欧洲绿色建筑照明采光分析

合集下载

绿色建筑知识:绿色建筑中的建筑照明设计

绿色建筑知识:绿色建筑中的建筑照明设计

绿色建筑知识:绿色建筑中的建筑照明设计绿色建筑是指在设计、建造和运营过程中更加注重环境友好和可持续性发展的建筑。

绿色建筑的发展是为了应对当前全球环境问题的严重性,通过节能减排、资源保护和环境保障等手段,达到更加健康、可持续的居住、工作和生活环境。

作为绿色建筑的一部分,建筑照明设计在整个建筑设计中扮演着重要的角色。

建筑照明设计不仅仅是为了满足照明的需求,更是为绿色建筑的节能、减排和舒适度提供了必要的保障。

下面将从绿色建筑的角度探讨建筑照明设计。

1.节能原则绿色建筑在照明设计中应该首先考虑的是节能原则,既要满足照明的需求,又要尽量减少能源的消耗和排放。

绿色建筑的照明设计应该采用高效节能的照明装置,并充分利用自然光和人工光的协同作用,最大程度地减少能源的消耗。

比如可以采用LED灯、太阳能光管等高效节能的照明装置,同时充分利用自然光线,通过光管将光线传递到室内,使得室内光度达到标准照度,减少能源的消耗。

2.环境友好建筑照明设计还应该考虑环境友好的原则,即在保证照明质量的前提下,尽量减少对环境的污染和影响。

采用环保材料和绿色装置是环境友好的表现之一。

比如对于LED灯,其环保性能较好,可以充分利用,同时也可以采用一些环保的材料,如植物树叶等来增强室内空气质量,保护自然生态环境。

3.改善舒适度建筑照明设计还应该考虑改善舒适度的原则,即在满足照明的需求的同时,提高室内环境的舒适度。

建筑照明可以根据人类视觉感受的特点,采用柔和、均匀、自然的光线,使得室内光线柔和舒适。

同时,建筑照明设计也可以根据室内具体需求,采取不同的灯具组合和照明角度,使得室内更加舒适。

4.可持续性建筑照明设计还应该考虑可持续性原则,即在保证设计品质的前提下,满足未来可持续发展的需要。

建筑照明设计可以在设计时就采取可持续性原则,从选材、安装、使用等方面进行考虑,使得照明装置使用寿命更加长久,减少废弃物的产生,在未来可持续发展中扮演着重要的角色。

