影响接触角测定的因素 PPT课件
稳态接触角测量的影响因素研究

稳态接触角测量的影响因素研究【摘要】稳态接触角测量是液滴和固体表面相互作用的重要研究领域,影响因素众多。
本文主要探讨了测量方法、液滴性质、表面特性、环境条件以及数据处理方法对稳态接触角测量的影响。
通过综合分析各种影响因素,提出了一些优化方法,为稳态接触角测量提供了参考。
未来研究应该侧重于深入探讨各种因素间的相互作用,提高测量的准确性和可重复性,推动该领域的发展,为液滴表面现象的研究提供更加有效的方法和工具。
【关键词】稳态接触角、测量、影响因素、液滴、表面特性、环境条件、数据处理方法、优化方法、研究方向、综合分析1. 引言1.1 研究背景稳态接触角测量是研究表面润湿性质的重要手段之一,其准确性和稳定性对于液滴的测量结果具有至关重要的影响。
随着科技的不断进步和应用领域的不断拓展,对于稳态接触角测量的要求也越来越高。
在实际应用中,稳态接触角测量的结果常常受到多种因素的影响,包括测量方法、液滴性质、表面特性、环境条件以及数据处理方法等因素。
深入研究稳态接触角测量的影响因素,探讨其对测量结果的影响规律,对于提高测量的准确性和可靠性具有重要意义。
在当前的研究中,大多数学者更多的关注于测量技术的改进和优化,而对于稳态接触角测量的影响因素研究相对较少。
本文旨在系统地研究稳态接触角测量的影响因素,通过对不同因素之间的相互作用关系进行分析,为提高稳态接触角测量的准确性和稳定性提供理论依据和实验指导。
通过优化测量方法和数据处理方法,探讨稳态接触角测量的未来发展方向,为相关研究提供借鉴和参考。
1.2 研究目的研究目的是通过对稳态接触角测量影响因素的研究,揭示影响稳态接触角测量准确性和稳定性的关键因素,为提高测量精度和可靠性提供理论依据和技术支持。
通过深入探究液滴性质、表面特性、环境条件和数据处理方法对稳态接触角测量结果的影响,为建立更加全面的稳态接触角测量方法提供指导。
研究稳态接触角测量影响因素的综合分析,为优化稳态接触角测量方法、提高测量精度和稳定性提供实用性建议。
影响接触角测定的因素课件

被测表面的粗糙度越低,液滴在表面 的附着力越弱,接触角测定值相对更 准确。
液体粘度的影响
高粘度液体
粘度高的液体在接触角测定中,流动性较差,液滴不易扩展,从而影响测量结 果。
低粘度液体
粘度低的液体在接触角测定中,流动性较好,液滴容易扩展,测量结果相对更 准确。
液体挥发性的影响
高挥发性液体
高挥发性的液体在接触角测定过程中,容易挥发,导致液滴变化较大,从而影响 测量结果。
仪器误差
仪器精度
仪器的精度是影响接触角测定的主要因素之一。仪器的制造精度、使用过程中的磨损和温度变化等因素都会影响 测量结果。
校准误差
接触角测定仪需要定期进行校准,如果校准不准确,会导致测量结果出现误差。
操作误差
试样准备
试样的表面状态、尺寸和形状等因素都会影响接触角的测定结果。在进行接触角测定前,需要对试样 进行必要的处理和准备。
详细描述
在生物医学工程中,接触角测定是评估生物材料与人体组织相容性的重要手段, 为医疗器械的设计提供依据。此外,接触角测定也用于生物材料的研究和表面 改性研究,以改善材料的生物相容性和功能。
在环境科学中的应用
总结词
水处理、大气污染控制、环境友好材料设计、表面能 检测。
详细描述
在环境科学中,接触角测定可用于水处理和大气污染 控制领域。例如,通过接触角测定可以评估水滴在特 定表面的润湿性,从而辅助设计高效的水处理设施。 在大气污染控制领域,接触角测定可用于评估液体对 大气污染颗粒的润湿性,指导大气污染控制材料的研 发。此外,接触角测定还可以用于环境友好材料的设 计和表面能检测,优化材料的环保性能。
选择合适的测试环境
要点一
总结词
测试环境对接触角测量结果具有重要影响。
接触角ppt课件

4.应用--接触角测量仪 主要用于测量液体对固体的接触角,即液 体对固体的浸润性,该仪器能测量各种液 体对各种材料的接触角。 该仪器对石油、印染、医药、喷涂、选矿 等行业的科研生产有非常重要的作用。
11
接触角测试仪可以进行如下测试:
1)平面、曲面和非水平表面上的接触角,重复性误差 小于0.1°
10)接触角弛豫和润湿/除湿之间的变化关系
11)研究表面能和表面组分变化及表面改性处理的变化
关系.
