射频电路设计-理论与应用_图文
射频电路的设计原理及应用

射频电路的设计原理及应用普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。
其主要负责接收信号解调;发射信息调制。
早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。
更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。
射频电路方框图一、接收电路的结构和工作原理接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。
1、该电路掌握重点(1)、接收电路结构。
(2)、各元件的功能与作用。
(3)、接收信号流程。
2、电路分析(1)、电路结构。
接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。
早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。
接收电路方框图(2)、各元件的功能与作用。
1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。
作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。
b)、发射时把功放放大后的交流电流转化为电磁波信号。
2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。
图一、图二作用:其主要作用有两个:a)、完成接收和发射切换;b)、 完成900M/1800M信号接收切换。
逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。
由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。
因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。
射频电路理论与设计第2章史密斯圆图

对负载阻抗与特性阻抗失配度不同的 传输线而言,传输线的反射系数模值是不 同的,因而就对应着不同的等反射系数圆 半径,这一组半径不同的等反射系数圆称 为等反射系数圆族。
又因为反射系数的模值与驻波系数一 一对应,所以等反射系数圆族又称为等驻 波系数圆族。等反射系数圆族有下面3个特 点。
(1)当等反射系数圆的半径为0,即 在坐标原点处时,反射系数的模值 |ΓL|=0,驻波系数ρ=1。所以,反射系 数复平面上的坐标原点为匹配点。
图2.6 例2.2用图
图2.7 例2.3用图
3 传输线上行驻波电压最大点和最小点 位置的计算 用圆图可以找到传输线上行驻波电压的最 大点和最小点。在射频电路中,如果在传 输线的电压最大点或电压最小点插入λ/4阻 抗变换器,可以达到阻抗匹配。
图2.8 例2.4用图
图2.9 例2.5用图
4 传输线终端短路和终端开路时的阻抗 变换 终端短路的传输线和终端开路的传输线可 以等效为电感和电容,这一点在射频电路 中非常重要。在给定频率下,依据传输线 长度和终端条件,可以产生感性和容性两 种阻抗,这种用分布电路技术实现集总元 件参数的方法有很大的实用价值。
为了求输入阻抗,应预先计算出集总电抗 元件的归一化串联电抗值jx或归一化并联 电纳值jb,并假定归一化负载zL位于圆图 上的点A。对于图2.22所示的4种可能电路, 从圆图上的点A开始实行图解计算,如图 2.23所示(图2.23为史密斯阻抗-导纳圆 图)。情况如下所述。
(1)在电路中串联电感L时,电路如 图2.22(a) 所示。在圆图上由点A沿等电阻 圆顺时针方向移动jx=jωL/Z0,即得到圆图 上归一化输入阻抗所在的点,如图2.23所 示。
2.2.1 归一化阻抗
2.2.2 等电阻圆和等电抗圆
射频电路设计与应用

