2013年最新华师大版八年级上册数学期末检测题(含详细解答)
华师大版八年级上册数学期末测试卷及含答案(考试直接用)

华师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=100,S3=36,则S2=()A.136B.64C.50D.812、已知上海到美国洛杉矶的海底电缆共有15个接点.某次从上海发出一个信息时,某个接点发生故障,为了尽快断定故障发生点,排除故障,至少需要检查的接点个数是()A.3B.4C.5D.63、下列运算正确的是()A.a 3•a 2=a 6B.2a(3a﹣1)=6a 3﹣1C.(3a 2)2=6a4 D.2a+3a=5a4、若a为非负实数,则关于的说法正确的是()A. 表示数a的平方根B. 比a小C. 一定是无理数 D.在数轴上一定能找到表示数的点5、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.AD=BC,BD=ACB.AD=BC,∠BAD=∠ABCC.BD=AC,∠DBA=∠CAB D.AD=BC,∠D=∠C6、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。
将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF。
下列结论:①△ ABG≌△AFG;②BG=GC;③AG∥CF;④S=。
其中正确结论的个数是△FGC()个A.1B.2C.3D.47、在△ABC中,AB=AC=5,BC=6,M是BC的中点,MN⊥AC于点N。
则MN=()A. B. C.6 D.118、如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为上一点(点P不与点B,C重合),连结AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,的值始终等于.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错9、已知直角三角形三边之比为1:1:,则此三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.等腰直角三角形10、以下列各组数为边长能构成直角三角形的是( )A.1,1,B.2,3,4C.4,5,6D.6,8,1111、如图,在中,D是BC边上的中点,,,,则的中线AD的长是()A. B. C. D.512、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.abB.(a+b)2C.(a﹣b)2D.a 2﹣b 213、如图所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于()A.78°B.90°C.88°D.92°14、如图,正方形的边长为,,,连接,则线段的长为()A. B. C. D.15、如下图,点是的中点,,,平分,下列结论:①②③④四个结论中成立的是()A.①②④B.①②③C.②③④D.①③④二、填空题(共10题,共计30分)16、如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件________,使和全等.17、把多项式3m2-6mn+3n2分解因式的结果是________18、定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+ m=0的两实数根,则b*b﹣a*a的值为________.19、计算:________20、如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A 点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.21、计算:-(-)=________.22、如图,AB=AC,∠BAC=100°,若MP,NQ分别垂直平分AB,AC,则∠PAQ的度数为________.23、 ________3.(选填“>”、“<”或“=”)24、已知矩形ABCD中,AB=4,BC=7.∠BAD的平分线AE交BC于E点,EF⊥DE 交AB于F点,则EF的长为________.25、分解因式:x(x﹣2)+1=________.三、解答题(共5题,共计25分)26、计算:|﹣1|﹣(﹣1)0+ ÷+(﹣)﹣2+3tan30°.27、在四边形ABCD中,对角线AC与BD交于点O,△ABO≌△CDO.(1)求证:四边形ABCD为平行四边形;(2)若∠ABO=∠DCO,求证:四边形ABCD为矩形.28、实数a,b在数轴上的位置如图所示,则化简|a+b|+29、如图,D是△ABC的边AB上一点, DF交AC于点E, DE=FE,FC∥AB,求证:AD=CF.30、如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、A3、D5、D6、C7、A8、A9、D10、A11、B12、C13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
2013新华师大版八年级数学(上)期末测试卷

