2017年中考数学专题复习锐角三角函数和解直角三角形同步训练
2017-2018学年人教版九年级下册数学同步测试28锐角三角函数

2017-2018学年人教版九年级下册数学同步测试28锐角三角函数1 / 928.1锐角三角函数一、选择题1. 若关于x 的方程 有两个相等的实数根,则锐角a 为A.B. C. D.【答案】D【解析】解:根据题意得 , 解得, 所以锐角 . 故选D .2. 如图,在 中, , ,将 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若 ,则 的值为A.B.C.D.【答案】A【解析】解: 在 中, , , ,由折叠的性质得到: ≌ , , ,, . 又 , ,在直角 中,,. 故选:A .3.如图,在中,,于D,下列式子正确的是A. B.C. D.【答案】A【解析】解:于D,是直角三角形,,是直角三角形,,,,A、,,故本选项正确;B、,,故本选项错误;C、,,故本选项错误;D、,,故本选项错误.故选A.4.中,, 均为锐角,且有,则是A. 直角不等腰三角形B. 等边三角形C. 等腰不等边三角形D. 等腰直角三角形【答案】B【解析】解:由,得,,由, 均为锐角,得,,,,2017-2018学年人教版九年级下册数学同步测试28锐角三角函数3 / 9,, 是等边三角形, 故选:B .5. 如图,在 中,斜边AB 的长为 , ,则直角边BC 的长是A.B.C.D.【答案】A【解析】解:, , , , 故选:A .6. 如图是一个 的长方形网格,组成网格的小长方形长为宽的2倍, 的顶点都是网格中的格点,则 的值A.B. C. D.【答案】A【解析】解:如图,由图形知: , , 过C 作 于D ,,,故选:A.7.如图,AB是的直径,弦于点,,的半径为,则弦CD的长为A.B. 3cmC.D. 9cm【答案】B【解析】解:,,又,于点E,,解得,.故选B.8.如图,点O在内,且到三边的距离相等若,则的值为A.B.C.D.【答案】A【解析】解:点O到三边的距离相等,平分,平分,,,故选A.2017-2018学年人教版九年级下册数学同步测试28锐角三角函数5 / 99. 图,在矩形ABCD 中, , ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则A.B.C.D.【答案】D【解析】解:取BC 的中点O ,则O 为圆心,连接 , , 与BE 的交点是F, 都为圆的切线, ≌在直角 里 , 易证明 ∽ : :OB : :1故选D .10. 在钝角 中, 是钝角,,现在拿一个放大三倍的放大镜置于 上方,则放大镜中的 的正弦值为A. B.C. D. 条件不足,无法确定【答案】A【解析】解:,现在拿一个放大三倍的放大镜置于上方,则放大镜中的的正弦值为,故选:A.二、填空题11.已知锐角满足,则锐角的度数是______ 度【答案】60【解析】解:由锐角满足,则锐角的度数是60度,故答案为:60.12.在中,,,,则______ .【答案】【解析】解:,,.故答案为:.13.已知为锐角,若,则______度【答案】45【解析】解:为锐角,,.14.如图,在中,,是高,,,的长是______cm.2017-2018学年人教版九年级下册数学同步测试28锐角三角函数7 / 9【答案】8【解析】解: , , 度, 是高, , , , , . 故答案为8.15. 如图,已知正方形ABCD 的边长为 , 是等边三角形,则 的面积是______ ; 的面积是______ .【答案】1;【解析】解:过P 作 于 , 于N , 为等边三角形, , , , ,由勾股定理得: , 的面积为. 因为 为等边三角形,则 , 的面积为,.三、解答题16. 计算:先化简,再求值:,其中 .【答案】解:原式.原式.当时,原式.17.如图,某湖中有一孤立的小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PQ通往小岛,某同学在观光道AB上测得如下数据:米,, 请求出小桥PQ的长,,结果精确到米【答案】解:设米,在直角中,,,在直角中,,,米,,解得:米.答:小桥PQ的长度约是米.2017-2018学年人教版九年级下册数学同步测试28锐角三角函数9 / 9。
【中小学资料】九年级数学下册 第7章 锐角三角函数 7.5 解直角三角形 7.5.2 构造直角三角形解题同步练习2