射频电路设计与应用射频(Radio Frequency,简称RF)电路是指一种在射频范围内工作的电子电路。
射频电路设计与应用广泛应用于通信、无线电、雷达、卫星导航等领域,具有重要的实际意义。
本文将介绍射频电路设计的基本原理、常用的设计方法和射频电路在现实应用中的重要性。
一、射频电路设计原理射频电路设计是指在一定频率范围内将电子元器件和电路组合起来,以实现无线信号的传输和接收。
射频电路的特点是频率较高,要求电路能够稳定地工作在高频环境下。
射频电路设计的基本原理包括频率选择、信号放大、滤波与混频等。
在频率选择方面,通常通过谐振电路来选择所需的工作频率。
在信号放大方面,选择合适的放大器并通过匹配网络来实现增益的放大。
在滤波方面,使用滤波电路来消除干扰信号和筛选所需信号。
混频则是将射频信号与局部振荡信号混合,获得所需的中频信号。
二、射频电路设计方法在射频电路设计中,常用的设计方法包括频率规划、传输线路设计、放大器设计、频率合成和滤波器设计等。
1. 频率规划:根据系统要求和应用场景确定工作频率范围,选择适合的信号源和合适的局部振荡器。
2. 传输线路设计:在高频环境下,传输线路的损耗、阻抗匹配和信号传输的稳定性至关重要。
合理设计传输线路,使用合适的传输线类型和匹配网络,能够提高射频电路的性能。
3. 放大器设计:根据射频信号的幅度要求选择合适的放大器类型,如低噪声放大器、功率放大器等,并通过合适的偏置和反馈网络实现设计要求。
4. 频率合成:通过合成多个频率信号以获得所需的频率信号。
常用的频率合成电路包括频率倍频器、混频器等。
5. 滤波器设计:射频电路中常常需要对信号进行滤波处理,以滤除干扰和选择所需信号。
根据系统要求,选择合适的滤波器类型,如低通滤波器、带通滤波器等。
三、射频电路在实际应用中的重要性射频电路设计与应用在现代通信技术中起着至关重要的作用。
举几个常见的应用场景作为例子。
1. 无线通信:射频电路是无线通信系统中必不可少的组成部分。
射频电路设计-理论与应用_图文

C1
模拟引线L R 模拟引线L
L2
R
L1
L2
模拟引线间电容Cb
C2
高频电阻等效电路表示法 高频线绕电阻等效电路表示法
18
例1.3 求出用长2.5cm,AWG26铜线连接的500Ω金属膜电阻的 高频阻抗特性,寄生电容Ca=5pF。 解: AWG26的d=16mil,a= 8×2.54×10-5m=0.2032mm
10f6,H1z07
108 109
2
1.8 半径 a=1mm铜线归一化
1.6 AC电流密度的频率特性
1.4
1.2 1kHz
1
0.8 10kHz
0.6
100MHz
0.4 100kHz
1GHz
0.2
1MHz 10MHz
00 0.1 0.2 0.3 0.4r,0.5m0m.6 0.7 0.8 0.9 1
17
射频电路设计-理论与应用_图文.ppt
近年来由于通信技术及计算机技术的迅猛发展, 工作频率日益提高,射频和微波电路得到广泛应用。
目前大多数教材都是面向两种不同的读者: 1. 具有坚实理论基础的研究生常常通过电磁场处 理方法进入这个领域。
2. 对数学和物理的严格性不太感兴趣的工程技术人 员则更喜欢采用电路理论来处理问题。
平面电磁波的主要性质: 1. 电磁波是横波,E和H都与传播方向垂直; 2. E和H互相垂直,且同相位。
10
根据经典场论,电场和磁场分量的比值就是本征阻抗(波
阻抗):
其中磁导率μ和介电常数ε与材料有关,μ0=4π×10-7(H/m), ε0=8.85×10-12 (F/m) , μr和εr为相对值。
• 在第2章“传输线分析”中将讨论微带线的阻抗特性,其定量 求解过程在第3章“Smith”圆图中介绍。
射频电路设计1-绪论

频谱分析仪
用于测量信号的频率、功率和失真等参数。
阻抗匹配器
用于确保测试系统的阻抗匹配,减少信号反 射和损耗。
测试方法与流程
1 2
测试准备
根据测试需求,选择合适的测试仪器和设备,搭 建测试环境。
测试步骤
按照规定的步骤进行测试,记录各项参数和数据。