南安市初二(上)数学试题期末教学质量抽查一、选择题(每小题3分,共21分).1.下列各数中是无理数的是( ).A .0.72B .5C .9D .312.下列运算正确的是( ).A .333()ab a b =B .22x x x ⋅=C . 538x x x +=D .623a a a ÷=3.下列,命题是假命题的是( )A .有一个内角等于60°的等腰三角形是等边三角形B .三边满足222a +b =c 的三角形是直角三角形C .线段垂直平分线上的点到这条线段两个端点的距离相等D .到角的两边距离相等的点,在这个角的平分线上4.以下列各组数为一个三角形的三边长,能构成直角三角形的是( ).A .2,3,4B .4,6,5C . 7,25,24D .14,13,125如图,OAB ∆绕点O 逆时针...旋转70°得到OCD ∆,若∠AOB=30°,则∠AOD 的度数是( ).A . 30B . 40C . 50D . 606.把过期的药品随意丢弃,会造成土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确...的家庭达到( )A. B. C. D.7.不论为什么实数,代数式的值( )A.总不小于2B.总不小于7C.可为任何实数D.可能为负数二、填空题(每小题4分,共40分).8.比较大小:323.(填“>”、“<”或“=”) BAO C D9. 8-的立方根是 .10.分解因式:55a b += .11.计算:3(2)a = .12.计算:2(84)(2)x x x -÷= .13.如果9Mx x 2+-是一个完全平方式,则M 的值是14、计算:20122013818⎪⎭⎫ ⎝⎛-⨯= 15当x 2+kx+25是一个完全平方式, 则k 的值是16.已知5a b +=,2ab =,则33a b ab ++= ;22a b += .17.已知△ABC 是腰长为1的等腰直角三角形,以△ABC 的斜边AC 为直角边,画第二个...等腰直角三角形ACD ,再以△ACD 的斜边AD 为直角边,画第三个...等腰直角三角形ADE ,…,依此类推,则△ABC 的面积..为: ,第8个等腰直角三角形的面积..是 . 三、解答题(共89分).18.(9分)计算:2316|3|27(2)+--+-.19.(9分)先化简,再求值: ()()()22223a a a +-++ , 其中1a =-.20.(9分)因式分解(第(1)题4分,第(2)题5分):(1)228x -; (2)3244x x x ++.21.尺规作图:已知A 、B 、C 三点,求作一点P ,使P 点到A 、B 、C 的距离相等(不写作法,保留作图痕迹)(8分)ACB22(13分)如图,在矩形ABCD 中,6,8AB cm BC cm ==.(1)求AC 的长;(2)设M 为AC 上一动点,①当M 运动至何处时,线段DM 的长度最短,试在图1中画出符合要求的线段DM ,并求此时DM 的长;②如图2,当点M 运动至AC 中点处时,另一动点N 从点C 出发,以每秒1cm 的速度沿CB 向点B 运动,设点N 的运动时间为t 秒. 求当t 为何值时,将矩形ABCD 沿直线MN 折叠,可使得点C 恰与点A 重合?23.(9分) 如图,某校有一块长为(a+b )米,宽为b 米的长方形场地(即空白的部分),学校计划把它的各边长都扩大b 米,作为健身场地.(1)用含a 、b 的代数式表示新长方形比原长方形扩大的面积(即阴影部分面积);(2)求出当10a =米,3b =米时的阴影部分面积.24如图,在Rt △ABC 中,∠C=90°,AC=8㎝,BC=6㎝,M 在AC 上且AM=6㎝,过点A(与BC 在AC 同侧)作射线AN ⊥AC,若动点P 从点A 出发,沿射线AN 匀速运动,运动速度为1厘米/秒,设点P 运动时间为t 秒.(1)经过几秒时,Rt △AMP 是等腰三角形?(2)又经过几秒时,PM ⊥AB?(3)连接BM, 在(2)的条件下,求四边形AMBP 的面积.N P B A CM N P B A C M 24题图 备用图。
华师大版八年级上册数学期末测试卷及含答案

华师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.a+a=a 2B.a 2·a 3=a 6C.(-a 3) 2=a 5D.a 7÷a 5=a 22、如图,已知,若,,则的度数为()A. B. C. D.3、下列运算正确的是()A.3x 2+4x 2=7x 4B.(﹣x)﹣9÷(﹣x)﹣3=x ﹣6C.x 2﹣x2=1 D.﹣x(x 2﹣x+1)=﹣x 3﹣x 2﹣x4、下列计算结果正确的是()A.﹣2x 2y 3•x 3y 3=﹣2x 6y 9B.12x 6y 4÷2x 3y 3=6x 3yC.3x 3y 2﹣x 2y 3=xyD.(﹣2a﹣3)(2a﹣3)=4a 2﹣95、已知a,b都是正整数,且a> ,b< ,则a-b的最小值是()A.1B.2C.3D.46、关于,下列说法错误的是()A.它是一个无理数B.它可以用数轴上的一个点来表示C.若,则 D.它可以表示体积为6的正方形的棱长7、如图,在中,是的中点,作于点,连接,下列结论:①;②;③;④;其中正确的个数是()A.1B.2C.3D.48、如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80°B.70°C.60°D.45°9、在中,、、的对应边分别是a、b、c,下列条件中不能说明是直角三角形的是()A. B. C.D.10、有理数、在数轴上的对应点的位置如图所示,下列各式正确的是()A.