国内外绿色建筑案例分析

国内外绿色建筑案例分析

国内外绿色建筑案例分析绿色建筑是指在设计、建造、运营和拆除过程中最大限度地考虑环境因素,以降低对自然资源的消耗和减少对环境的负面影响。

以下是几个国内外的绿色建筑案例。

1. The Edge(荷兰)The Edge是荷兰阿姆斯特丹的一栋办公楼,被认为是全球最可持续的办公楼之一、该建筑使用大量太阳能电池板和地热系统,减少了能源消耗。

建筑采用智能化的系统管理照明、供暖和通风,以最大限度地提高能源效率。

此外,该建筑还实施了水资源循环利用系统,最大限度地减少了对自来水的需求。

2.花博园(中国)上海世博会期间,中国在上海打造了一个大规模的花博园,以展示具有环保理念的建筑。

花博园的设计旨在最大限度地减少对自然资源的消耗,并提高能源效率。

在建筑过程中,使用了大量可再生材料,如竹材和可循环利用的建筑材料。

此外,花博园还安装了太阳能电池板和雨水收集系统,以减少能源和水资源的消耗。

3. One Central Park(澳大利亚)位于澳大利亚悉尼的One Central Park是一个混合用途的建筑项目,包括公寓、商业空间和公共绿地。

该项目采用了多项环保措施,例如使用自然通风和天窗以减少对人工通风和照明的需求。

建筑外墙安装了垂直花园,提供了额外的隔热和美化环境的功能。

此外,建筑还使用了太阳能电池板和雨水收集系统,以降低能源和水资源的消耗。

4. Bullitt Center(美国)位于美国华盛顿州西雅图的Bullitt Center是一座办公楼,被认为是世界上最可持续的商业建筑之一、该建筑的设计考虑到了能源和水资源的最大限度利用。

建筑使用了多项环保技术,如太阳能电池板、地热系统和再生水处理系统。

此外,建筑还采用了被动式设计策略,如优化采光和通风,以最大程度地减少机械设备的使用。

这些国内外的绿色建筑案例证明了通过合理的设计和技术应用,可以降低建筑对环境的负面影响,并实现资源的可持续利用。

这些案例也为其他建筑项目提供了良好的参考和启示。

欧洲灯具市场调研分析报告

欧洲灯具市场调研分析报告

欧洲灯具市场调研分析报告欧洲灯具市场调研分析报告一、市场概况灯具作为室内照明设备的重要组成部分,在欧洲市场上有着广泛的应用。

近年来,随着节能环保意识的提高和照明技术的不断创新,欧洲灯具市场呈现出持续增长的趋势。

根据相关数据显示,欧洲市场上的灯具销售额在过去五年内年均增长了约5%。

二、市场分析1. 行业竞争格局:欧洲灯具市场上存在着众多的竞争品牌,由于技术和品牌优势,少数大型企业占据了较大的市场份额。

同时,市场上还有一些中小型企业,他们通过低价策略和特色产品来争夺市场份额。

2. 产品分类:根据灯具的不同应用领域,市场上的产品主要分为室内灯具和室外灯具两大类。

室内灯具包括吸顶灯、台灯、壁灯、落地灯等。

室外灯具则包括路灯、景观灯、庭院灯等。

3. 发展趋势:随着节能环保政策的推动,LED照明技术在欧洲市场逐渐普及。

由于其具有高效节能、寿命长、层次丰富等优点,LED灯具在市场上的需求不断攀升。

同时,智能化照明产品也开始受到消费者的关注,具有远程控制、互联网连接等功能的产品逐渐成为市场的新宠。

三、市场机遇1. 节能环保政策推动:欧洲各国对于照明设备的能效要求越来越高,这为高效节能灯具的市场发展提供了机遇。

2. 市场需求增长:随着经济的发展和消费水平的提高,人们对于室内室外照明环境的要求也越来越高,灯具市场的需求逐渐增长。

3. 新技术推动:LED照明技术的普及和智能化产品的出现,为灯具市场带来了新的发展机遇。

四、市场挑战1. 价格竞争激烈:市场上存在大量中小型企业,他们通过低价竞争来争夺市场份额,导致整个市场的价格竞争激烈。

2. 品牌竞争加剧:少数大型企业在市场上具有较强的品牌优势和技术实力,他们通过品牌宣传和产品创新来争夺市场份额。

3. 需求波动不确定:受经济周期和政策调控等因素的影响,灯具市场的需求存在波动性和不确定性。

五、市场建议1. 创新研发:灯具企业要加大技术创新和研发投入,不断提升产品质量和技术水平,以满足市场对于节能环保、智能化产品的需求。

欧洲灯具照度标准

欧洲灯具照度标准

欧洲照度标准视觉作业场合标准照度(lx)光色显色指数眩光等级暖白色自然白冷白色General rooms(一般的房间)Warehouses(仓库)for bulk storage or storage of identicalgoods (对于大量的储藏或同一货物的储藏)50 X X 3 3with search tasks for items amongstvaried stock (藉由搜寻工作为项目当中不同的存货)100 X X 3 3with reading task (由于读工作)200 X X 3 2 Automatic high-bay racking(自动机械高海湾折磨)Aisles (走廊)20 X X 3 3 Control platform (控制月台)200 X X 2A Dispatch (派遣)200 X X 3 2 Rest areas, washrooms and medical rooms(休息区域,盥洗室和医生房间) Canteens (军中福利社)200 X X 2A 1 other rest and break areas(其他的休息和休息区域)100 X X 2A 1 Rooms for keep-fit exercises (房间为生计- 适宜练习)300 X X 2A 1 Changing rooms (变更房间)100 X X 2A 2 Washrooms (盥洗室)100 X X 2A 2 Toilets (厕所)100 X X 2A 2 Medical rooms, first aid rooms and roomsfor medical care (医生房间,急救房间和房间为医疗保健)500 X X 1A Building services and technical equipment(建筑服务和技术上的仪器)Machinery rooms(机器房间)100 X X 3 3 Power supply and distribution(使补给100 X X 3 3 和分配有力量)Telex and post room(电报和职位房500 X X 2A 1 间)Telephone exchange (电话交换)300 X X 2A 1 Interior circulation areas0.2 m above floor leve (内部循环 areas0。

建筑光环境案例分析及优化

建筑光环境案例分析及优化
建筑光环境优化
一、案例分析—托马斯·赫尔佐格汉诺威 26 号展厅
托马斯·赫尔佐格是德国著名的建筑师 和建筑学教授。他以其关注技术、注重生态 的建筑设计享誉世界。他的生态建筑思想是 人类和所有的人工制造物达到一个自然和人 造自然的亲切和睦的境地。托马斯说:“生态 建筑,并不是简单的绿化和阳光,其真正的 目标是为了节省资源、能源和保护环境。他 始终坚持“从生态到建筑,从技术到自然” 的原则,他已经把生态升华成一种思想和精 神,并以此贯穿他一生的建筑设计过程。托 马斯·赫尔佐格更关注的是建筑与周围环境协调基础上自身的节能程度、技术的 精确性和高效性。通过精心设计的建筑细部提高资源和能源的利用效率,减少不 可再生资源的耗费,来达到对生态环境的关注。
3、建筑遮阳 该建筑的次入口位于西向,故应考虑西晒及遮阳。利用百叶窗这种可调节式
遮阳,可以有效的柔和光线减少西晒。
防止西晒
中庭增加采光

