12分19.(本题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AB CD ,AB AD ⊥,1AB =,2PA AD CD ===.E 为棱PC 上一点,平面ABE 与棱PD 交于点F .且BE PC ⊥.(Ⅰ)求证:F 为PD 的中点;(Ⅱ)求二面角B FC P --的余弦值.19.【详解】(Ⅰ)因为PA ⊥平面ABCD ,所以,PA AB PA AD ⊥⊥.在Rt PAB △中,PB ==.……1分在直角梯形ABCD 中,由1AB =,2AD CD ==,可求得BC =,所以PB BC =.………2分因为BE PC ⊥,所以E 为PC 的中点.………3分因为AB CD ∥,AB ⊄平面PCD ,所以//AB 平面PCD .因为平面ABEF I 平面PCD EF =,所以AB EF ∥.………4分所以CD EF ∥.所以F 为PD 的中点.………5分(Ⅱ)因为PA ⊥平面ABCD ,所以,PA AB PA AD ⊥⊥.又AB AD ⊥,所以,,AB AD AP 两两相互垂直.如图建立空间直角坐标系A x yz -,………6分则(0,0,0)A ,(1,0,0)B ,(2,2,0)C ,(0,0,2)P ,(0,2,0)D ,(0,1,1)F .所以(,,)120BC =uuu r ,(,,)111BF =-uuu r ,(,,)011AF =uuu r.设平面BCF 的法向量为(,,)x y z =m ,则0,0,BC BF =⎧⎪⎨=⎪⎩⋅⋅uuu r uuu rm m 即20,0.x y x y z +=⎧⎨-++=⎩令1y =-,则2x =,3z =.于是(2,1,3)=-m .………8分因为AB ⊥平面PAD ,且AB CD ∥,所以CD ⊥平面PAD .所以AF CD ⊥.又PA AD =,且F 为PD 的中点,所以AF PD ⊥.所以AF ⊥平面PCD ,所以AF uuu r是平面PCD 的一个法向量. (10)分cos ,7||||AF AF AF 〈〉==⋅uuu ruuu r uuu r m m m .………11分由题设,二面角B FC P --的平面角为锐角,所以二面角B FC P --.……12分20.(本题满分12分)某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业.该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十分娴熟,才能发挥更大的作用.已知在单位时间内,甲、乙两种类型的无人运输机操作成功的概率分别为23和12,假设每次操作能否成功相互独立.(Ⅰ)该公司分别收集了甲型无人运输机在5个不同的地点测试的两项指标数i x ,i y (1,2,3,4,5i =),数据如下表所示:地点1地点2地点3地点4地点5甲型无人运输机指标数x 24568甲型无人运输机指标数y34445试求y 与x 间的相关系数r ,并利用r 说明y 与x 是否具有较强的线性相关关系;(若0.75r >,则线性相关程度很高)(Ⅱ)操作员连续进行两次无人机的操作有两种方案:方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作.方案二:在初次操作时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作.假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值.附:参考公式及数据:()()niix x y y r --=∑0.95≈.20.【详解】(Ⅰ)2456855x ++++==,3444545y ++++==,()()516iii x x yy =--=∑,==相关系数()()50.95iix x y y r --=∑,因为0.75r >,所以与具有较强的线性相关关系.………5分(Ⅱ)设方案一和方案二操作成功的次数分别为X ,Y ,则X ,Y 的所有可能取值均为0,1,2,方案一:()1211121011112322236P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯-+⨯-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()121122112111351111123223322322272P X ⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯+⨯⨯-+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12211125223322272P X ==⨯⨯+⨯⨯=,所以()13525850126727272E X =⨯+⨯+⨯=.………9分方案二:选择其中一种操作设备后,进行2次独立重复试验,所以()121172223226E Y =⨯⨯+⨯⨯=,………11分所以()()E X E Y >,即方案一操作成功的次数的期望值大于方案二操作成功的次数的期望值.