-a<0B.b<0C.a>bD.|a|<|b|11、某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.4012、计算的结果是()A. B. C. D.13、下列计算正确的是()A.a 2+2a 2=3a 4B.(-2x 2) 3=-8x 6C.(m-n) 2=m 2-n 2D.b 10÷b 2=b 514、数5的算术平方根为()A. B.25 C.±25 D.±15、如图,等腰△ABC的周长为17,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.11B.12C.13D.16二、填空题(共10题,共计30分)16、从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为________17、如图,已知△AOC≌△BOC,∠ACB=92°,∠B=98°,则∠1=________度。
华师大版八年级数学上册期末测试题含答案

华师大版八年级数学上册期末测试题含答案一、选择题(每题3分,共30分)1.实数327,0,-π,16,13,0.101 001 000 1…(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个2.下面各式中,计算正确的是()A.2x+3y=5xy B.x6÷x2=x3C.x2·x3=x5D.(-x3)3=x63.下列长度的四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,2,34.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y).A.3个B.2个C.1个D.0个5.估计13+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.下列命题中,正确的是()A.如果|a|=|b|,那么a=b B.一个角的补角一定大于这个角C.直角三角形的两个锐角互余D.一个角的余角一定小于这个角7.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是() A.BD=CD B.AB=AC C.∠B=∠C D.AD平分∠BAC8.如图所示,所提供的信息正确的是()A.七年级学生最多B.九年级的男生人数是女生人数的2倍C.九年级女生比男生多D.八年级比九年级的学生多9.如图,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至点G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是()A.8+2a B.8+a C.6+a D.6+2a10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP,并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△DAB=CD:DB=AC:AB.A.1 B.2 C.3 D.4二、填空题(每题3分,共30分)11.38-|-2|=________.12.某校对1 200名女生的身高进行测量,身高在1.58 m~1.63 m这一小组的频率为0.25,则该组的人数为________.13.因式分解:x2y4-x4y2=______________.14.已知(a-2)2+|b-8|=0,则ab的平方根为________.15.已知(a-b)m=3,(b-a)n=2,则(a-b)3m-2n=________.16.将一副三角尺如图所示叠放在一起,若AC=14 cm,则阴影部分的面积是________ cm2.17.若x<y,x2+y2=3,xy=1,则x-y=________.18.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B 恰好落在斜边AC上,点B与点B′重合,AE为折痕,则EB′=________.19.四个全等的直角三角形按如图所示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH,已知AM为Rt△ABM较长直角边,AM2=8EF2,则正方形ABCD的面积为________.20.阅读下面材料.在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是_________________________________________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分) 21.计算或因式分解:(1)16-|-3|+(-4)×2-1; (2)a 3-a 2b +14ab 2; (3)(x +1)2+x (x -2)-(x+1)(x -1).22.先化简,再求值:(x +y )(x -y )+(4xy 3-8x 2y 2)÷4xy ,其中x =1,y =12.23.