12
2)通过基底的表面能(固体表面能或液体的表面张力) 去计算极性和酸碱分布、色散度、单极酸和单极碱组 分
3)液/液之间互溶性、液/固之间互溶性
4)Wetting envelop
5)吸收量和蒸发量
6)不同湿度和饱和蒸汽压下接触角和表面能
7)油和油之间或者油和金属之间的除油效率
8)表面活性剂功效
9)通过接触角弛豫特性表征润湿和除湿效率
cos s-g l-s l-g
洗涤、喷洒农药、润滑、油漆、防水布制备、原油开采等
上一内容 下一内容 回主目录
返回
由它可以预测如下几种润湿情况: 1)当θ=0,完全润湿; 2)当θ﹤90°,部分润湿或润湿; 3)当θ=90°,是润湿与否的 分界线; 4)当θ﹥90°,不润湿; 5)当θ=180°,完全不润湿。
1平面曲面和非水平表面上的接触角重复性误差小于012通过基底的表面能固体表面能或液体的表面张力去计算极性和酸碱分布色散度单极酸和单极碱组3液液之间互溶性液固之间互溶性4wettingenvelop5吸收量和蒸发量6不同湿度和饱和蒸汽压下接触角和表面能7油和油之间或者油和金属之间的除油效率8表面活性剂功效9通过接触角弛豫特性表征润湿和除湿效率10接触角弛豫和润湿除湿之间的变化关系11研究表面能和表面组分变化及表面改性处理的变化关系
影响接触角测定因素

影响接触角测定的因素
b.表面不平 表面不平也是造成接触角滞后的主要因素,若将一 玻璃粗化后,将一水滴滴在倾斜玻璃上,则出现接 触角滞后。 Wenzel研究了固体表面粗度对润湿性的影响,他指 出,一个给定的几何面经粗化后,必然使表面积增 大,若以r表示粗化程度,则
r=A(真实)/A (表观)
影响接触角测定的因素
d d gl sg
1/ 2
Gi sl sg
gl 2
d d gl sg
1/ 2
Hi
Gi gl 2
d d gl sg
1/ 2
在上式中,若γlg,及
d sg
, 而对非极性固体
gd已l sd知g , 通 s
除平衡时间和温度外,影响接触角稳定的因素还有接触角滞 后和吸附作用。 (1)接触角滞后 ①前进接触角和后退接触角 前进接触角,以液固界面取代固气界面后形成的接触角为前 进接触角θA,如将固体板插入液体中;后退接触角则相反, 即以固气界面取代固液界面后形成的接触角叫后退接触角,用 θR表示,如水滴在斜玻璃板上,流动可形成前进接触角和后 退接触角。 ②接触角滞后及原因 指前进接触角与后退接触角之差称为接触角滞后(θA-θR)
选择合适的润湿剂应注意的事项是: ①润湿剂在固体表面上吸附时,不应形成憎水基朝外的吸附 层 ②由于固体表面通常是带负电的,阳离子型活性剂常形成憎 水基朝外的吸附层,因此,不宜采用。
表面活性剂对润湿性的影响
2、固体表面活性剂 表面活性剂也可通过物理吸附或化学吸附以改变固体表面的
组成和结构,使高能表面变为低能表面,而降低润湿性。 产生物理吸附的表面活性剂有:重金属皂类、长链脂肪酸、
②高分子固体的可润湿性与其元素组成有关,在碳氢链中氢 被其他原子取代后,其润湿性能将明显改变,用氟原子取代 使γc变小(如聚四氟乙烯为18),且氟原子取代越多,γc越 小(聚-氟乙烯为28)。而用氯原子取代氢原子则使γc变大 可润湿性提高,如聚氯乙烯的γc为39,大于聚乙烯的31。
影响接触角测定的因素-文档资料