[7.5 第2课时 解直角三角形的应用]一、选择题1.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ) A .7sin35° B.7cos35°C .7cos35°D .7tan35°2.如图K -31-1,点A (3,t )在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 等于( )图K -31-1A .0.5B .1.5C .4.5D .23.等腰三角形的顶角为120°,腰长为2 cm ,则它的底边长为链接听课例2归纳总结( )A. 3 cmB.4 33cmC .2 cmD .2 3 cm 4.如图K -31-2,⊙O 的直径AB =2,弦AC =1,点D 在⊙O 上,则∠D 的度数为( )图K-31-2A.30° B.45° C.60° D.75°5.如图K-31-3,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )图K-31-3A.13B.2-1 C.2- 3 D.14二、填空题6.如图K-31-4,在平面直角坐标系xOy中,O为坐标原点,点P的坐标为(5,12),那么OP与x轴正半轴所夹的锐角为________.(精确到0.1°)图K-31-47.如图K-31-5,在菱形ABCD中,AC=6,BD=8,则sin∠ABC=________.图K-31-58.如图K-31-6,在△ABC中,∠A=30°,∠B=45°,AC=2 3,则AB的长为________.图K-31-69.2018·安徽四模如图K-31-7,在△ABC中,AB=AC,AH⊥BC,垂足为H,如果AH =BC,那么tan∠BAH的值是________.图K -31-710.2017·黑龙江在△ABC 中,AB =12,AC =39,∠B =30°,则△ABC 的面积是________. 三、解答题11.2018·淮南模拟如图K -31-8,在△ABC 中,∠A =30°,cos B =45,AC =6 3.求AB 的长.链接听课例2归纳总结图K -31-812.如图K -31-9,在平面直角坐标系内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO =5,sin ∠BOA =35.求:(1)点B 的坐标; (2)cos ∠BAO 的值.图K -31-913.2018·广安改编如图K -31-10,已知AB 是⊙O 的直径,P 是BA 延长线上一点,PC 切⊙O 于点C ,连接AC ,CG 是⊙O 的弦,CG ⊥AB ,垂足为D .(1)求证:∠PCA =∠ABC ;(2)过点A 作AE ∥PC 交⊙O 于点E ,连接BE .若cos P =45,PC =10,求BE 的长.图K -31-10阅读理解在锐角三角形ABC 中,∠A ,∠B ,∠ACB 的对边分别是a ,b ,c .如图K -31-11所示,过点C 作CD ⊥AB 于点D ,则cos A =AD b,即AD =b cos A ,图K -31-11∴BD =c -AD =c -b cos A .在Rt △ADC 和Rt △BDC 中,有CD 2=AC 2-AD 2=BC 2-BD 2, ∴b 2-b 2cos 2A =a 2-(c -b cos A )2,整理,得a 2=b 2+c 2-2bc cos A ,(1)同理可得b 2=a 2+c 2-2ac cos B ,(2) c 2=a 2+b 2-2ab cos ∠ACB . (3)这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠ACB ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,已知∠A =60°,b =3,c =6,则由(1)式可得a 2=32+62-2×3×6cos60°=27, ∴a =3 3,则∠B ,∠C 可由式子(2),(3)分别求出,在此略. 根据以上阅读理解,请你试着解决如下问题:已知锐角三角形ABC 的三边a ,b ,c (a ,b ,c 分别是∠A ,∠B ,∠C 的对边)分别是7,8,9,求∠A ,∠B ,∠C 的度数.(结果精确到1°)详解详析[课堂达标]1.[解析] C 在Rt △ABC 中,cos B =BCAB ,所以BC =AB ·cos B =7cos 35°.故选C .2.[解析] C 如图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限, ∴AB =t ,OB =3. 又∵tan α=AB OB =t 3=32,∴t =4.5. 故选C .3.[解析] D 如图,过点A 作AD ⊥BC 于点D ,则∠BAD =∠CAD =60°,BD =DC.∵AD ⊥BC ,∴∠B =30°.∵AB =2 cm , ∴AD =1 cm ,BD = 3 cm , ∴BC =2 3 cm .故选D .4.[解析] C ∵AB 是⊙O 的直径,∴∠ACB =90°.∵AC =1,AB =2,∴sin ∠ABC =ACAB =12,∴∠ABC =30°,∠A =60°,∴∠D =60°,故选C . 5.[解析] A ∵在△ABC 中,∠BAC =90°,AB =AC , ∴∠ABC =∠C =45°,BC =2AC. 