3
测试结果分析
对测试数据进行分析,评估电路性能,找出潜在 问题。
变压器
要点一
总结词
变压器是射频电路中实现电压转换和阻抗匹配的重要元件 。
要点二
详细描述
变压器是一种利用磁耦合原理实现电压、电流和阻抗变换 的电子元件。在射频电路中,变压器常用于信号的放大、 变频和传输等功能。变压器的性能指标包括变比、效率、 绝缘电阻和温升等。在选择变压器时,需要考虑其工作频 率、额定电压和电流等因素,以确保其在射频电路中的正 常工作和稳定性。
05
射频电路的测试与验证
05
射频电路的测试与验证
测试环境搭建
信号源
用于提供射频信号,模拟实际工作条件。
功率计
用于测量信号的功率。
频谱分析仪
用于测量信号的频率、功率和失真等参数。
阻抗匹配器
用于确保测试系统的阻抗匹配,减少信号反 射和损耗。
测试环境搭建
信号源
用于提供射频信号,模拟实际工作条件。
功率计
02
在这一阶段,设计师需要选择 合适的电子元件和电路拓扑结 构,并利用电路仿真工具对电 路性能进行预测和优化。
03
电路级设计还需要考虑电路的 稳定性、噪声、失真等因素, 以确保射频电路的性能稳定可 靠。
电路级设计
01
电路级设计是射频电路设计的 核心环节,主要任务是根据系 统要求,设计和优化射频电路 的各个组成部分。
射频电路设计(RF_Circuit_design)

a1 =0
ai、bi分别为输入、输出信号的振幅大小。
S参数的意义 参数的意义
入射光
玻璃
入射波
[S]
反射光
折射光
S11(a2=0)
S21(a2=0)
S11--二端口接匹配负载时,一端口的反射系数 二端口接匹配负载时, 二端口接匹配负载时 S21--二端口接匹配负载时,一端口到二端口的传输系数 二端口接匹配负载时, 二端口接匹配负载时
二端口网络网络参量
V1 = z11 I 1 + z12 I 2 Z参量 V 2 = z 21 I 1 + z 22 I 2 I 1 = y11V1 + y12V 2 Y参量 I 2 = y 21V1 + y 22V 2 V1 = h11 I 1 + h12V 2 H参量 I 2 = h21 I 1 + h22V 2
S11和S22是两端的反射系数,S12和S21是两端之间的传输系数。
链形散射矩阵(T参数 链形散射矩阵 参数) 参数
将S参量的概念推广到级联网络,即输入、 输出端口写电压波的关系:
a1 T11 T12 b2 b = T T a 1 21 22 2
求复杂网络的输入阻抗
应用ZY圆图 使用圆图软件
TOPIC 4-2 4-
射频/微波网络参数
微波网络理论
在分析低频基本电路和射频/微波电路时,可 以运用网络模型,将网络视为一个整体—— “黑盒子” 低频电路端口以电压电流表示,对应网络参 量:
Z、Y、H和A参量 可以直接推广到高频电路领域,但测量不易 频率升高到射频界限,终端的寄生效应不能忽 略
1 2 (u − ) +v = ( ), r +1 1+ r
射频电路设计理论与应用课件

目录
• 射频电路设计概述 • 射频电路设计基础理论 • 射频电路核心组件设计 • 射频电路应用技术 • 射频电路设计案例分析与实践
01
射频电路设计概述
射频电路的定义与应用领域
定义
射频电路是指工作在射频频段的 电路,通常包括无线收发系统、 微波电路、射频放大器、混频器 等。
应用领域
射频电路广泛应用于通信、雷达 、电子对抗、医疗电子、测量仪 器等领域。
射频电路设计的挑战与重要性
挑战
射频电路设计面临诸多挑战,如频率高、波长短、信号幅度 小、易受干扰等。此外,还需要考虑电路的稳定性、线性度 、效率等因素。
重要性
随着无线通信技术的飞速发展,射频电路作为无线通信系统 的核心组成部分,其性能直接影响到整个系统的传输质量、 可靠性以及功耗等方面。因此,研究射频电路设计理论与应 用具有重要意义。
4. 设计收发机控制电路,实 现自动增益控制、频率合成、
校准等功能。
5. 制作并调试收发机系统硬 件,编写并烧录相关控制软件
。