百叶遮阳
减小开窗,避免西晒
托马斯·赫尔佐格的大量作品所遵循的生态建筑设计原理和策略:1、缓冲 空间的营造 2、采光与遮阳的协调 3、自然通风的组织 4、应变界面的构造
最大限度地利用自然光不仅能够节约大量能源,还是使用者生理和心理舒适 的基本要求。伴随着现代大体量建筑的出现,建筑空间往往忽视了对自然光的利 用。但是,由于自然光的使用也容易伴随着过多的热量引入。因此,协调解决采 光和遮阳是赫尔佐格作品的重要 课题,其主要表现为两种策略:北 向光线的利用,采光与遮阳的转 换。而汉诺威 26 号展厅就是一个 很好的案例。
从而使光线均匀分布。
同样的赫尔佐格在林茨的设计中心项目中,通过在屋顶上的一种塑料格栅, 将北面光线反射、折射进入室内,而将南侧直射光线过滤,这样就使展示区获得 高标准的采光,且不牺牲室内热舒适度,也不增加额外能耗。

绿色建筑的节能特点与优势

绿色建筑的节能特点与优势

绿色建筑的节能特点与优势绿色建筑是在设计、建造和运营阶段将环境可持续性的原则融入建筑中的一种建筑理念。

它致力于减少建筑对环境的负面影响,并最大程度地提高建筑的资源利用效率。

绿色建筑的节能特点和优势使其成为未来可持续发展的关键要素。

本文将讨论绿色建筑的节能特点以及所带来的优势。

1. 高效的隔热材料绿色建筑采用高效的隔热材料,如保温玻璃、高密度隔热板等,有效地减少了建筑物在炎热夏季和寒冷冬季的能量消耗。

这些材料能够最大限度地减少冷热空气的传导,保持室内恒温,在很大程度上减少了对空调和暖气的需求。

2. 天然采光系统绿色建筑利用天然采光系统,通过设计合理的窗户和天窗,使室内得到充足的自然光线。

这不仅提供了一个舒适的环境,也减少了对电灯的需求。

根据研究,天然光线对人们的工作和生活有积极的影响,可提高工作效率和抵抗疾病的能力。

3. 可再生能源利用绿色建筑广泛使用可再生能源,如太阳能和风能等。

安装太阳能板和风力涡轮发电机不仅能为建筑物提供可持续的能源供应,还能将多余的能量存储起来并供应给其他建筑使用。

这种方式减少了对传统能源的依赖,降低了建筑物的碳排放量。

4. 雨水收集系统绿色建筑采用雨水收集系统,将雨水收集起来用于灌溉和清洗,减少了对自来水的需求。

同时,这也降低了雨水对城市排水系统造成的压力,并减少了污水处理过程中的能源消耗。

5. 高效的建筑外墙设计绿色建筑在设计外墙时采用了高效的隔热材料和结构设计,以降低建筑物的能量消耗。

通过使用可再生材料和改善建筑外墙的绝热性能,绿色建筑能够在阻断热量传递的同时保持室内空气质量,减少能源浪费。

绿色建筑的节能特点带来了许多优势。

首先,采用绿色建筑理念可显著降低能耗和运营成本。

通过采用节能设备和技术措施,建筑物可以减少电力和能源的使用,从而大幅降低能源费用。

其次,绿色建筑还能改善室内环境质量,提高人们在室内的生活和工作舒适度。

良好的室内空气质量和自然光线可以减少疾病的发生率,提高人们的健康和幸福感。

绿色建筑知识:绿色建筑中的自然采光和人工采光

绿色建筑知识:绿色建筑中的自然采光和人工采光

绿色建筑知识:绿色建筑中的自然采光和人工采光绿色建筑是指在设计、建造和使用过程中,通过采用环保材料、节能技术和优化空间规划等手段,最大程度地减少对环境的影响,提供一个健康、舒适的居住和工作环境。

在绿色建筑中,自然采光和人工采光是非常重要的设计元素,能够为建筑内部提供良好的照明和视野,同时减少能耗和优化室内环境。

自然采光是指通过建筑的设计和布局,利用自然光线为室内空间提供照明。

自然采光的优势在于可以减少在人工照明上的能耗,提高室内空间的舒适度和视觉效果。

在绿色建筑中,设计师通常会采用一系列的设计手段来最大程度地利用自然光线,如通过窗户、天窗、采光井等方式来引入自然光线,同时通过合理的空间规划和材料选择来最大程度地提高自然采光的效果。