• 前面介绍了一些常用的测定接触角的方法,实施时 应注意以下两个问题:平衡时间和体系温度的恒定, 当体系未达平衡时,接触角会变化,这时的接触角 称为动接触角,动接触角研究对于一些粘度较大的 液体在固体平面上的流动或铺展有重要意义(因粘 度大,平衡时间长)。同时,对于温度变化较大的 体系,由于表面张力的变化,接触角也会变化,因 此,若一已基平达平衡的体系,接触角的变化,可 能与温度变化有关,简单判断影响因素的方法是, 平衡时间的影响一般是单方向的,而温度的波动可 能造成γ的升高或降低。
影响接触角测定的因素
造成接触角滞后的主要原因有: a.表面不均匀
表面不均匀是造成接触角滞后的一个重要原因 若固体表面由与液体亲合力不同的两部分a、b组 成,则液体对复合表面的接触角与对两种纯固体 表面成分自身的接触角的关系是: COSθ=XaCOSθa+XbCOSθb Xa、Xb指a、b的 摩尔分数,θa、θb指液体在a固体和b固体上的 接触角。
的润湿程度随液体表面张力的降低而提高(γ ↓ , θ ↑ ,COSθ ↑,S=γ gl(COSθ -1)若以COSθ 对γ gl
作图,
固体的润湿性质
可得一很好的直线,将直线外推至COSθ=1处(θ=0), 相应的表面张力将为此固体的润湿临界表面张力,称为 γc、γc表示液体同系列表面张力小于此值的液体方可在 该固体上自行铺展,即S=0,若为非同系列液体,以 COSθ对γgl 作图通常也显示线性关系,将直线外推至 COSθ=1处,亦可得γc。固 Nhomakorabea的润湿性质
(1)表面张力大于100mN/m者称为高能固体,这 些固体易被液体所润湿,如无机固体、金属及其 氧化物等。
(2)表面张力低于100mN/m者称为低能固体,这 类固体不易被液体所润湿,如有机固体、高聚 物固体。 一般的无机物固体(陶瓷、金属等)的表面能约 在500~5000mN/m,其数值远远大于一般液体 的表面张力,因此,液体与这类固体接触后,使 固体表面能显著降低。
影响接触角测定的因素讲解

d 1/ 2 sg
d 在上式中,若γlg,及 gl 已知,通过实验测得△Hi,便可求 d d sg , 而对非极性固体 sg sg
润湿作用的其他应用举例
润湿作用的其他应用举例 1、金属焊接 金属焊接时,应选择粘附功Wa大的焊剂,除此之外,还 应选择一些配合溶剂以除去金属表面的氧化膜,这种溶剂应 既能溶解氧化膜又能润湿金属,同时,又要能被焊剂从金属 表面顶替出来,从而使焊剂在金属表面铺展,如松香就具备 上述性能而作为常用的焊接溶剂。 2、滴状冷凝 若将一般暖气管内壁改 为憎水表面,则水蒸气在管内凝成液 滴并沿管壁流下,而不会铺展成水膜,这样,在提高热交换 率的同时又延长管道寿命。对热电厂的冷凝管同样存在以上 问题。
固体的润湿性质
基体性质关系不大。因此,当表面层的基团相同时不管基 体是否相同,其γ c 大致相同。 3、高能表面的自憎现象 虽然许多液体可在高能表面上铺展,如煤油等碳氢化合 物可在干净的玻璃,钢上铺展,但也有一些低表面张力的 液体不能在高能表面上铺展。 出现这种现象的原因在于这些有机液体的分子在高能表 面上吸附并形成定向排列的吸附膜,被吸附的两亲分子以 极性基朝向固体表面,而非极性基朝外排列从而使高能表 面的组成和结构发生变化。即从高能表面变成低能表面,
固体的润湿性质