6. 对收发机系统进行综合测 试与性能评估,确保满足设计
要求。
THANKS
感谢观看
射频电路在雷达系统中的应用
发射链路
射频电路在雷达系统的发射链路中起 到关键作用。它负责产生高频大功率 信号,并通过天线辐射出去,用于探 测目标。
接收链路
射频电路在雷达接收链路中用于接收 反射回来的微弱信号。它需要具备高 灵敏度和低噪声性能,以确保准确的 目标探测和距离测量。
射频电路在微波工程中的应用
03
射频电路核心组件设计
滤波器设计
频率选择
滤波器类型
滤波器是射频电路中用于频率选择的核心 组件,能够实现对特定频率信号的通过或 抑制。
射频电路设计--理论与应用

射频电路设计--理论与应用第1章引言1 1 射频设计的重要性1 2 量纲和单位1 3 频谱1 4 无源元件的射频特性1 4 1 高频电阻1 4 2 高频电容1 4 3 高频电感1 5 片状元件及对电路板的考虑1 5 1 片状电阻1 5 2 片状电容1 5 3 表面安装电感1 6 小结参考文献习题第2章传输线分析2 1 传输线理论的实质2 2 传输线举例2 2 1 双线传输线2 2 2 同轴线2 2 3 微带线2 3 等效电路表示法2 4 理论基础2 4 1 基本定律2 5 平行板传输线的电路参量2 6 各种传输线结构小结2 7 一般的传输线方程2 7 1 基尔霍夫电压和电流定律表示式2 7 2 行进的电压和电流波2 7 3 阻抗的一般定义2 7 4 无耗传输线模型2 8 微带传输线2 9 端接负载的无耗传输线2 9 1 电压反射系数2 9 2 传播常数和相速2 9 3 驻波2 10 特殊的终端条件2 10 1 端接负载无耗传输线的输入阻抗2 10 2 短路传输线2 10 3 开路传输线2 10 4 1/4波长传输线2 11 信号源和有载传输线2 11 1 信号源的相量表示法2 11 2 传输线的功率考虑2 11 3 输入阻抗匹配2 11 4 回波损耗和插入损耗2 12 小结参考文献习题第3章 Smith圆图 3 1 从反射系数到负载阻抗3 1 1 相量形式的反射系数3 1 2 归一化阻抗公式3 1 3 参数反射系数方程3 1 4 图形表示法3 2 阻抗变换3 2 1 普通负载的阻抗变换3 2 2 驻波比3 2 3 特殊的变换条件3 2 4 计算机模拟3 3 导纳变换3 3 1 参数导纳方程3 3 2 叠加的图形显示3 4 元件的并联和串联3 4 1 R和L元件的并联3 4 2 R和C元件的并联3 4 3 R和L元件的串联3 4 4 R和C元件的串联3 4 5 T形网络的例子3 5 小结参考文献习题第4章单端口网络和多端口网络4 1 基本定义4 2 互联网络4 2 1 网络的串联4 2 2 网络的并联4 2 3 级连网络4 2 4 ABCD网络参量小结4 3 网络特性及其应用4 3 1 网络参量之间的换算关系4 3 2 微波放大器分析4 4 散射参量4 4 1 散射参量的定义4 4 2 散射参量的物理意义4 4 3 链形散射矩阵4 4 4 Z参量与S参量之间的转换4 4 5 信号流图模型4 4 6 S参量的推广4 4 7 散射参量的测量4 5 小结参考文献习题第5章射频滤波器设计5 1 谐振器和滤波器的基本结构5 1 1 滤波器的类型和技术参数5 1 2 低通滤波器5 1 3 高通滤波器5 1 4 带通和带阻滤波器5 1 5 插入损耗5 2 特定滤波器的实现5 2 1 巴特沃斯滤波器5 2 2 切比雪夫滤波器5 2 3 标准低通滤波器设计的反归一化5 3 滤波器的实现5 3 1 单位元件5 3 2 Kurodac规则5 3 3 微带线滤波器的设计实例5 4 耦合微带线滤波器5 4 1 奇模和偶模的激励5 4 2 带通滤波器单元5 4 3 级连带通滤波器单元5 4 4 设计实例5 5 小结c参考文献习题第6章有源射频元件6 1 半导体基础6 1 1 半导体的物理特性6 1 2 PN结6 1 3 肖特基(Schottky)接触6 2 射频二极管6 2 1 肖特基二极管6 2 2 PIN二极管6 2 3 