自然采光不仅可以提高室内空间的舒适度,还可以提高室内环境的质量,减少室内空气中的有害物质含量,有利于居住者的健康。

而人工采光是指通过人工照明设备来为室内空间提供照明。

在绿色建筑中,人工照明设备通常会被设计成节能型照明设备,如LED灯等,以减少对能源的消耗。

同时,设计师还会在照明设计上下功夫,通过合理的布局和选择合适的照明方式来最大程度地提高照明效果,减少能耗,提高舒适度和视觉效果。

人工采光在夜间或阴天等情况下可以起到补充自然光线的作用,保持室内空间的良好照明效果。

在绿色建筑设计中,自然采光和人工采光通常会被综合考虑,通过合理的布局和设计手段来实现最佳的照明效果。

下面将对自然采光和人工采光在绿色建筑设计中的具体应用进行分析。

首先,自然采光在绿色建筑设计中的应用是非常重要的。

自然采光可以通过多种方式来实现,如通过优化建筑朝向和布局来最大程度地利用自然光线;通过合理设计窗户和采光井来引入自然光线;通过采用透明材料来提高光透射率等。

在建筑的规划和设计阶段,设计师通常会根据建筑的朝向和周围环境来确定最佳的光照方案,通过合理的布局和结构设计来最大程度地提高自然采光效果。

同时,设计师还会根据室内空间的功能和使用需求来确定采光方式和位置,以确保室内空间的照明和舒适度。

Ecotect应用之采光分析样板-绿色解析

Ecotect应用之采光分析样板-绿色解析

谢谢!
14、人工照明模拟分析计算过程
计算结果如图所示:
15、人工照明结果分析
• 从结果可以看出,建 筑中大部分参考平面 照度值达到了300Lux, 特别是中间房间的照 度比较均匀。
16、小结
• 以上介绍了ecotect采光分析的主要功能应 用。 • 主要从采光系数、照度等方面进行了分析。 • 同时,ecotect也可对接radiance模拟更丰富 的内容,大家不妨多做些尝试,多学习。
6、网格编辑
• 在网格大小设置完成后需要将网格放置在 模型中,并进行合理完善,最终结果如下:
7、采光计算
• 模型和分析网格设置完成后就可以进行采光计算 “Lighting Levels”。 • 计算结果如图:
7、采光计算
• 《建筑采光设计标准》规定侧窗采光的办 公室采光系数不低于2%。 • 5.5.11办公、宾馆类建筑75%以上的主要功 能空间室内采光系数满足现行国家标准 《建筑采光设计标准》GB/T 50033的要求。 • 我们需要统计采光系数≥2%的百分比是否满 足75%的要求。
8、结果分析
通过分析页面得到采光系数数据汇总如下:
9、全自然采光百分比计算
• 建筑中某一点的全自然采光百分比 (Daylight Autonomy,DA)被定义为全年 工作时间中单独依靠自然采光就能达到最 小照度要求的时间百分比。
• 通过计算全自然采光百分比可以用于分析 建筑开窗大小与位置设计是否适当。
3、操作流程
建模/ 调整
• 1.模型信息的输入过程: Ecotect可进行大部分建 筑的模型建立; • 2.运用软件计算功能进 行计算; • 3.结合图表,利用计算 所得数据一般可结合 excel数据分析工具进行 分析; • 4.根据分析结果对模型 进行调整并在此计算调 整后的模型结果;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Lighting Module1. IntroductionBy becoming a GreenBuilding Partner, your company can demonstrate its commitment to significantly reduce the energy consumption in its non-residential buildings which are participating in this effort.In the following, you may find assistance for your process of assessing and realising the energy efficiency potentials in the area of Lighting.1Energy Saving PotentialLighting has a substantial impact on the energy consumption in non-residential buildings, accounting for up to 1/3 of the electricity used in some office buildings for example. With the help of modern technology, major energy savings can be achieved. Depending on the existing inventory and set-up of the lighting systems in your non-residential buildings, energy savings between 30% and 50% may be achieved by improving the existing lighting systems.Cost EffectivenessA GreenBuilding partner must achieve an Internal Rate of Return (IRR) of at least 20% for his energy efficiency investments, calculated over a 15-year period.2 The IRR of investments in energy efficient lighting systems may significantly exceed 20%. Furthermore, investments in your lighting systems are not only very profitable but may also improve your lighting quality. Additionally, by reconsidering your lighting concept, you can make sure to meet both national and European lighting regulations3 and standards4 in one go.An upgrade or re-design of your lighting systems should be performed if the cost of these measures is repaid well by the associated savings (IRR > 20%) and the lighting quality will be maintained or improved.This document is subsidiary to the GreenBuilding "Partner Guidelines". It defines what a GreenBuilding Partner Action Plan should cover, if the Partner company's commitment includes the area of lighting. In particular, it explains what a Partner does for each of the following steps:•Inventory of lighting components and system functioning•Assessment of the applicability of possible energy savings measures•Action Plan, which defines what the Partner has decided to do to reduce operating costs by improving energy efficiency•Report on the results of implementing the Action Plan.Note that documents relating to the Inventory and the Assessment are in house, confidential documents, while the Action Plan and the Report are reported to GreenBuilding.1For more detailed information please visit the EU-GreenLight website: </What-to-do/what.htm>2For the calculation of the IRR, see the GreenBuilding financing module.3Please note that implementation of the European directives 89/654/EEC (Council Directive concerning the minimum safety and health requirements for the workplace) and 90/270/EEC (Council Directive on the minimum safety and health requirements for work with display screen equipment) has lead to several national regulations concerning lighting. Please do consider these national regulations.4Such as: CEN/TC 169 (light and lighting), prEN 12464 (Lighting of work places), EN 1838 (lighting applications; emergency lighting).2. Inventory of systemsAs a first step towards identifying applicable energy savings measures, a GB Partner should establish an inventory of the lighting equipment and major operating parameters. The Inventory is established in 3 phases.a.System DescriptionAs the luminaires used in a building can be large in number with varying specifications, documenting and assembling the data should be focused on the three to four largest groups of lighting systems with the largest power consumption. A preliminary investigation is recommended to identify these systems first. Reducing the diversity of lighting systems may well be a result of an evaluation of economic efficiency.b.Measurement of parametersThe description is performed by consulting company records and / or a survey in order to assemble the following data:1.Brief data about the