又∵D 为边AC 的中点, ∴AD =DC =12AC.∵DE ⊥BC 于点E , ∴∠CDE =∠C =45°, ∴DE =EC =22DC =24AC , ∴tan ∠DBC =DEBE =24AC 2AC -24AC =13. 故选A .6.[答案] 67.4°[解析] 如图,过点P 作PA ⊥x 轴,垂足为A.由勾股定理,得OP =122+52=13,∴cos ∠POA =513,∴∠POA ≈67.4°.7.[答案] 2425[解析] 过点A 作AE ⊥BC ,垂足为E ,由AC =6,BD =8,根据勾股定理得AB =32+42=5,菱形ABCD 的面积=12AC·BD=BC·AE,即12×6×8=5×AE ,得AE =245,所以sin ∠ABC=AE AB =2455=2425. 8.[答案] 3+ 3[解析] 如图,过点C 作CD ⊥AB 于点D ,则∠ADC =∠BDC =90°. ∵∠B =45°,∴∠BCD =∠B =45°, ∴CD =BD.∵∠A =30°,AC =2 3, ∴CD =3, ∴BD =CD = 3.由勾股定理,得AD =AC 2-CD 2=3, ∴AB =AD +BD =3+ 3.9.[答案] 12[解析] 设AH =BC =2x.∵AB =AC ,AH ⊥BC ,∴BH =CH =12BC =x ,∴tan ∠BAH =BH AH =x 2x =12.10.[答案] 21 3或15 3[解析] (1)当∠ACB 为锐角时,如图①,过点A 作AD ⊥BC ,垂足为D.在Rt △ABD 中,∵AB =12,∠B =30°, ∴AD =12AB =6,BD =AB·cos B =12×32=6 3.在Rt △ACD 中,CD =AC 2-AD 2=(39)2-62=3, ∴BC =BD +CD =6 3+3=7 3, 则S △ABC =12BC·AD=12×7 3×6=21 3;(2)当∠ACB 为钝角时,如图②,过点A 作AD ⊥BC ,交BC 的延长线于点D.由(1)知,AD =6,BD =6 3,CD =3,则BC =BD -CD =5 3,∴S △ABC =12BC·AD=12×5 3×6=15 3.故答案为21 3或15 3.11.解:如图,过点C 作CD ⊥AB 于点D.∵∠A =30°,∴CD =12AC =3 3,AD =AC ·cos A =9.∵cos B =45,∴设BD =4x ,则BC =5x.由勾股定理,得CD =3x.由题意,得3x =3 3,解得x =3, ∴BD =4 3,∴AB =AD +BD =9+4 3.12.解:(1)如图,过点B 作BH ⊥OA ,垂足为H.在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =BO·sin ∠BOA =5×35=3,∴OH =BO 2-BH 2=4, ∴点B 的坐标为(4,3).(2)∵OA =10,OH =4,∴AH =6. 在Rt △AHB 中, ∵BH =3,AH =6, ∴AB =BH 2+AH 2=3 5, ∴cos ∠BAO =AH AB =2 55.13.解:(1)证明:连接OC.∵PC 与⊙O 相切于点C ,∴∠PCO =90°,∴∠PCA +∠OCA =90°. ∵AB 是⊙O 的直径,∴∠ACB =90°, ∴∠OCB +∠OCA =90°, ∴∠PCA =∠OCB.∵OC =OB ,∴∠OCB =∠ABC , ∴∠PCA =∠ABC.(2)∵cos P =PC OP =45,PC =10,∴OP =252,∴OC =OP 2-CP 2=152,∴AB =15.∵AE ∥PC ,∴∠BAE =∠P.∵AB 是⊙O 的直径,∴∠E =90°, ∴AE =AB·cos ∠BAE =15×45=12,∴BE =AB 2-AE 2=9. [素养提升][解析] 此题只要把三边长代入余弦定理公式即可求出三角的余弦值,从而求出三角.解:由(1)得72=82+92-2×8×9cos A , 则cos A =23,∠A ≈48°.由(2)得82=72+92-2×7×9cos B , 则cos B =1121,∠B ≈58°,∴∠C =180°-∠A -∠B ≈74°.。
备考2023年中考数学一轮复习-图形的变换_锐角三角函数_解直角三角形