变容二极管6 2 4 IMPATT二极管6 2 5 隧道二极管6 2 6 TRAPATT,134BARRITT和Gunn二极管6 3 BJT双极结晶体管(Bipolar JunctioncTransistor) 6 3 1 结构6 3 2 功能6 3 3 频率响应6 3 4 温度性能6 3 5 极限值6 4 射频场效应晶体管6 4 1 结构6 4 2 功能6 4 3 频率响应6 4 4 极限值6 5 高电子迁移率晶体管6 5 1 结构6 5 2 功能6 5 3 频率响应6 6 小结参考文献习题 第7章有源射频电路器件模型 7.1 二极管模型7.1.1 非线性二极管模型7.1.2 线性二极管模型7.2 晶体管模型7.2.1 大信号BJT模型7.2.2 小信号BJT模型7.2.3 大信号FET模型7.2.4 小信号FET模型7.3 有源器件的测量7.3.1 双极结晶体管的DC特性7.3.2 双极结晶体管的AC参量的测量7.3.3 场效应晶体管参量的测量7.4 用散射参量表征器件特性7.5 小结参考文献习题第8章匹配网络和偏置网络 8 1 分立元件的匹配网络8 1 1 双元件的匹配网络8 1 2 匹配禁区.c频率响应以及品质因数8 1 3 T形匹配网络和π形匹配网络 8 2 微带线匹配网络8 2 1 从分立元件到微带线8 2 2 单节短截线匹配网络8 2 3 双短截线匹配网络8 3 放大器的工作状态和偏置网络8 3 1 放大器的工作状态和效率8 3 2 双极结晶体管的偏置网络8 3 3 场效应晶体管的偏置网络8 4 小结参考文献习题第9章射频晶体管放大器设计 9 1 放大器的特性指标9 2 放大器的功率关系9 2 1 射频源9 2 2 转换功率增益9 2 3 其他功率关系9 3 稳定性判定9 3 1 稳定性判定圆9 3 2 绝对稳定9 3 3 放大器的稳定措施9 4 增益恒定9 4 1 单向化设计法9 4 2 单向化设计误差因子9 4 3双共轭匹配设计法9 4 4 功率增益和资用功率增益圆9 5 噪声系数圆9 6 等驻波比圆9 7 宽带高功率多级放大器9 7 1 宽带放大器9 7 2 大功率放大器9 7 3 多级放大器9 8 小结参考文献习题第10章振荡器和混频器10 1 振荡器的基本模型10 1 1 负阻振荡器10 1 2 反馈振荡器的设计10 1 3 振荡器的设计步骤10 1 4 石英晶体振荡器10 2 高频振荡器电路10 2 1 固定频率振荡器10 2 2 介质谐振腔振荡器10 2 3 YIG调谐振荡器10 2 4 压控振荡器10 2 5 耿氏二极管(Gunncdiode)振荡器10 3 混频器的基本特征10 3 1 基本原理10 3 2 频域分析10 3 3 单端混频器设计10 3 4 单平衡混频器10 3 5 双平衡混频器10 4 小结参考文献习题附录A 常用物理量和单位 附录B 圆柱导体的趋肤公式附录C 复数附录D 矩阵变换 附录E 半导体的物理参量附录F 长和短的二极管模型附录G 耦合器附录H 噪声分析附录I MATLAB简介附录J 本书中英文缩写词。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1
模拟引线L R 模拟引线L
L2
R
L1
L2
模拟引线间电容Cb
C2
高频电阻等效电路表示法 高频线绕电阻等效电路表示法
18
例1.3 求出用长2.5cm,AWG26铜线连接的500Ω金属膜电阻的 高频阻抗特性,寄生电容Ca=5pF。 解: AWG26的d=16mil,a= 8×2.54×10-5m=0.2032mm
RFC广泛用于射频偏置电路,并具有调谐特性,通常用品 质因素来表征:
23
1.5 片状元件及对电路板的考虑 便于安装
1.5.1 片状电阻
几何形状
尺寸代码
长( ),㏕
宽(w),㏕
接触片
标称值 陶瓷体
0402
40
20
220R
0603
60
30
0805
80
50
W
1206
120
60
1218
120
180
1.5.2 片状电容