当低能表面的γc小于液体的γlg值时,这些液体便不能在 自身的吸附膜上铺展,这种现象叫做自憎现象。 可利用自憎现象改变固体表面的润湿性,如常用一些有自 憎现象的油作为一些精密机械中轴承的润滑油,因为这样做 可以防止油在金属零件上的铺展而形成油污。 4 表面活性剂对润湿性的影响 可利用表面活性剂以改变体系润湿性质,这主要是从改变液 体的表面张力入手。通过表面活性剂在界面上的吸附而使液体 表面张力下降到能在固体表面上铺展。
影响接触角测定的因素讲解

固体的润湿性质
可得一很好的直线,将直线外推至COSθ=1处(θ=0), 相应的表面张力将为此固体的润湿临界表面张力,称为 γc、γc表示液体同系列表面张力小于此值的液体方可在 该固体上自行铺展,即S=0,若为非同系列液体,以 COSθ对γgl 作图通常也显示线性关系,将直线外推至 COSθ=1处,亦可得γc。 γc是表征固体表面润湿性的经验参数,对某一固体而 言,γc越小,说明能在此固体表面上铺展的液体便越少, 其可润湿状越差(即表面能较低)。 从实验测得各种低能表面的γc值,并总结出一些经验律:
影响接触角测定的因素
除平衡时间和温度外,影响接触角稳定的因素还有接触角滞 后和吸附作用。 (1)接触角滞后 ①前进接触角和后退接触角 前进接触角,以液固界面取代固气界面后形成的接触角为前 进接触角θA,如将固体板插入液体中;后退接触角则相反, 即以固气界面取代固液界面后形成的接触角叫后退接触角,用 θR表示,如水滴在斜玻璃板上,流动可形成前进接触角和后 退接触角。 ②接触角滞后及原因 指前进接触角与后退接触角之差称为接触角滞后(θA-θR)
2、影响接触角测定的因素
• 前面介绍了一些常用的测定接触角的方法,实施时 应注意以下两个问题:平衡时间和体系温度的恒定, 当体系未达平衡时,接触角会变化,这时的接触角 称为动接触角,动接触角研究对于一些粘度较大的 液体在固体平面上的流动或铺展有重要意义(因粘 度大,平衡时间长)。同时,对于温度变化较大的 体系,由于表面张力的变化,接触角也会变化,因 此,若一已基平达平衡的体系,接触角的变化,可 能与温度变化有关,简单判断影响因素的方法是, 平衡时间的影响一般是单方向的,而温度的波动可 能造成γ的升高或降低。
显然,r越大,表面越不平,这时,应用润湿方程 ' ' r cos , lg 时应加以粗化较正, sg sl 为粗糙表面 上的接 触角,将上式与无粗化的润湿方程相比可得 cos ' r cos
影响接触角测定的因素-文档资料

21
润湿作用的其他应用举例
3、阳极效应 阳极效应是指在电解熔融盐的过程中,槽压突然急剧升高,
而电流强度则急剧下降,阳极周围出现细微火花放电光圈, 阳极停止析出气泡,这时,电解质和阳极间好像被一层气体 膜隔开似的。
2、影响接触角测定的因素
• 前面介绍了一些常用的测定接触角的方法,实施时 应注意以下两个问题:平衡时间和体系温度的恒定, 当体系未达平衡时,接触角会变化,这时的接触角 称为动接触角,动接触角研究对于一些粘度较大的 液体在固体平面上的流动或铺展有重要意义(因粘 度大,平衡时间长)。同时,对于温度变化较大的 体系,由于表面张力的变化,接触角也会变化,因 此,若一已基平达平衡的体系,接触角的变化,可 能与温度变化有关,简单判断影响因素的方法是, 平衡时间的影响一般是单方向的,而温度的波动可 能造成γ的升高或降低。
选择合适的润湿剂应注意的事项是: ①润湿剂在固体表面上吸附时,不应形成憎水基朝外的吸附 层 ②由于固体表面通常是带负电的,阳离子型活性剂常形成憎 水基朝外的吸附层,因此,不宜采用。