备考2023年中考数学一轮复习-图形的变换_锐角三角函数_解直角三角形解直角三角形专训单选题:1、(2017佳木斯.中考真卷) 如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2 ﹣2.A . 2B . 3C . 4D . 5 2、(2019天宁.中考模拟) 如图,若△ABC和△DEF的面积分别为S1、S2,则()A . S1= S2B . S1= S2C . S1=S2D . S1= S23、(2019宽城.中考模拟) 西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A . asin26.5°B .C . acos26.5°D .4、(2013杭州.中考真卷) 在Rt△ABC中,∠C=90°,若AB=4,sinA= ,则斜边上的高等于()A .B .C .D .5、(2019河南.中考模拟) 在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D 2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017D2017的边长是()A . ()2016B . ()2017C . ()2016D . ()20176、(2017濮阳.中考模拟) 如图,已知锐角三角形ABC,以点A为圆心,AC为半径画弧与BC交于点E,分别以点E、C为圆心,以大于EC的长为半径画弧相交于点P,作射线AP,交BC于点D.若BC=5,AD=4,tan∠BAD= ,则AC的长为()A . 3B . 5C .D . 27、(2020通辽.中考模拟) 将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE交于点H,连接BH、CE,且∠BCE =15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=;④ ;正确的个数是()A . 1B . 2C . 3D . 48、(2017重庆.中考模拟) 在学习解直角三角形以后,重庆八中数学兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在平台上的影长BC 为6米,落在斜坡上的影长CD为4米,AB⊥BC,同一时刻,光线与旗杆的夹角为37°,斜坡的坡角为30°,旗杆的高度AB约为()米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.73)A . 10.61B . 10.52C . 9.87D . 9.379、(2017雁塔.中考模拟) 如图,已知△ABC内接于⊙O,∠BAC=120°,AB=AC,BD 为⊙O的直径,AD=6,则BC的长为()A .B . 6C .D .10、(2021烟台.中考真卷) 由12个有公共顶点O的直角三角形拼成的图形如图所示,.若,则的长为()A .B .C .D .填空题:11、(2017邹城.中考模拟) 如图,菱形ABCD的边长为15,sin∠BAC= ,则对角线AC的长为________.12、(2017东营.中考模拟) 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC 的值是________.13、(2019绍兴.中考真卷) 把边长为2的正方形纸片ABCD分割成如图四块,其中点O为正方形的中心,点E,F分别为AB,AD的中点,用这四块纸片拼成与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙),则四边形MNPQ的周长是________。
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。
中考数学热点专练17 锐角三角函数

(1)∠A 的对边与斜边的比值是∠A 的正弦,记作 sinA = ∠A 的对边(4)∠A 的邻边与对边的比值是∠A 的余切,记作 cota = ∠A 的邻边热点 17 锐角三角函数【命题趋势】锐角三函数是中考数学中必考内容之一,所占比例 8—15 分,题目数量 2-3 题。
一般小题会有一个,一般为填空或计算,考查学生对几个特殊角的三角函数值的记忆情况。
大题一般也会有一题,主要是考查锐角三角函数的实际应用,往往会结合仰角和俯角,坡度等概念进行设计问题,当然在其他解答题中也可能会用到三角函数,比如在计算一些线段长度,会与解直角三角形,或者与圆、四边形结合而形成难度中等的解答题。
【满分技巧】一、 整体把握知识结构二.重点知识1.Rt △ABC 中斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作 cosA =(3)∠A 的对边与邻边的比值是∠A 的正切,记作 tanA =∠A的邻边 斜边∠A 的对边∠A 的邻边∠A 的对边30°322160°3∴sin∠BAC==2.特殊值的三角函数:a sina cosa tana cota13322345°122312233【限时检测】(建议用时:30分钟)一、选择题1.(2019湖北省宜昌市)如图,在5×4的正方形网格中,每个小正方形的边长都是1△,ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.