Ka 波段 毫米波 亚毫米波
26.5~40GHz 1.13~0.75cm 40~300GHz 7.5~1mm 300~3000GHz 1~0.1mm
VHF/UHF就是典型的电视工作波段,其波长与电子系统的
实际尺寸相当,在有关的电子线路中开始考虑电流和电压信号
波的性质。RF范围:VHF—S波段。MW范围:C波段以上。
• 在第2章“传输线分析”中将讨论微带线的阻抗特性,其定量 求解过程在第3章“Smith”圆图中介绍。
• 第4章研究将复杂电路简化为较简单的组元能力,该组元的 输入-输出是 通过两端口网络描述。
• 在第5章“滤波器设计”中研究特定的阻抗对频率响应的一般 开发策略,简述以分立元件和分布元件为基础的滤波器理论。
频器件的原理和方法。
/
3
目录
1、 引言 2、 传输线分析 3、 Smith圆图 4、 单端口网络和多端口网络 5、 射频滤波器设计 6、 有源射频元件 7、 有源射频电路器件模型 8、 匹配网络和偏置网络 9、 射频晶体管放大器设计 10、振荡器和混频器
4
第1章 引 言
3~30MHz 100~10m
VHF(甚高频) 30~300MHz 10~1m
Kμ 波段 K 波段
12.5~18GHz 2.4~1.67cm 18~26.5GHz 1.67~1.13cm
UHF(特高频) 300~3000MHz 100~10cm
SHF(超高频) 3~30GHz
10~1cm
EHF(极高频) 30~300GHz 1~0.1cm
10f6,H1z07
108 109
2
1.8 半径 a=1mm铜线归一化
1.6 AC电流密度的频率特性
1.4
1.2 1kHz
1
0.8 10kHz
0.6
100MHz
0.4 100kHz
1GHz
0.2
1MHz 10MHz
00 0.1 0.2 0.3 0.4r,0.5m0m.6 0.7 0.8 0.9 1
17
在美国线规中,大约每6个线规,其导线直径翻倍。 AWG50:d=1mil, AWG44:d=2mil,AWG38:d=4mil,······ 其中:1mil=2.54×10-5m=2.54×10-2mm
1.4.1 高频电阻
在RF和MW电路中应用的主要是薄膜片状电阻,(P22) 其等效电路:
模拟电荷分离效应Ca
• 第8章将深入研究“匹配网络和偏置网络”的实现。 • 第9章介绍“射频晶体管放大器设计”中有关增益、线性度、
噪声和稳定度等指标。 • 第10章讨论“振荡器和混频器”设计的基本原理。
9
1.2 量纲和单位
为了理解频率上限,在自由空间,向正 z 方向传播的平面
电磁波为:
V/m 是x方向的电场矢量
A/m 是y方向的磁场矢量
输入匹配网络
为保证最佳的功率传输和消除由反射引起的性能变坏,输入阻抗必须与
输出阻抗相匹配,关键元件是微带线。输入和输出的偏置网络是通过两个
RF阻塞网络将高频信号与DC偏置分离,关键元件是射频线圈。
7
功率放大器印刷电路板布局
12.7mm
了解、分析和最终制造这种PA电路,要涉及许多关键的RF课题。 8
低通滤波器
模-数变换器
接收功率放大器
混合信号电路
模拟信号电路
6
移动电话2GHz功率放大器第一级简化电路
100pF
RF阻塞网络
100pF
VB 8.2pF
VC 8.2pF
射频线圈 RFC
RFC
至
微带线
CB 第
RF 输入
CB
隔直 电容
静态电阻 C1
R
C3
C4
C2 BFG425W 级间匹配网络
隔直 电容
二 级
电容的阻抗:
其中: 损耗角的正切 所以:
是介质的电导率,现在习惯上引入串联
C
L
寄生引 线电感
Rs Re
引线导体
损耗电阻 介质损耗电阻
高频电容的等效电路
最后考虑寄生引线电感和引线导体损耗,其等效电路如图所示。 20
例1.4 求47pF电容器的高频阻抗,其电介质由串联损耗角正切 为10-4的氧化铝组成,引线长1.25cmAWG26铜线。 解: 与例1.3相似,引线电感:
别? 被应用的“新”电路理论是什么? 这些理论是如何应用于高频模拟电路实际设计的?