………12分21.(本题满分12分)已知曲线E 上任意一点Q到定点F 的距离与Q到定直线:14m x =的距离之比为3.(Ⅰ)求曲线E 的轨迹方程;(Ⅱ)斜率为k k ⎛> ⎝⎭的直线l 交曲线E 于B ,C 两点,线段BC 的中点为M ,点M 在x 轴下方,直线OM 交曲线E 于点N ,交直线=1x -于点D ,且满足2||||||ON OD OM =(O 为原点).求证:直线l 过定点.21.【详解】(Ⅰ)设曲线E 上任意一点(,)Q x y3=,化简整理得22195x y -=,所以曲线E 的轨迹方程为22195x y -=;………4分(Ⅱ)设()11,B x y ,()22,C x y ,直线l的方程为3y kx t k ⎛=+> ⎝⎭,联立22195y kx tx y =+⎧⎪⎨-=⎪⎩,得()22259189450k x ktx t ----=,因为有两个交点,所以2590Δ0k ⎧-≠⎨>⎩,即22259095k k t ⎧-≠⎨<+⎩,所以1221859kt x x k +=-,()()22121222182591025959k t t k t y y k x x t k k +-+=++==--,即2295,5959ktt M k k ⎛⎫ ⎪--⎝⎭,………7分因为点M 在x 轴下方,所以25059t k <-,又3k >,所以0t >,所以直线OM 的斜率59OMk k =,则直线OM 的直线方程为59y x k=,将其代入双曲线E 的方程,整理得2228195Nk x k =-,所以2222222258125||18195NNNk ON x y x k k +⎛⎫=+=+= ⎪-⎝⎭,………9分将59y x k =代入直线=1x -,解得51,9D k ⎛⎫-- ⎪⎝⎭,又因为2295,5959ktt M k k ⎛⎫ ⎪--⎝⎭,所以有||OD ==,2||95k t t OM k ==-.由2||||||ON OD OM =,解得9t k =±,因为3k >,0t >,所以9t k =,因此直线l 的方程为9(9)y kx k k x =+=+,故直线l 过定点(9,0)-.………12分22.(本题满分12分)已知函数()(0)e xa f x x a =+>.(Ⅰ)求函数()f x 的极值;(Ⅱ)若函数()f x 有两个不相等的零点1x ,2x ,(i )求a 的取值范围;(ii )证明:122ln x x a +>.解:(Ⅰ)(e )(),()1e e ex x x x a a a f x x f x -'=+=-=,当0a >时,由f ’(x )=0得,ln x a =,x ,f ’(x ),f (x )的变化情况如下表:x (,ln )a -∞ln a(ln ,)a +∞f ’(x )-0+f (x )单调递减极小值单调递增所以f (x )的极小值为f (ln a )=ln a +1............................4分(Ⅱ)(i )f (x )有两个零点的必要条件是ln a +1<0,即10e a <<;当10e a <<时,f (0)=a >0,f (-1)=-110ea -+<,ln 1a <-,所以f (x )在区间(ln ,)a +∞上有且仅有一个零点,又因为x →-∞时,()f x →+∞,(或111()0e aa f a a --=-+>)所以()f x 在区间(,ln )a -∞上有且仅有一个零点,所以()f x 有两个零点时,a 的取值范围是1(0,)e............................7分(ii )12()()0f x f x ==,不妨设12x x <,可知12ln 1x a x <<-<,即12120e ex x a a x x +=+=,所以1212e e x x a x x =-=-,122ln a x x >+等价于122ln x a x >-,因为22ln ln x a a -<,所以212ln x a x >-等价于12()(2ln )f x f a x <-,即222ln 2ln 0a x a a x e --+>,令22222ln ()2ln 1)e a x ag x a x x -=-+>-,因为22e x a x =-,所以22221()2ln()g x x x x =-+-,2222222222121()10x x g x x x x ++'=++=>,所以2()g x 在区间(1,)-+∞上单调递增,所以2()(1)0g x g >-=,所以122ln x x a +>............................12分。
高三年级数学模拟测试卷一