【答案】D【解析】如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC=AD2+CD2=5.CD4AC5故选:D.【解析】∵∠C =90°,cos ∠BDC = ,2. (2019 湖南省湘西市)如图,在△ ABC 中,∠C =90°,AC =12,AB 的垂直平分线 EF 交 AC 于点 D ,连接 BD ,若 cos ∠BDC = ,则 BC 的长是()A .10B .8C .4D .2【答案】D57设 CD =5x ,BD =7x ,∴BC =2 6 x ,∵AB 的垂直平分线 EF 交 AC 于点 D ,∴AD =BD =7x ,∴AC =12x ,∵AC =12,∴x =1,∴BC =2 6 ;故选:D .3. (2019 湖南省长沙市)如图,△ ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点 E ,D 是线段 BE上的一个动点,则 CD + BD 的最小值是( )∵tanA = =2,设 AE =a ,BE =2a ,A .2B .4C .5D .10【答案】B【解析】如图,作 DH ⊥AB 于 H ,CM ⊥AB 于 M .∵BE ⊥AC ,∴∠ABE =90°,BEAE则有:100=a 2+4a 2,∴a 2=20,∴a =2 5 或﹣2 5 (舍弃),∴BE =2a =4 5 ,∵AB =AC ,BE ⊥AC ,CM ⊥AC ,∴CM =BE =4 5 (等腰三角形两腰上的高相等))∵∠DBH =∠ABE ,∠BHD =∠BEA ,∴sin ∠DBH = = = ,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥45,∴CD+BD的最小值为45.故选:B.4.(2019山东省泰安市)如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30【答案】BB.30+10C.10+30D.30【解析】根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,,在△Rt ABE中,∵∠ABE=45°,AB=30∴AE=BE=AB=30km,在△Rt CBE中,∵∠ACB=60°,,∴CE=BE=10km,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,故选:B.5.(2019陕西省)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E。
中考数学复习同步课时作业:直角三角形与锐角三角函数含答案.doc

第8课时直角三角形与锐角三角函数1. (2017云南)sin60°的值为()A. 3B.32 C.22 D.122. (2017金华)在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A. 34 B.43 C.35 D.453. 在下列长度的各组线段中,能组成直角三角形的是()A. 5,6,7B. 1,4,8C. 5,12,13D. 5,11,124.如图,在△ABC中,∠ACB=90°,AC=5.点D是AC的中点,过点D作DE∥BC,交AB于点E,DE=6,则AB的长为()A. 10B. 119C. 13D. 13 2第4题图5. 如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A. 3B. 4C. 5D. 6第5题图6. (2017毕节)如图,在Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=13CD,过点B作BE∥DC 交AF的延长线于点E,则BE的长为()A. 6B. 4C. 7D. 12第6题图7. (2017湖州)如图,已知在Rt△ABC中,∠C=90°,AC=BC,AB=6,点P是Rt△ABC的重心,则点P到AB所在直线的距离等于()A. 1B. 2C. 32 D. 2第7题图8. (2017大庆)如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE 的延长线交于点F,则∠AFB的度数为()A. 30°B. 15°C. 45°D. 25°第8题图9. (2017黄石)如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第9题图10. 计算:tan45°-2cos60°=________.11. (2017淮安)如图,在Rt△ABC中,∠ACB=90°,点D,E 分别是AB,AC的中点,点F是AD的中点,若AB=8,则EF=________.