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,点C 在DE 上.求证:(1)△ABD ≌△ACE ; (2)∠BDA =∠ADE .24.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如图所示不完整的条形统计图和扇形统计图.请结合以上信息解答下列问题:(1)m=________;(2)请补全上面的条形统计图;(3)在图②中,“乒乓球”所对应扇形的圆心角的度数为________.25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE 重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)26.如图,∠ABC=90°,点D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B,C重合),连结AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.答案一、1.B 2.C 3.B 4.C 5.C 6.C 7.B 8.B 9.D10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断. 二、11.0 12.30013.x 2y 2(y +x )(y -x ) 14.±1215.274 点拨:(a -b )3m -2n =(a -b )3m ÷(a -b )2n =[(a -b )m ]3÷[(a -b )n ]2=[(a -b )m ]3÷[(b -a )n ]2=33÷22=274. 16.9817.-1 点拨:(x -y )2=x 2+y 2-2xy =3-2×1=1,∵x <y ,∴x -y <0,∴x -y =-1=-1.18.32 点拨:在Rt △ABC 中,∠B =90°,AB =3,BC =4,∴AC =5. 由折叠可得,B ′E =BE ,AB ′=AB =3,∠AB ′E =∠B =90°.设BE =B ′E =x ,则EC =4-x ,B ′C =5-3=2,在Rt △B ′EC 中,由勾股定理得EC 2=B ′C 2+B ′E 2,即(4-x )2=22+x 2,解得x =32.19.9S 点拨:设AM =2a ,BM =b .则正方形ABCD 的面积=4a 2+b 2,由题意可知EF =(2a -b )-2(a -b )=2a -b -2a +2b =b .∵AM 2=8EF 2,∴4a 2=8b 2. ∵正方形EFGH 的面积为S ,∴b 2=S ,∴正方形ABCD 的面积=4a 2+b 2=9b 2=9S .20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线 三、21.解:(1)原式=4-3-2=-1. (2)原式=a ⎝ ⎛⎭⎪⎫a 2-ab +14b 2=a ⎝ ⎛⎭⎪⎫a -12b 2.(3)原式=(x +1)(x +1-x +1)+x (x -2)=2(x +1)+x (x -2)=x 2-2x +2x +2=x 2+2.22.解:原式=x 2-y 2+y 2-2xy =x 2-2xy ,当x =1,y =12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S.A.S.).(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)150(2)补全条形统计图如图.(3)36°25.解:(1) 20°(2)由题易知AD=BD.设AD=x,则BD=x,DC=8-x.在Rt△BCD中,DC2+BC2=BD2,即(8-x)2+62=x2,解得x=254.∴AD的长为254.(3)由题意知:AC2+BC2=m2,12AC·BC=m+1,∴(AC+BC)2-2AC·BC=m2,∴(AC+BC)2=m2+2AC·BC=m 2+4(m +1)=(m +2)2, ∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2. 26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点, ∴DF ⊥AE ,∠ADF =∠EDF =45°, ∠DAF =∠AED =45°, ∴DF =AF =EF .∵∠ABC =90°,∴∠BAC +∠DCF =90°. ∵MF ⊥AE ,∴∠AMF +∠BAC =90°. ∴∠DCF =∠AMF . 在△DFC 和△AFM 中,⎩⎨⎧∠DCF =∠AMF ,∠CFD =∠MF A =90°,DF =AF ,∴△DFC ≌△AFM (A.A.S.), ∴CF =MF ,∴∠FMC =∠FCM .(2)解:AD ⊥MC .理由如下:由(1)知,∠MFC =90°,FD =EF ,FM =FC , ∴∠FDE =∠FMC =45°,∴DE ∥CM . 又∵AD ⊥DE ,∴AD ⊥MC . 27.解:(1)25;115;小(2)当DC =2时,△ABD ≌△DCE .理由如下:∵AB =AC ,∴∠C =∠B =40°, ∴∠DEC +∠EDC =140°. 又∵∠ADE =40°, ∴∠ADB +∠EDC =140°, ∴∠ADB =∠DEC . 又∵AB =DC =2,∴△ABD ≌△DCE (A.A.S.).(3)可以.∠BDA 的度数为110°或80°.。