高三数学模拟考试试卷一第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|05A x x =≤≤,{}*|12B x N x =∈-≤,则A B =( )A .{}|13x x ≤≤B .{}|03x x ≤≤C .{}1,2,3D . {}0,1,2,32.设1sin()3πθ-=,则cos 2θ=( )A .B .79C .D .79-3.若z 是复数,121iz i-=+,则z z ⋅=( )A B C .52D .14.下列说法错误的是( ) A .回归直线过样本点的中心(,)x yB .两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1C .在回归直线方程0.20.8y x =+中,当解释变量x 每增加1个单位时,预报变量y 平均增加0.2个单位D .对分类变量X 与Y ,随机变量2K 的观测值k 越大,则判断“X 与Y 有关系”的把握程度越小 5.若定义在R 上的函数()f x 当且仅当存在有限个非零自变量x ,使得()()f x f x -=,则称()f x 为类偶函数,则下列函数中为类偶函数的是( ) A .()cos f x x =B .()sin f x x =C .2()2f x x x =-D .3()2f x x x =-6.已知三个向量a ,b ,c 共面,且均为单位向量,0a b ⋅=,则||a b c +-的取值范围是( )A .21,21⎡⎤-+⎣⎦B .1,2⎡⎤⎣⎦C .21,1⎡⎤-⎣⎦D .2,3⎡⎤⎣⎦7.某几何体的三视图如图所示(在如图的网格线中,每个 小正方形的边长为1),则该几何体的表面积为( ) A .48 B .54C .60D .648.已知函数()f x 的图象关于1x =-对称,且()f x 在(1,)-+∞上单调,若数列{}n a 是公差不为0的等差数列,且5051()()f a f a =,则{}n a 的前100项的和为( ) A .200- B .100- C .50-D .0二.多选题(每小题全部选对5分,部分选对3分,有选错的不得分)9. 直线a 的方向向量为a →,平面α,β的法向量分别为n →,m →,则下列命题为真命题的是( ) A.若a →⊥n →,则直线a//平面α B.若a →//n →,则直线a ⊥平面α C.若cos⟨a →,n →⟩=12,则直线a 与平面α所成角的大小为π6D.若cos⟨m →,n →⟩=12,则平面α,β的相交所成的锐角为π310. 在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别是A 1D 1和C 1D 1的中点,则下列结论正确的是( ) A.A 1C 1//平面CEF B.B 1D ⊥平面CEFC.CE →=12DA →+DD 1→−DC →D.点D 与点B 1到平面CEF 的距离相等11. 已知抛物线E:x 2=2py (p >0)的焦点恰为圆C:x 2+(y −1)2=r 2(r >0)的圆心,抛物线E 的准线与圆C 相切,则下列结论正确的是( ) A.抛物线E 的标准方程为x 2=4y B.圆C 的标准方程为x 2+(y −1)2=4 C.圆C 与抛物线E 有三个交点D.圆C 与抛物线E 在第一象限的交点坐标为(2,1)12. 若函数f (x )={2x −a,x <1,4(x −a )(x −2a ),x ≥1恰有两个零点,则实数a 的取值可能为( )A.0B.12 C.2 D.3第Ⅱ卷(共90分)三、填空题(每题5分,满分20分,将答案填在答题纸上) 13.已知命题p :n N ∀∈,22n n <,则p ⌝为 . 14.若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( ) 15.已知1F 、2F 分别为双曲线22221x y a b-=(0a >,0b >)的左、右焦点,点P 为双曲线右支上一点,M 为12PF F ∆的内心,满足1212MPF MPF MF F S S S λ∆∆∆=+,若该双曲线的离心率为3,则λ= (注:1MPF S ∆、2MPF S ∆、12MF F S ∆分别为1MPF ∆、2MPF ∆、12MF F ∆的面积).16.已知等比数列{}n b 满足1132n n n a a -++=⋅,*n N ∈.设数列{}n a 的前n 项和为n S ,若不等式2n n S ka >-对一切*n N ∈恒成立,则实数k 的取值范围为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,且sin sin sin C a bA B a c+=--. (Ⅰ)求角B 的大小;(Ⅱ)点D 满足2BD BC =,且线段3AD =,求2a c +的最大值.18.在四棱锥S ABCD -中,底面ABCD 为平行四边形,60DBA ∠=︒,30SAD ∠=︒,23AD SD ==,4BA BS ==.(Ⅰ)证明:BD ⊥平面SAD ; (Ⅱ)求点C 到平面SAB 的距离.19.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:停靠时间 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量12121720151383(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a 小时,求a 的值;(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a 小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.20.