5
一般射频系统方框图 天线
语音 信号 经过 抽样 数 量化 字 编码 电 处理 路 或计 算机 信号
DAC
混频器
切换开关
PA
数-模变换器
OSC 发射功率放大器
本地振荡器
ADC
LPF
PA
将信号 以电磁 波的形 式向自 由空间 发射。
回顾由低频到高频电路的演变过程,并从物理的角度引出 和揭示采用新技术去设计、优化此类电路的必要性。
1.1 射频设计的重要性
本书的主要目的是提供模拟电路设计的理论和实例,该电 路的工作频率可延伸到射频和微波波段,在该波段普通电路的 分析方法是不适用的,由此引出以下问题:
普通电路分析方法适用的上限频率是多少? 什么特性使得电子元件的高频性能和低频性能有如此大的差
线圈长度: =50mil=1.27mm 邻匝线距:d= /N≈3.6×10-4m
根据空气芯螺旋管电感公式:
105
实际电感
104
理想电感
103
Z ,Ω
102
由1.14式,平板间距等于匝距,
101 108
面积 A=2a (=2πrN为导线的长度),
109
1010
1011
f ,Hz
所以等效电容:
若忽略趋肤效应,则等效电阻:
Cd Cd
L 串联电阻Rs
Rd
Rd
Cs
寄生旁路电容
高频电感等效电路
例1.5 RFC由AWG36铜线在0.1英寸空气芯上 绕3.5圈,假定线圈长度是0.05英寸,求其射 频阻抗响应。 解:查表A.4:AWG36的 a = 2.5mil=63.5μ m
线圈半径:r = 50mil=1.27mm(1英寸=1000㏕) 22
片状电容
带状引线 电路板引线
双联电容
四联电容
1.5.3 片状电感
最通用的表面安装电感仍采用线绕线圈, 对厚度受到严格限制的电路采用扁平线圈。 端线
跳线
端线
24
第1章 小 结
本章讨论了低频系统到高频系统的演化过程,在 高频应用时电磁波的特性开始取代基尔霍夫电压电流 定律而占主导地位。 重要参量: 趋肤效应是由电磁波的波动性引起的:
1.2 一无耗同轴线在960MHz时, 电磁场的波长为20cm, 求绝 缘材料的相对介电系数.
1.3 求下面LC串联和并联电路阻抗幅值的频率响应.
L=10nH C=10pF
L=10nH C=10pF
R L=10nH C=1pF
1.4 求上面RLC串并联电路的谐振频率.
1.5 在一高频电路中, 电阻的引线是由AWG14总长度为5cm的 直铝线制成, (a) 计算DC电阻; (b) 求工作频率为100MHz, 1GHz和10GHz时的AC电阻和电感. 26
圆柱形导线呈现的射频特性:
这些导线连同对应的R,C和L形成的等效电路与 理想特性明显不同。制造商总是试图将其尺寸做得尽 可能小,当波长和分立元件的尺寸可比拟时,基本电 路分析法不再适用。
25
习题一
1.1 计算在FR4印刷电路板中的相速度和波长, 电路板的相对 介电系数是4.6, 工作频率为1.92GHz.
由1.10和1.11式(P15),
103
102 理想电阻
101
100 电容效应
电感效应
Z ,Ω
10-1
10-2 10-3
谐振点(20GHz)
106 107 108 109 1010 1011 1012
f ,Hz
19
1.4.2 高频电容
在初级电路中用平板表面积与平板间距比定义电容: 理想情况下平板间没有电流流动,高频时电介质有损耗,所以
2a 高电流密度 低电流密度
电流方向
Jz /Jz0
-a
ar
Jz /Jz0
δ,mm
1
0.9 0.8 0.7
ห้องสมุดไป่ตู้
σCu=64.516×106S/m Al σAl=40.0×106S/m
0.6 0.5
AuσAu=48.544×106S/m
0.4
0.3
0.2 Cu
铜、铝、金的趋肤厚 度与频率的关系曲线
0.1