华东师大版八年级数学上册期末测试卷(及参考答案)

华东师大版八年级数学上册期末测试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.下列图形中,是轴对称图形的是()A .B .C .D .8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD 的中点,若AB=6cm,BC=8cm,则AEF的周长=______cm.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、B8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、-153、如果两个角互为对顶角,那么这两个角相等4、()()2a b a b ++.5、96、6三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x =-时,原式=1.3、8k ≥-且0k ≠.4、(1)y =x +5;(2)272;(3)x >-3.5、(1)2;(2)60︒ ;(3)见详解6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
华师大八年级上数学期末测试题卷含答案(2)

第10题 华师8年级数学期末测试题(时间90分钟,满分100分)一、选择题(每题3分,共30分) 1.4的平方根是( ) A. 8B. 2C. ±2D. ±22.下列运算正确的是( )A.1243x x x =∙B.1243)(x x =C.326x x x =÷D.743x x x =+3.(-3x +1)(-2x) 2等于( )A .-6x 3-2x 2B .6x 3-2x 2C .6x 3+2x 2D .-12x 3+4x 24.下列说法:①有理数和数轴上点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根,其中正确的有( ) A .1个 B .2个C .3个D .4个5.若a 15=-,则代数式(5a -4)(6a -7)-(3a -2)(10a -8)的值为( )A .15B .22C .-15D .96.在平行四边形ABCD 中,∠B-∠A=30°,则∠A 、∠B 、∠C 、∠D 的度数分别是( ) A. 95°,85°,95°,85° B. 85°,95°,85°, 95° C. 105°,75°,105°,75° D. 75°,105°,75°,105°7.在5×5方格纸中将图①中的图形N 平移后的位置如图②所示,那么下面平移中正确的是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格 8.若2m-4与3m-1是同一个数的平方根,则m 为( )A .-3B .1 C.-1 D.-3或19.直角三角形的一直角边长是12,斜边长是15,则另一直角边是( )A. 8B. 9C. 10D. 1110.如图所示,梯形ABCD 中,AD ∥BC,AB=CD,E 是AD 的中点,利用等腰梯形两腰对称性,BE 与CE 的大小关系( ) A.BE=CE B. BE<CE C. BE>CE D. 无法确定二、填空题(每题3分,共30分)11.在实数-2,31,0,-1.2,2中,无理数是 12.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为13.计算2x 3·(-2xy)(-12xy) 3的结果是14.比较实数的大小:15.若2,5m n a a ==,则m na+等于16.如图所示,直角△AOB 顺时针旋转后与△COD 重合,若∠AOD =127°,则旋转角度是 17.如图所示,矩形ABCD 的长为10,宽为6,点E 、F 将AC 三等分,则△BEF的面积是第14题 第15题 第17题 第18题18.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右下表,此表揭示了nb a )(+(n 为非负整数)展开式的各项系数的规律,例如:1)(0=+b a ,它只有一项,系数为1;b a b a +=+1)(,它有两项,系数分别为1,1;2222)(b ab a b a ++=+,它有三项,系数分别为1,2,1;3223333)(b ab b a a b a +++=+,它有四项,系数分别为1,3,3,1;……根据以上规律,4)(b a +展开式共有五项,系数分别为19.如图所示,有Rt △ABC 的三边向外作正方形,若最大正方形的边长为8cm ,则正方形M 与正方形N 的面积之和为 20.如图,菱形ABCD 的对角线的长分别是20和17,P 是对角线AC 上任意一点(点P 不与A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥AD 交AD 于F ,则阴影部分的面积是三、解答题(本题共66分)19.(本题每小题5分,满分10分)计算:① 441023443(2)2(2)25()x x x x x -+-+②432211(2)()22x x x x +-÷- 20.