14
表面活性剂对润湿性的影响
2、固体表面活性剂 表面活性剂也可通过物理吸附或化学吸附以改变固体表面的
组成和结构,使高能表面变为低能表面,而降低润湿性。 产生物理吸附的表面活性剂有:重金属皂类、长链脂肪酸、
17
浮游选矿
浮游选矿的原理图 当矿砂表面有5%被捕
集剂覆盖时,就使表面产 生憎水性,它会附在气泡 上一起升到液面,便于收 集。
选择合适的捕集剂, 使它的亲水基团只吸在矿 砂的表面,憎水基朝向水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体的润湿性质
基体性质关系不大。因此,当表面层的基团相同时不管基 体是否相同,其γ c 大致相同。 3、高能表面的自憎现象
虽然许多液体可在高能表面上铺展,如煤油等碳氢化合 物可在干净的玻璃,钢上铺展,但也有一些低表面张力的 液体不能在高能表面上铺展。
出现这种现象的原因在于这些有机液体的分子在高能表 面上吸附并形成定向排列的吸附膜,被吸附的两亲分子以 极性基朝向固体表面,而非极性基朝外排列从而使高能表 面的组成和结构发生变化。即从高能表面变成低能表面,
浮游选矿
浮游选矿的原理图 当矿砂表面有5%被捕
集剂覆盖时,就使表面产 生憎水性,它会附在气泡 上一起升到液面,便于收 集。
选择合适的捕集剂, 使它的亲水基团只吸在矿 砂的表面,憎水基朝向水。
5、润湿热
润湿热
将一固体浸入一液体中所放出的热量称为润湿热, 采用微量量热计等精密量热仪器可以测出各种固体
固体的润湿性质
(1)表面张力大于100mN/m者称为高能固体,这 些固体易被液体所润湿,如无机固体、金属及其 氧化物等。
(2)表面张力低于100mN/m者称为低能固体,这 类固体不易被液体所润湿,如有机固体、高聚 物固体。 一般的无机物固体(陶瓷、金属等)的表面能约 在500~5000mN/m,其数值远远大于一般液体 的表面张力,因此,液体与这类固体接触后,使 固体表面能显著降低。
影响接触角测定的因素
除平衡时间和温度外,影响接触角稳定的因素还有接触角滞 后和吸附作用。 (1)接触角滞后 ①前进接触角和后退接触角 前进接触角,以液固界面取代固气界面后形成的接触角为前 进接触角θA,如将固体板插入液体中;后退接触角则相反, 即以固气界面取代固液界面后形成的接触角叫后退接触角,用 θR表示,如水滴在斜玻璃板上,流动可形成前进接触角和后 退接触角。 ②接触角滞后及原因 指前进接触角与后退接触角之差称为接触角滞后(θA-θR)
润湿作用的其他应用举例
润湿作用的其他应用举例 1、金属焊接 金属焊接时,应选择粘附功Wa大的焊剂,除此之外,还
应选择一些配合溶剂以除去金属表面的氧化膜,这种溶剂应 既能溶解氧化膜又能润湿金属,同时,又要能被焊剂从金属 表面顶替出来,从而使焊剂在金属表面铺展,如松香就具备 上述性能而作为常用的焊接溶剂。
d d gl sg
1/ 2
Gi sl sg
gl 2
d d gl sg
1/ 2
Hi
Gi gl 2
d d gl sg
1/ 2
在上式中,若γlg,及
d sg
, 而对非极性固体
gd已l sd知g , 通 s过g 实验测得△Hi,便可求
固体的润湿性质
当低能表面的γc小于液体的γlg值时,这些液体便不能在 自身的吸附膜上铺展,这种现象叫做自憎现象。