examined building,2.General data about the lighting systems,3.Specific information about lamps (type, quantity, lifetime, specific energy use etc.)4.Specific information about connecting devices and ballasts (classes, losses, etc.)rmation concerning optical issues (distribution of light, reflectors, etc.)6.Specific information about control systems and devicesrmation on average hours of operationThe lighting electricity consumption usually is not measured separately. Considering the amount of luminaires, a detailed measure of every single appliance is not applicable. The data for energy use for lamps and ballasts should be retrieved from manufacturers’ catalogues or nameplates of the components. If so, measurement can be limited to an investigation of•lighting quantity (in lux)•operation hours and -modesThe collected data should enable you to calculate the total lighting power installed [in kW] and the lighting electricity use per year [in kWh/year] for your building. You may use the documents in the annex for an approximation of the lighting full load hours and power consumption for lighting in your premises.The Collection of these data could be carried out by qualified in house engineering staff or by a third party, e.g. a qualified consultant or a GreenBuilding Endorser.c.Indicators of system performanceOn the basis of the estimated energy consumption for lighting, the energy efficiency of the lighting systems can be assessed with the following general indicators.1. Installed lighting power per area [W/m2] in relation to required lighting quantity [in lux]52. Electricity consumption for lighting per area [in kWh/m²a]63. Full load hours of lighting [in h/a]7Considering the total lighting power installed or the lighting electricity use per year provides information only through comparison of the baseline setting and the post-installation setting, the use of the indicators 1-3 allows a direct benchmarking of the lighting system. Please note that the performance indicators have different focuses, depending on the occupancy of the building.83. Assessment of energy saving technical measuresThe following situations indicate potential for energy savings in the field of lighting: rooms or areas with long operating hours, absence of control systems, intermittent occupancy pattern (good conditions for occupancy sensors), low-efficiency lighting technologies which can easily be replaced by more efficient products, no maintenance plan, etc.The energy efficiency of your lighting systems can be improved in the following steps:1.Selection of energy efficient lamps2.Selection of energy efficient connecting devices (ballasts)3.Improvement of luminaires4.Energy saving lighting control systems5.Introduction / improvement of maintenance procedures6.Design aspectsEnergy savings result from finding an optimum combination9of different types of lamps with their specific supporting hardware (such as luminaires and ballasts) and the way the lighting system is applied in everyday use:10mpsIncandescent Lamps have been the most common lamps ineveryday life for more than 100 years. A filament is heatedby an electric current to produce light. These lamps are themost inefficient type of lamps as up to 95% of the electricityis converted into heat. Incandescent lamps have a relativelyshort life-span (average value approximately 1000 h) whileoffering low initial cost and optimal colour rendering.Halogen lamps (as a special class of incandescent lamps) are more efficient (+20 - +50% compared to ordinary lamps).5See Annex 3 for details; even if the data given in the Annex would not be available for other countries these data may serve as a good starting point for benchmarking the lighting system.6See Annex 4 for details.7See Annex 5 for details.8 A tool for the realisation of a lighting survey in your premises is the Green Light Lighting Survey Formwhich can be downloaded at /What-to-do/what1.htm9Finding an optimum combination has to be done by an expert.10 A more detailed description can be found on the EU Green Light website </>.Fluorescent Lamps consist of a sealed glass tube, white-coated on the inside and filled with an inert gas and a smallquantity of mercury. The most common types arefluorescent tubes and compact fluorescent lamps. Allfluorescent lamps require ballasts for starting andcontrolling the lighting process. The efficiency offluorescent lamps exceeds that of incandescent lamps by factor five to factor eight, depending on the lighting system. Fluorescent lamps require higher investment (up to factor 15) but the total number of operating hours (life span) is also 10-15 times longer. Fluorescent lamps offer a slightly inferior colour rendering. Fluorescent lamps are well suited for use in office and commercial areas. Note that there are great differences in efficiency within this group of lamps (e.g. as a result of differences in tube diameter modern T5 lamps are much more efficient than older T8/T16 models). As a result, replacement of old fluorescent lamps by more efficient modern state-of-the-art technology is cost-effective in most cases.Other Discharge Lamps are the most efficient option oflighting. There are many different types of lamps in thisgroup, varying strongly in matters of cost, life-span, colourand