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E(X)及方差D(X).21.已知椭圆C :2212x y +=的左顶点为A ,右焦点为F ,O 为原点,M ,N 是y 轴上的两个动点,且MF NF ⊥,直线AM 和AN 分别与椭圆C 交于E ,D 两点. (Ⅰ)求MFN ∆的面积的最小值; (Ⅱ)证明:E ,O ,D 三点共线.22.已知函数21()ln 2f x x x a x =-+,a R ∈. (Ⅰ)若函数()f x 为定义域上的单调函数,求实数a 的取值范围;(Ⅱ)当209a <<时,函数()f x 的两个极值点为1x ,2x ,且12x x <.证明:12()51ln 3123f x x >--.高三数学模拟考试试卷一答案1-5:CBCDD 6-8:ABC 9.BCD 10.AC 11.ABD 12。
高三数学第一学期综合试卷(1)

19.(本小题满分 16 分)
已知函数 f ( x ) 的导数 f ( x) 3 x 2 3ax, f (0) b. a , b 为实数,1 a 2 . (Ⅰ)若 f ( x ) 在区间[1, 1] 上的最小值、最大值分别为 2 、1,求 a 、 b 的值; (Ⅱ)在(Ⅰ)的条件下,求经过点 P (2, 1) 且与曲线 f ( x ) 相切的直线 l 的方程;
④若 α∩β=m,n∥m 且 n α,n β,则 n∥α 且 n∥β.
其中所有正确命题的序号是
.
6. 已知向量 a =(1,sinθ), b =(1,cosθ),则 a - b 的最大值为
7. 一个正三棱台的两个底面的边长分别等于 8cm 和 18cm,侧棱长等于 13cm,则它的侧
面积
▲
8. 已知正数 x, y 满足 x y 4 ,则使不等式 1 4 m 恒成立的实数 m 的范围是_▲__. xy
m i n,
点 P 距离地面超过 7 0 m .
14.设 s , t
为正整数,两直线 l1
:
t 2s
x
y
t
0与 l2
:
t 2s
x
y
0
的交点是 ( x1 ,
y1 )
,对于
正整数 n (n 2) ,过点 (0, t )和 ( xn1 , 0) 的直线与直线 l2 的交点记为 ( xn , yn ) .则数列 xn 通
17. (本小题满分 15 分)
D1
C1
A1 E
B1 M
F
D
C
A
B
如图,已知长方体 ABCD A1 B1C 1 D1 底面 A B C D 为正方形,E 为线段 AD1 的中点,F 为 线段 B D1 的中点. (Ⅰ)求证: E F ∥平面 ABCD ;
高三第一次校本检测数学试卷(理)

浙江杭州市余杭中学高三第一次校本检测数 学 试 卷(理)命题人:程厚军第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,有且只有一项是符合题目要求的,请把正确答案涂填在答案纸指定位置. 1.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 2.若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①//m n n m αα⎫⇒⊥⎬⊥⎭②//m m n n αα⊥⎫⇒⎬⊥⎭③//m m n n αα⊥⎫⇒⊥⎬⎭④//m n m n αα⎫⇒⊥⎬⊥⎭A .1个B .2个C .3个D .4个3.从8名女生,4名男生中选出6名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法种数为A .612CB .3384C C ⋅ C .4284C C ⋅ D .4284A A ⋅4.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°则该截面的面积是A .πB .2πC .3πD .π325.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是A .20B .30C .40D .506.甲、乙、丙3位同学用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲答及格的概率为108,乙答及格的概率为106,丙答及格的概率为107,3人各答1次,则3人中只有1人答及格的概率为A .25047B .12542C .203D .51 7.4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有A .1440B .2880C .3080D .36008.如图,正三棱柱111ABC A B C -的各棱长都2,E ,F 分别是11,AB A C 的中点,则EF 的长是A .2B .3C . 5D .79. 已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是A .[0,6π] B .[,]3ππ C .2[,]33ππ D .[,]6ππ 10.对于任意的两个实数对(,)a b 和(,)c d ,规定:(,)(,)a b c d =,当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++,设,p q R ∈,若(1,2)(,)(5,0)p q ⊗=,则(1,2)(,)p q ⊕=A .(4,0)B . (0,2)C . (2,0)D . (0,4)-第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分.11.已知向量(1sin )a θ=,,(1cos )b θ=,,则a b -的最大值为 _____▲____。