(本题每小题5分,满分10分)把下列多项式分解因式:①m n m n 2222-+- ②(1)(3)1x x --+21.(本题7分)先化简:(2x ―1)2―(3x+1)(3x ―1)+5x(x ―1),再选取一个你喜欢的数代替x 求值. 22.(本题7分)画出四边形ABCD 关于点O 的中心对称图形.OBA23.(本题8分)如图所示,已知平行四边形ABCD ,试用两种方法,将平行四边形ABCD 分成面积相等的四部分(要求用文字简述你所设计的两种方法,并在所给的两个平行四边形中正确画图).24.(本题满分12分)如图所示,图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a 和b .斜边长为c .图 (2)是以c 为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形. (2)用这个图形证明勾股定理.(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图.(无需证明)25.(本题12分)已知:如图AB ∥CD ,AD ∥CE,且∠ACB=90°,E 为AB 的中点. ①试说明DE 与AC 互相平分;②探究:当四边形AECD 是正方形时,求∠B 的度数? ③探究:当四边形ABCD 是等腰梯形,求∠B 的度数?EDCBAA B C D(1) A B C D (2)(1)参考答案 一、选择题1.C2.B3.D4.A5.A6.D7.C8.D9.B 10.A 二、填空题11. 2 12. 243 13.12x 6y 414.> 15. 10 16. 37° 17. 10 18. 1,4,6,4,1 19. 64 20. 85 三、解答题19. ① 1610x ② 2241x x ---20.①m n m n 2222-+-()()=-+-m n m n 2222()()()=+-+-m n m n m n 2②222(1)(3)143144(2)x x x x x x x --+=-++=-+=- 21.原式=―9x+2 22.解:如图所示BA23.有多种作法.如图,作对角线AC 、BD ,将平行四边形分成面积相等的四个三角形;如图(2),取AB 、CD 的中点M 、N .24.(1)是直角梯形.(如图(1))(2)∵()()()21122S a b a b a b =++=+梯形, 221112222S ab c ab c =⨯+=+梯形,∴()212a b +=212ab c +,整理,得222a bc +=.(3)以下两图都可以.(1) (2)(3) (4)25.证明:①连结DE,∵AB∥CD,AD∥CE ∴四边形AECD是平行四边形又∵∠ACB=90°,E是AB的中点∴CE=AE=12AB∴四边形AECD是菱形∴AC与DE互相平分②当四边形AECD是正方形,∴CE⊥AB由①知CE=EB ∴∠B=45°③当四边形ABCD是等腰梯形,∴AD=BC由①知CE=BE,CE=AD∴CE=CB=BC∴∠B=60°。
最新版华师大版2013-2014学年八年级上数学期末测试卷8

学校 班级 姓名 坐号 成绩 ……………………密……………………封……………………装……………………订……………………线……………………华师2013—2014版八年级上学期期末检测(八)考生注意:1、本考试试卷共三道大题,满分120分。
考试时量120分钟。
2、本试卷的作答一律答在答题卡上,选择题用2B 铅笔按吐血要求将你认为正确的选项涂黑,非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框,直接在试题卷上作答无效。
一、选择题:1、1平方根是( ) A .1B .-1C .0D . ±12、下列计算中,不正确...的是( ) A 、236()a a = B 、2222a a a += C 、624a a a ÷= D 、5525a a a =3、下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③的算术平方根是;④的算术平方根是;⑤算术平方根不可能是负数.其中,不正确的有( ) A.2个 B.3个 C.4个 D.5个4、下列各式,可以分解因式的是( )。
A .241a +B .221a a --C .22a b -- D .33a - 5、化简26(3)a a ÷-的结果是( )A .2aB .3aC .2a -D .3a - 6、如图,矩形的边长为2,长为1,在数轴上,以原点为圆心,对角线的长为半径画弧,交正半轴于一点,则这个点表示的实数是( ) A.2.5 B.C.D.7、 如图,在Rt ABC 中,090ABC ∠=,10AC cm =,则AC 上的中线BD 的长是( ).A .10B .5C .4D .38、 如图,△ABC ≌△'''A B C ,25C ∠=︒,045B ∠=,'A ∠=( )A 、70︒B 、90︒C 、100︒D 、110︒ 9、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E . 已知PE=3,则点P 到AB 的距离是( ) A .3 B .4 C .5 D .610、如图,△ACD ≌△ECB ,A 、C 、B 在一条直线上,且A 和E 是一对对应顶点8_ C_ B_ A•7D C BA如果130BCE ∠=︒,那么将△ACD 围绕C 点顺时针旋转( )与△ECB重合。