quality of light. Therefore it is recommended to involvea lighting expert into the planning. Other discharge lampsare normally limited to special purposes such as lighting ofproduction halls (e.g. with mercury vapour lamps), street lighting (e.g. with sodium vapour lamps) etc.11. The efficiency of these lamps normally outperforms the efficiency of ordinary lamps by more than factor 10. All discharge lamps require ballasts.b.Connecting DevicesThe ballast is a connecting device between the power supply and one or more fluorescent or other discharge lamps. It serves mainly to limit the current to the required value, transforming the supply voltage and providing the necessary conditions for starting the lamp(s). As long as the lamps are operating ballasts consume electricity, too. One can distinguish mainly between magnetic and electronic ballasts. Electronic ballasts are much more efficient than magnetic ones. With EU-Directive 2000/55/EC on energy efficiency requirements for ballasts for fluorescent lighting, some classes of magnetic ballasts have been or have to be phased out of the market.12 An overview over the benefits of electronic ballasts is given below:•Electronic ballasts have relatively low losses. Replacing inefficient magnetic ballasts by their electronic counterparts, the saving potential is up to 25%.•fluorescent lamps have a higher efficiency when operated with electronic ballasts, producing around 10-20% more light.•Electronic ballasts impose softer starting conditions on the lamps. This leads to longer lamp life and hence reduced maintenance costs.•Electronic ballasts can operate up to four lamps, their magnetic counterparts can operate only one to two lamps.11More details can be found on the GreenLight website:/What-to-do/what1.htm 12 Ballasts are divided into efficiency classes. For definition of classes and implications of a. m. EU directivesee </pdf_files/BallastGuideEN200212.pdf> for details.•Fluorescent lamps on magnetic ballasts flicker 100 times a second whereas on electronic ballasts they turn on and off more than 40.000 times a second, invisible to the human eye.Ballasts may but must not be integrated into luminaires. Integral (or self-ballasted) lamps are compact fluorescent lamps with built-in ballast to fit a standard incandescent lamp holder.c.LuminairesModern luminaire design has resulted in improvements in efficiency compared with older luminaires. Whereas most basic white painted reflectors have a reflectance of about 70%, aluminium reflector reflectance can be up to 95%. Refurbishment of older installations using modern equipment can often result in substantial energy savings in addition to improved visual conditions (e.g. elimination of bright reflections from computer screen). Many modern luminaires contain carefully designed reflector systems to direct the light from the lamps in the required direction. These allow for fewer lamps or luminaires to be used to produce a given luminance. It may be possible to improve older, less efficient luminaires by replacing diffusers or prismatic panels with reflector systems. Alternatively, reflectors may be added to the luminaire, retaining the existing light control components. In some cases this can be accompanied by a reduction in the number of lamps to produce the same luminance, with consequential saving (energy savings from 20 up to 50% are estimated to be achievable through improvements in reflectors and shielding).d.Control SystemsAppropriate lighting controls can yield substantial cost-effective lighting energy savings, reducing the power consumption for lighting in offices by 30% to 50%. Simple payback can often be achieved within 2-4 years.Lighting controls are devices that regulate the operation of the lighting system in response to an external signal (manual contact, occupancy, clock, light level). Energy-efficient control systems include:•Localised manual switch•Occupancy linking control•Time scheduling control•Day lighting responsive controlThe impact on automatic or manual switching of lamps can be typically neglected. This effect is minimal and is more than overcompensated by the associated energy savings. Choosing a lighting system with high-quality electronic ballast (see above) will reduce this effect to insignificance.Lighting control systems can combine a number of the strategies outlined here. Presence detectors which are fitted within each luminaire or a small group of luminaires can also include daylight sensing. This type of integrally fitted control may solve a problem of specially shaped spaces or where other linked control is difficult.It is important that the permanent occupants of a space are aware of the existence of the lighting control system, how it works and how they can interact with it. This is particularly important in retrofit installations, where resistance to the introduction of controls can be produced if the occupants are not consulted and fully informed about the new system.e.MaintenanceWith the passing of time, luminaries and room surfaces get dirty. In addition the light output from lamps decreases as they age. The luminance from a lighting installation therefore decreases. Lack of maintenance means that a lighting installation is not performing at its best, energy