第11题图12. (2017桂林模拟)如图,在四边形ABCD中,对角线AC、BD 相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB=6,则AE=________.第12题图13. (2017常德)如图,已知Rt △ABE 中,∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是________.第13题图14. (2016包头)如图,已知四边形ABCD 中,∠ABC =90°,∠ADC =90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E .(1)若∠A =60°,求BC 的长;(2)若sin A =45,求AD 的长.(注意:本题中的计算过程和结果均保留根号)第14题图答案 1. B 【解析】s in60°=32.2.A 【解析】如解图,在Rt △ABC 中,由勾股定理得AC =AB 2-BC 2=4,∴tan A =BC AC =34.第2题解图3.C 【解析】A 选项,∵52+62≠72,∴不能组成直角三角形;B 选项,∵1,4,8不能组成三角形,∴不能组成直角三角形;C 选项,∵52+122=132,∴能组成直角三角形;D 选项,∵52+112≠122,∴不能组成直角三角形.故选C.4. C 【解析】∵DE ∥BC ,点D 为AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE =12,在Rt △ACB 中,由勾股定理得AB =BC 2+AC 2=52+122=13.5.B 【解析】如解图,连接AF ,∵AB =AD ,F 是BD 的中点,∴AF ⊥BD ,∵在Rt △ACF 中,∠AFC =90°,E 是AC 的中点,EF =2,∴AC =2EF =4.第5题解图6.A 【解析】∵在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,AB =9,∴CD =12AB =92,∵CF =13CD ,∴DF =23CD =23×92=3,又∵BE ∥DC ,∴DF 是△ABE 的中位线,∴BE =2DF =6.7. A 【解析】如解图,连接CP ,并延长交AB 于点D ,则CD是AB 边上的中线,∴CD =12AB =3,又∵△ABC 是等腰直角三角形,∴CD 是AB 边上的高,∵CP =2DP ,∴DP =1,即点P 到AB 所在直线的距离等于1.第7题解图8.B 【解析】∵△ABD 是等腰直角三角形,∴∠ABD =45°,∵∠CBD =90°,E 为CD 的中点,∴BE =DE ,∴∠DBE =∠BDC =90°-60°=30°,∴∠ABF =75°,∴∠AFB =90°-∠ABF =15°.9. C 【解析】∵点E 为BC 边的中点,CD ⊥AB ,DE =32,∴BE =CE =DE =32,BC =CE +BE =3,∴∠CDE =∠DCE ,∵在△ABC 中,AC 2+BC 2=12+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =∠ACB =90°.10. 0 【解析】原式=1-2×12=1-1=0.11. 2 【解析】在Rt △ABC 中,∵∠ACB =90°,点D 是AB 的中点,∴CD =12AB =4,∵点E 是AC 的中点,点F 是AD 的中点,∴EF 是△ADC 的中位线,∴EF =12CD =2. 12. 26 【解析】如解图,过点A 作AF ⊥BD 交BD 于点F ,∵∠DAB =90°,∠ABD =45°,∴AD =AB ,∴AF 为BD 边上的中线,∴AF =12BD ,∵AD =AB =6,∴BD =62,∴AF =32,∵∠CDB=90°,∴DC ∥AF ,∴∠EAF =∠DCA =30°,∴EF =12AE ,设EF =x ,则AE =2x ,在Rt △AEF 中,由勾股定理得EF 2+AF 2=AE 2,即x 2+(32)2=(2x )2,解得x =6,则AE =2 6.第12题解图13. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠BAE =90°,∴AF =EF =12BE =5,∴∠EAF =∠E =30°,又∵∠CDE =30°,∴∠CDE =∠EAF ,∴CD ∥AF ,∴CD AF =ED EA ,当D 与A重合时,CD 取最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD ≤5.第13题解图14. 解:(1)在Rt △ABE 中,∵∠ABE =90°,∠A =60°,AB =6,∴BE =AB ·tan A =6×tan60°=63,在Rt △CDE 中,∵∠CDE =90°,∠E =90°-60°=30°,CD =4,∴CE =2CD =8,∴BC =BE -CE =63-8;(2)在Rt △ABE 中,∵∠ABE =90°,sin A =45,∴BE AE =45,设BE =4x ,则AE =5x ,由勾股定理得AE 2-BE 2=AB 2,即(5x )2-(4x )2=62,解得x =2(负值舍去),∴BE =8,AE =10,在Rt △CDE 中,∵∠CDE =90°,CD =4,∴tan E =CD ED ,而在Rt △ABE 中,tan E =AB BE =34,∴CD ED =34,∴ED =43CD =163,∴AD =AE -ED =10-163=143.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