可利用自憎现象改变固体表面的润湿性,如常用一些有自 憎现象的油作为一些精密机械中轴承的润滑油,因为这样做 可以防止油在金属零件上的铺展而形成油污。 4 表面活性剂对润湿性的影响
可利用表面活性剂以改变体系润湿性质,这主要是从改变液 体的表面张力入手。通过表面活性剂在界面上的吸附而使液体 表面张力下降到能在固体表面上铺展。
②高分子固体的可润湿性与其元素组成有关,在碳氢链中氢 被其他原子取代后,其润湿性能将明显改变,用氟原子取代 使γc变小(如聚四氟乙烯为18),且氟原子取代越多,γc越 小(聚-氟乙烯为28)。而用氯原子取代氢原子则使γc变大 可润湿性提高,如聚氯乙烯的γc为39,大于聚乙烯的31。
③附有两亲分子单层的高能表面显示出低能表面的性质,这 说明决定固体表面润湿性能的是其表面层的基团或原子,而与
2、滴状冷凝 若将一般暖气管内壁改 为憎水表面,则水蒸气在管内凝成液 滴并沿管壁流下,而不会铺展成水膜,这样,在提高热交换 率的同时又延长管道寿命。对热电厂的冷凝管同样存在以上 问题。
润湿作用的其他应用举例
3、阳极效应 阳极效应是指在电解熔融盐的过程中,槽压突然急剧升高,
而电流强度则急剧下降,阳极周围出现细微火花放电光圈, 阳极停止析出气泡,这时,电解质和阳极间好像被一层气体 膜隔开似的。
2、影响接触角测定的因素
• 前面介绍了一些常用的测定接触角的方法,实施时 应注意以下两个问题:平衡时间和体系温度的恒定, 当体系未达平衡时,接触角会变化,这时的接触角 称为动接触角,动接触角研究对于一些粘度较大的 液体在固体平面上的流动或铺展有重要意义(因粘 度大,平衡时间长)。同时,对于温度变化较大的 体系,由于表面张力的变化,接触角也会变化,因 此,若一已基平达平衡的体系,接触角的变化,可 能与温度变化有关,简单判断影响因素的方法是, 平衡时间的影响一般是单方向的,而温度的波动可 能造成γ的升高或降低。
4、表面活性剂对润湿性的影响
1、润湿剂 从润湿方程看,若液体的表面张力越低,则润湿能力越强,
当某液体(如水)的表面张力大于某固体表面的γc值时,此 液体是无法润湿该固体的,但若加入表面活性剂,使液体的 表面张力大大降低,一旦表面张力低于γc,则此时液体便能 润湿固体,这种表面活性剂一般称为润湿剂。显然,γcmc和 cmc值最低的表面活性剂应是最有效的表面活性剂。
的润湿程度随液体表面张力的降低而提高(γ ↓ , θ ↑ ,COSθ ↑,S=γ gl(COSθ -1)若以COSθ 对γ gl
作图,
固体的润湿性质
可得一很好的直线,将直线外推至COSθ=1处(θ=0), 相应的表面张力将为此固体的润湿临界表面张力,称为 γc、γc表示液体同系列表面张力小于此值的液体方可在 该固体上自行铺展,即S=0,若为非同系列液体,以 COSθ对γgl 作图通常也显示线性关系,将直线外推至 COSθ=1处,亦可得γc。
γc是表征固体表面润湿性的经验参数,对某一固体而 言,γc越小,说明能在此固体表面上铺展的液体便越少, 其可润湿状越差(即表面能较低)。 从实验测得各种低能表面的γc值,并总结出一些经验律:
固体的润湿性质
①固体的润湿性与分子的极性有关,极性化合物的可润湿性 明显优于相应的完全非极性的化合物(如纤维素的γc=40~45, 而聚乙烯为31)。
固体的润湿性质
2、低能表面的润湿性质 近年来,随着高聚物的广泛应用,低能表面的润湿