and money are being wasted. Many installations are poorly maintained and simple cleaning of lamps and luminaires can often improve the lighting of the space. Maintenance requirements should be considered when installations are designed. Luminaires that are easily accessible are more likely to be cleaned regularly and have their lamps replaced. Some luminaires are designed specifically to reduce the need for maintenance, e.g. self-ventilated luminaries resist the accumulation of dirt on optical surfaces.f.Design Aspects & Energy ManagmentImprovements in energy efficiency and reductions in costs can be obtained by properly sizing the lighting system and placing the light sources, by introducing lighting controls and by utilising daylight. This can be achieved by a system of localised lighting, where luminaires are related to the work stations. An alternative approach is to install a uniform array of luminaires and then to adjust the light output of each individual luminaire to match the requirements of the area it lights.Daylight within a building has a major effect on the appearance of the space, and can have considerable energy efficiency implications. Building occupants generally prefer a well-daylight space, provided that problems such as glare and overheating are avoided. To utilise fully the benefits of daylight in the interior, it is important to ensure that the electric lighting is dimmed or turned off whenever daylight provides adequate illumination. This is achieved by the use of appropriate lighting controls, and may involve some degree of automation.Additionally, efficient lighting has positive side effects: By reducing electricity consumption for lighting, the thermal load (from lighting) is reduced simultaneously. In buildings with air conditioning, power consumption for cooling will decrease.Improving the lighting quality at the workplace will typically improve the productivity, too.4. Action PlanYour company's Action Plan for lighting systems, as proposed in Annex 1, should indicate: •the measures you have decided to implement;•the time scale for their implementation;•the expected energy savings•the reasons for excluding the other measures.The Action Plan for lighting systems is presented to GreenBuilding. After approval of all relevant action plans your organisation will be recognised as a GreenBuilding Partner.5. ReportingThe Report to GreenBuilding specifies the results of carrying out the Action Plan. The reporting form in Annex 2 should be used for this purpose. The two left hand columns are copied from the Partner's Action Plan.Annex 1: Action Plan for Lighting SystemsEnergy Savings MeasuresF e a s i b i l i t y (1)Specific Actions (2)% C o v e r e d (3)T i m e t a b l e (4)E x p e c t e d s a v i n g s (5) (M W h /y e a r )Selection of energy efficient lampsFluorescent lamps replacing incandescent lampsOther discharge lamps replacing incandescent lampsFluorescent lamps replacing inefficient fluorescent lamps Connecting devices Electronic ballasts replacing magnetic ballastsImprovement of luminairesAluminium reflectors replacing white painted reflectorsIntroduction of luminaires with light direction, reducing the number of luminaires neededImproving older luminaires by replacingdiffusers or prismatic panels with reflector systems Control Systems Introduction of occupancy linking controls Introduction of time scheduling controls Introduction of daylight responsive controls Maintenance Regular cleaning of luminaires Replacement of aged lamps with insufficient luminace Design ‘Localized lighting’, e.g. of work places Improved daylight utilization(1) Feasibility. Indicate obstacles to application by one or more of the following codes: NA Not applicable for technical reasons NP Not profitable NC Not considered, because evaluation would be too expensiveIf this field is left blank, the measure is considered to be both applicable and profitable.(2) Specific Actions. Several specific actions may be adopted to implement one energy saving measure. Forinstance, specify lamp type by which incandecent or inefficient fluorescent lamps have been replaced (e.g. T5 is replacing T16 lamp-type)(3) % Covered. If the Partner's proposed commitment covers several lighting systems, this column shouldbe used to indicate the proportion of the systems for which the specific actions will be implemented. This can be evaluated according to the most convenient indicator: number of systems; power; energy consumption. Specify the indicator used, as by: "%"; "%kW", %kWh"(4) Time table. T ime scale within which the action plan will be implemented. This might be a specificperiod or date, or might depend on some other action, for instance "When luminaire is replaced", or "When floor is refurbished".