2019-2020年高三数学周考卷(一)文新人教A版

20192020年高三数学周考卷(一)文新人教A版一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0<x<2},集合B={x|x²3x+2=0},则A∩B=()A. {1}B. {2}C. {1, 2}D. 空集2. 若复数z满足|z|=1,则z+1/z的值为()A. 1B. 1C. iD. i3. 已知等差数列{an}的前三项分别为1,3,5,则该数列的公差为()A. 1B. 2C. 3D. 44. 设函数f(x)=x²+2x+1,则f(1)的值为()A. 0B. 1C. 2D. 35. 若向量a=(2,1),向量b=(1,2),则向量a与向量b的夹角为()A. 30°B. 45°C. 60°D. 90°6. 在三角形ABC中,a=3,b=4,cosA=1/2,则三角形ABC的面积为()A. 6B. 8C. 10D. 127. 若函数y=2x²4x+3在区间(1,3)上单调递增,则实数m的取值范围为()A. m<1B. m>3C. 1<m<3D. m≤18. 设函数f(x)=|x1|,则f(x)在x=1处的导数为()A. 0B. 1C. 1D. 不存在9. 若直线y=kx+b与圆(x1)²+(y2)²=4相切,则k的值为()A. 1B. 1C. 2D. 210. 已知数列{an}的通项公式为an=n²+n,则数列的前10项和为()A. 385B. 55C. 855D. 91011. 若矩阵A满足A²E=0,其中E为三阶单位矩阵,则矩阵A的特征值为()A. 1,1,1B. 1,1,1C. 1,1,1D. 1,1,112. 在空间直角坐标系中,点P(1,2,3)到x轴的距离为()A. √5B. √10C. √13D. 3二、填空题(本大题共4小题,每小题5分,共20分)13. 已知函数f(x)=x²2x+1,则f(x)的最小值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学校本教材试卷(一)
6. (文)已知A 、B 、C 是圆22:1O x y +=上三点,OA OB OC += ,则AB OA ⋅= ( )
A .32
B .
C .32-
D .12
17.(文)缺图 高三数学校本教材试卷(二)
7.(理)已知数列{}n a 为等差数列,若
1110
1a a <-,且它们的前n 项和n S 有最大值,则使得0n S <的n 的最小值为( ) A .11 B .19 C .20 D .21
高三数学校本教材试卷(四)
9,13错题
15.(理) (1)(坐标系与参数方程选做题)) 已知圆C 的参数方程为cos 1sin x y αα
=⎧⎨=+⎩(a 为参数)以原点为极点,x 轴正半轴为
极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C 的交点的直角坐标为_______.
高三数学校本教材试卷(五)
1.设A ={}|4,2x x x ≤-≥或,B ={}||1|3x x -≤,则A B = ( )
A .[2,4]
B . [-2,2]
C .[-2,4]
D .[-4,4]
高三数学校本教材试卷(六)
7.已知直线l 过双曲线22
221x y a b
-=(0,0)a b >>右焦点,交双曲线于A ,B 两点,若||2AB a 的最小值为2,则其离心率为( )
A B C .2 D .3
8.(理)在等边∆ABC 中,D 在AB 上运动,E 在AC 上运动,//DE BC ,将∆ADE 沿DE 折起,使二面角A DE B --的平面角为060,当四棱锥A DBCE -体积最大时,:AD DB 等于( B )
A .1:1
B .1:1)
C .
D 10.直线0(0)bx ay c a -+=>是曲线1y ln x
=在3x =处的切线,()23x x f x a b =⋅+⋅,若()()1f x f x +>,则x 的取值范围是( ) A .(),1-∞ B .()1,+∞ C .2,3⎛⎫-∞ ⎪⎝⎭ D .2,3⎛⎫+∞ ⎪⎝⎭
14.抛物线24y x =,过焦点的直线与抛物线相交于,A B 两点,过点B 作准线的垂线,垂足为,N 若3||2
BN =,当||||A F B F >时,||||
AO ON = (O 为坐标原点)。