问题越来越引起人们的重视,如某些高聚物做成的生 产用品和生活用品,就要求其能很好地为水所润湿( 加入某些无机氧化物可能是有效的办法),塑料电镀, 降解等也需要解决润湿问题。
Zisman等人首先发现,同系列液体在同一固体表面
影响接触角测定的因素
造成接触角滞后的主要原因有: a.表面不均匀
表面不均匀是造成接触角滞后的一个重要原因 若固体表面由与液体亲合力不同的两部分a、b组 成,则液体对复合表面的接触角与对两种纯固体 表面成分自身的接触角的关系是: COSθ=XaCOSθa+XbCOSθb Xa、Xb指a、b的 摩尔分数,θa、θb指液体在a固体和b固体上的 接触角。
表面活性剂对润湿性的影响
这时,矿物表面的外层为碳氢基,其润湿性大大下降,并附 着于鼓入的气泡中被浮选到液体表面,又如用甲基氯硅烷处 理玻璃或带有表面羟基的固体表面,甲基氯硅烷与固体表面 上的羟基作用,释出氯化氢,形成化学键Si-0键,这使原来 亲水的固体表面被甲基所覆盖而具有憎液性强和长期有效的 特点,可通过此方法改性 玻璃表面从而使其防水(如汽车 玻璃,玻璃镜片等)。
显然,r越大,表面越不平,这时,应用润湿方程
时应加以粗化较正,r sg sl lg cos ', ' 为粗糙表面
上的接 触角,将上式与无粗化的润湿方程相比可得
r cos ' cos
当θ<90°表面粗化将使θ′<θ,当θ>90°, 表面粗化将使θ′>θ(接触角变大,润湿性变 差)。
和
液体浸润过程中的热效应。
同接触角一样,润湿热的数值也可以作为固液体系
润湿性能的表征,在△S>0的场合,采用润湿热数据
作为表征更有现实意义。
由于体系的自由能降低主要是以放热体现出来。
Gi
sl
sg
H i
T
Gi T
P
润湿热
另一方面,根据Fowkes关系式
sl sg gl 2
有机胺盐、有机硅化合物、合氟表面活性剂等,这些表面活 性剂一般是在表面形成憎水基朝外的吸附层,而使固体表面 能降低。
若表面活性剂的亲水基在固体表面产生化学吸附,而使憎 水基朝外,则这亦有利于降低固体的表面能而使其润湿性降 低,这方面的实例有黄药(黄原酸)在矿物浮选中的应用。 黄药与方铅矿表面发生化学作用。
固体自溶液中的吸附在实际工作中甚为重要。用 活性炭脱色、用离子交换法吸附电解质等,都涉及 固体自溶液中的吸附现象。 溶液吸附多数属物理吸附。溶液中溶剂与溶质在 固体表面吸附的难易取决于它们和表面作用力的强 弱。一般来说,和固体表面性质相近的组分易被吸 附。例如,炭自乙醇和苯的混合液中吸附时苯易被 吸附;若用硅胶,显然乙醇易被吸附。
3、固体的润湿性质
如对可润湿的金属表面,表面经打磨粗化后,可使润湿性变 好(如电镀时需表面充分润湿),而对于不润湿的固体表面, 表面粗化,将使θ变大,润湿变差(对一些 高聚物表面,可通 过粗化使其防水能力提高)。 固体的润湿性质 1、低能表面与高能表面 从润湿方程可以看出,当θ<90°,可润湿,这时 sg sl ,lg 即要求 sg gl ,可见,低表面张力的液体容易润湿高表面能 的固体,考虑到 gl 的数值均在100mN/m以下,常以此为界,将 固体分为两类:
关于阳极效应的一种解释是:当电解质的浓度较大时,电解 质对阳极的润湿性较好,能顺利地把阳极上产生的气泡排挤掉, 因此,不致发生阳极效应,但当电解质浓度较低时,电解质对 阳极的润湿性下降,阳极上产生的气泡不能及时被电解质排挤 掉,于是小气泡逐渐长大粘附在阳极上并成一层气膜。