中考数学解直角三角形练习

中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。
4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。
5、 了解同角三角函数的平方关系。
sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。
中招考点1、 锐角三角函数的概念:锐角三角函数的性质。
2、 300、450、600角的三角函数值及计算代数式的值。
3、 运用计算器求的三角函数值或由锐角三角函数值求角度。
典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。
故应选D.。
2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。
3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。
因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。
初三年级数学下学期同步练习28.1锐角三角函数

初三年级数学下学期同步练习28大家在遇到各种类型的题型时,能否冷静应对,关键在于往常多做练习,下文是由查字典数学网为大家引荐的初三年级数学下学期同步练习,一定要仔细看待哦!一、选择题(本大题共10小题,每题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面行进100米,那么他上升的最大高度是( D )A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,那么两树间的坡面距离AB为( C )A. B. C. D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是( A )A.250mB. mC. mD. m4.如图,在Rt△ABC中,CD是斜边AB上的中线,CD=2,AC=3,那么sinB的值是( C )A. 2 3B. 3 2C. 3 4D. 4 3( 第2题 ) ( 第3题) ( 第4题)5.假设A是锐角,且,那么A=( B )A. 30B. 45C. 60D. 906. 等腰三角形的一腰长为,底边长为,那么其底角为( A )A. B. C. D.7.假定平行四边形相邻两边的长区分为10和15,它们的夹角为60,那么平行四边形的面积是( B )A.150B.C. 9D. 78.在△ABC中,C=90,BC=2,,那么边AC的长是( A )A. B.3 C. D.9.如图,两条宽度均为40 m的公路相交成角,那么这两条公路在相交处的公共局部(图中阴影局部)的路面面积是( A )A. (m2)B. (m2)C.1600sin(m2)D.1600cos(m2)10.如图,延伸Rt△ABC斜边AB到D点,使BD=AB,连结CD,假定 tanBCD= ,那么tanA=( C )A.1B.C.D.( 第9题 ) ( 第10题)二、填空题(本大题共4小题,每题3分,共12分)11. 为锐角, sin( )=0.625, 那么cos =___ 0.625 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《锐角三角函数和解直角三角形》
一、选择题
1.(2016沈阳)如图,在Rt △ABC 中,∠C= 90°,∠B=30°,AB=8,则BC 的长是 ( )
A .3
B .4 c ..答案: D
2.(2016南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC= 10米,∠B= 36°,则中柱AD (D 为底边中点)的长是 ()
A .5sin36°米
B .5cos36°米
C .5tan36°米
D .10tan36°米
答案:C
3.(2016安顺)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )
A .2
B .