华师版八年级数学上册期末测试卷附答案

华师版八年级数学第一学期期末测试卷一、选择题(本题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.9的平方根是( )A .±3B .±13C .3D .-32.下列运算正确的是( )A .x 3·x 4=x 12B .(x 3)4=x 7C .x 8÷x 2=x 6D .(3b 3)2=6b 63.将下列长度的三根木棒首尾顺次相连,不能组成直角三角形的是( )A .8、15、17B .7、24、25C .3、4、5D .2、3、74.∠AOB 的平分线的作图过程如下:(1)如图,在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB 内交于点C ;(3)作射线OC ,OC 就是∠AOB 的平分线.用下面的三角形全等判定方法解释其作图原理,最为恰当的是( )A .边角边B .角边角C .角角边D .边边边5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是( )A .汽车尾气约为建筑扬尘的3倍B .表示建筑扬尘的占7%C .表示煤炭燃烧对应的扇形圆心角度数为126°D .煤炭燃烧的影响最大6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40°B.30°C.70°D.50°7.下列分解因式正确的是()A.-ma-m=-m(a-1)B.a2-1=(a-1)2C.a2-6a+9=(a-3)2D.a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,∠A=40°,BE=DC,CF=BD,则∠EDF的度数为()A.60°B.70°C.80°D.90°9.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A. 3 B. 5 C. 6 D.710.根据等式:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x +1)=x4-1,(x-1)(x4+x3+x2+x+1)=x5-1,…的规律,则可以推算得出22021+22020+22019+…+22+2+1的末位数字是()A.1 B.3 C.5 D.7二、填空题(本题共6小题,每小题4分,共24分)11.在实数-7.5、15、4、3-125、15π、⎝⎛⎭⎪⎫222中,有a个有理数,b个无理数,则ba=________.12.已知x2n=5,则(3x3n)2-4(x2)2n的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应角的平分线相等.其中逆命题是假命题的是________.15.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过O作EF∥BC分别交AB、AC于E、F.若△ABC的周长比△AEF的周长大12 cm,O到AB 的距离为3.5 cm,则△OBC的面积为________cm2.16.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=________.三、解答题(本题共9小题,共86分,解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:(1)49-327+|1-2|+⎝⎛⎭⎪⎫1-432;(2)4(x+1)2-(2x-5)(2x+5);18.(8分)先化简,再求值.(a+b)(a-b)+(4ab3-8a2b2)÷4ab,其中a=2,b=1.19.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点在格点上.(1)在△ABC中,AB的长为________,AC的长为________;(2)在网格中,直接画出所有与△ABC全等的△DBC.20.(8分)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.21.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理并绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了________名学生,a=________%;(2)补全条形统计图;(3)扇形统计图中C级对应的扇形的圆心角为________.22.(10分)如图,一个牧童在小河MN的南4 km的A处牧马,而他正位于他的小屋B的西8 km北7 km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事所走的最短路程是多少?23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).24.