(5) Expected savings in MWh/year. This will often be an estimate, based on generally accepted practice.Annex 2: Reporting Form for Lighting SystemsApproved Action Plan Annual report for year 20xxActions decided upon to implement energy savings measures Agreed upontime scale foractionProgress on action, as percentage achieved, andcomments where appropriate (1)Selection of energy efficient productAction 1Action 2…Selection of energy efficient devices…user specific saving potentials…(1) The percentage achieved could refer to an indicator such as the proportion of systems in the scope of the Action Plan for which the specific action has been completed.Partners may find it useful to produce the following Synthesis of the results of commitment. They are invited (but not required) to submit the Synthesis to GreenBuilding.Annual report synthesisSince commitment This year Percentage of actions in Action Plan completedEstimated total investment for Plan (T€) (1)Estimated change in non energy O&M costs (T€) (1)Estimated energy savings (MWh) (2)Number of workplacesIndicative energy related lighting costs per workplace (Euros/workplace) (3)(1) Investment and O&M costs are estimates of changes in costs, with respect to what would have been spent without Partner commitment to the Challenge. This may be, for instance, additional investment for higher performance equipment, or increase/decrease in maintenance costs.(2) Energy savings are estimated by calculating the implementation of the measures as well as increasing/decreasing number of equipments.(3) Energy related lighting costs per workplace is a relevant indicator of the efficient use of ITAnnex 3: Luminance and Installed lighting loads per area Performance indicator No. 1nominal luminancevaluesguiding values for lighting loads standard advancedstandard50 lx 3.2 W /m2 2.5 W /m2100 lx 4.5 W /m2 3.5 W /m2300 lx 10.0 W /m2 7.5 W /m2500 lx 15.0 W /m211.0 W /m2750 lx 20.0 W /m216.0 W /m21.000 lx 25.0 W /m221.0 W /m2Table 1: Simple and improved guiding values for lighting loads per area connected with nominal luminance values. The goal should be to achieve the respective luminance with the lighting load of the right hand column.1313Source: …Institut für Wohnen und Umwelt“ by order of Ministry for Environment and Agriculture of the federal state Hesse (Germany): Leitfaden Elektrische Energie im Hochbau (Guideline electric energy in building construction), Juli 2000, S. 28.Annex 4: Electricity demand and boundary values / target values for electricity demand per areaPerformance Indicator No. 2occupancy service life[h/a]nominalluminancevalues[Lux]use ofdaylight*frequencyof useboundaryvalue[kWh/m2a]targetvalue[kWh/m2a]Officeopen-plan office 2.750 300500500750predominantlypartiallynot usednot usedcontinuouscontinuouscontinuouscontinuous102240553,5122535Classroom 2.000 300500500 predominantlypartiallynot usedfrequentfrequentfrequent7,515303820Sports hall 2.000 300 partially frequent 10 5,5Sales room 3.600 300300+**)5W/m2not usednot usedcontinuouscontinuous35552542Restaurant 3.600 200200200 predominantlypartiallynot usedfrequentfrequentfrequent913166711Hotel room 2.000 200 predominantly 3,5 2 Hospital 8.760 200 predominantly 10 5Street lighting 2.750 100100 predominantlynot usedfrequentfrequent4,5121,88Storehouse 2.750 100100200 not usednot usednot usedminorfrequentcontinuous2,24,5181,02,511Garage(i.e. repair shop) 2.750 300300predominantlypartiallycontinuouscontinuous10153,58multi-storey car park 2.750 **)6.500***) 100100not usednot usedfrequentfrequent12287,518* “predominantly illuminated” means: distance to window < 5 m and proportion (surface window / surface floor > 30%)** private car park in office buildings *** public car parkTable 2: Target values and boundary values of the electricity demand for lighting in Germany in selected non-residential situations.1414Source: …Institut für Wohnen und Umwelt“ by order of Ministry for Environment and Agriculture of the federal state Hesse (Germany): Leitfaden Elektrische Energie im Hochbau (Guideline electric energy in building construction), Juli 2000, S. 27.Annex 5: Simple and improved guiding values for full load lighting hoursPerformance indicator No. 3guideline value for full load-illuminance occupancyservice life [h/a] nominal luminance values [Lux] use of daylight* frequency ofuse ordinary [h/a] advanced [h/a] Officeopen-plan office 2.750300 500 500 750predominantly partially not used not used continuous continuous continuous continuous 1.000 1.500 2.750 2.750 500 1.100 2.400 2.400 Classroom2.000300 500 500predominantly partially not usedfrequent frequent frequent 750 1.000 2.000 400 750 1.800 Sales room 3.600 continuous 3.600 3.000 Restaurant3.600200 200 200predominantly partially not used frequent frequent frequent2.0003.000 3.600 1.700 2.000 3.300 Hotel room 2.000 200 predominantly 500 400 Hospital 8.760 200 predominantly 1.500 1.000 Street lighting 2.750 100 100 predominantly not used frequent frequent 1.000 2.750 500 2.400 Storehouse2.750not used not used not usedminor frequent continuous 500 1.000 2.750 300 750 2.200 Garage (i.e. repair shop)2.750300 300 predominantly partially continuous continuous 1.000 1.500 500 1.100 multi-storey car park 2.750 **) 6.500***)not used not usedfrequent frequent2.750 6.5002.200 5.500*“predominantly illuminated” means: distance to window < 5 m and proportion (surface window / surfacefloor > 30%)** private car park in office buildings *** public car parkTable 3: Standard and improved guiding values for full load lighting hours.1515Source: …Institut für Wohnen und Umwelt“ by order of Ministry for Environment and Agriculture of the federal state Hesse (Germany): Leitfaden Elektrische Energie im Hochbau (Guideline electric energy in building construction), Juli 2000, S. 29.。

相关文档
最新文档