5C .5 D .12
答案:D
4.(2016云南)一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度为1米,则地毯的面积至少需要( ) A.4sin θ米²B.4cos θ米²C.(44tan θ
+)米²D.(44tan θ+)米² 【答案】D
二、填空题
5.(2016宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10米的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1米,则旗杆高BC 为米(结果保留根号)
【答案】(1)
6.(2016十堰)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF ∥MN ,小聪在河岸MN 上点A 处用测角仪测得河对岸小树C 位于东北方向,然后沿河岸走了30米,
到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)
【答案】(30+
7.(2016菏泽)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE则tan∠EBC =.
【答案】1 3
8.(2016随州)某班数学兴趣小组利用数学课活动时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平在夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.
解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,
∵DE=1620,∠D=30°,
∴EG=DE sin∠D=
1
1620
2
⨯=810,
∵BC=857.5,CF=EG,
∴BF=BC-CF=47.5,在Rt△BEF中,tan∠BEF=BF EF
,
∴EF BF,
在Rt△AEF中,∠AEF=60°,设AB=x,
∵tan∠AEF=AF EF
,
∴AF=EF⨯tan ∠AEF,
∴x+47.5=3⨯47.5,
∴x=95.
答:雕像AB的高度为95尺.
9.(2016广州)如图,某无人机于空中A处探测到目标B、D的俯角分别是30°、60°,
此时无人机的飞行高度AC为60m.随后无人机从A处继续水平飞行到达A′处.(1)求A、B之间的距离:
(2)求从无人机A ′上看目标D 的俯角的正切值
解:(1)由题意得:∠ABD =30°,∠ADC =60°,
在Rt △ABC 中,AC =60m ,
∴AB =0AC 60120(m)1
sin 302
==;
(2)
过A ′作A ′E ⊥BC 交BC 的延长线于E ,连接A ′D ,
则A ′E =AC =60, CE =AA
′=
在Rt△ADC 中, AC =60m , ∠ADC =60°,
∵DC
AC = ∴DE
=
∴tan ∠AA ′D =tan ∠A ′DC
='A E DE ==. 答:从无人机A ′上看目标D
10.(2016重庆)某数学兴趣小组同学进行测量大树CD 高度酌综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36。
然后沿在。
同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)1:2.4i =,那么大树CD 的高度约为多少米?(参考数据:sin36≈0.59,cos36≈0.81,tan36≈0.73)
解:作BF ⊥AE 于F ,如图所示:则FE=BD=6米,DE =BF ,
∵斜面AB 的坡度1:2.4i =,
∴AF= 2.4BF ,
设BF=x 米,则AF= 2.4x 米,
在Rt △ABF 中,由勾股定理得:()2
222.413x x +=解得:x=5,
∴DE=BF=5米,AF=12米,
∴AE=AF+FE =18米,
在Rt △ACE 中,CE=AEtan36°=18x0.73=13.14米
∴CD=CE-DE=13.14米-5米≈8.1米.
12.(2016山西)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm .AB 的倾斜角为30°.BE =CA =50cm .支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F .CD 垂直于地面,FE ⊥AB 于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)
解:过A 作AG ⊥CD 于G ,则∠CAG =30°,在Rt △ACG 中,CG =AC sin30°=1502⨯=25,∵GD =50-30=20,∴CD =CG +GD =25+20=45,
连接FD 并延长与BA 的延长线交于H , 则∠H =30°,
在Rt △EFH 中,CH =0CD sin 30
=2CD =90, ∴EH =EC +CH =AB -BE -AC +CH =300-50-50+90=290,
在Rt △CDH 中,EF =EH ·tan 30°=29033
=,
答:支撑角钢CD 和EF 的长度各是45cm ,。