(12分)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如,可用图①来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图②完成因式分解:2a2+2ab=2a(________);(2)现有足够多的正方形和长方形卡片(如图③),试在图④的虚线框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2.要求:每两张卡片之间既不重叠,也无空隙,拼成的图中必须保留拼图的痕迹,并利用你所画的图形面积对a2+3ab+2b2进行因式分解:a2+3ab+2b2=______________.25.(14分)线段AB⊥直线l于点B,点D在直线l上,分别以AB,AD为边作等边三角形ABC和等边三角形ADE,直线CE交直线l于点F.(1)当点F在线段BD上时,如图①,求证:DF=CE-CF;(2)当点F在线段BD的延长线上时,如图②;当点F在线段DB的延长线上时,如图③,请分别写出线段DF、CE、CF之间的数量关系,不需要证明;(3)在(1)(2)的条件下,若BD=2BF,EF=6,则CF=________.答案一、1.A 2.C 3.D 4.D 5.C6.A点拨:∵AD∥BC,∴∠C=∠1=70°.∵AB=AC,∴∠B=∠C=70°,∴∠BAC=180°-∠B-∠C=180°-70°-70°=40°.7.C8.B9.B10.B二、11.212.1 02513.1014.①③④15.21点拨:∵∠ABC与∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC.∵△ABC的周长比△AEF的周长大12 cm,∴(AB+BC+AC)-(AE+EF+AF)=12 cm,∴BC=12 cm.∵O到AB的距离为3.5 cm,且O在∠ABC的平分线上,∴O到BC的距离也为3.5 cm,∴△OBC的面积是12×12×3.5=21(cm2).16.2.5三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=4(x2+2x+1)-4x2+25=4x2+8x+4-4x2+25=8x+29. 18.解:(a+b)(a-b)+(4ab3-8a2b2)÷4ab=a2-b2+b2-2ab=a2-2ab.当a=2,b=1时,原式=22-2×2×1=0.19.解:(1)5;2 5(2)如图,△D1BC、△D2BC、△D3BC即为所求.20.(1)证明:在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD=90°,BE=BD,∴△ABE≌△CBD(S.A.S.).(2)解:∵AB=CB,∠ABC=90°,∴∠BAC=∠ACB=45°.∵∠CAE=30°,∴∠AEB=∠ACB+∠CAE=45°+30°=75°.由(1)知△ABE≌△CBD,∴∠BDC=∠AEB=75°.21.解:(1)50;24(2)C级的人数为50-12-24-4=10.补全条形统计图如图所示.(3)72°22.解:如图,作点A关于MN的对称点A′,连结A′B交MN于点P,连结AP,则AP+PB的长度就是最短路程.在Rt△A′DB中,由勾股定理,得A′B=DA′2+DB2=(7+4+4)2+82=17(km).答:他要完成这件事所走的最短路程是17 km.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠BCE.在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)a+b(2)如图所示.(答案不唯一)(a+b)(a+2b)25.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ACB=∠ABC=60°,∴∠BAD=∠CAE.在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(S.A.S.),∴BD=CE,∠ABD=∠ACE.∵AB⊥直线l,∴∠ABD=90°,∴∠ACE=90°,∠CBF=30°.∵点E,C,F在同一条直线上,∠ACB=60°,∴∠BCF=30°,∴∠CBF=∠BCF,∴BF=CF.∵BD=DF+BF,∴BD=DF+CF=CE,即DF=CE-CF.(2)解:题图②中,DF=CF-CE,题图③中,DF=CE+CF.(3)2或6八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1C .x -1D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( ) A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D ∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A ∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 根据题意可得12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16=(2 016×2 022)2+16 =4 076 352+4=4 076 356.(2)2n (2n +2)(2n +4)(2n +6)+16 =2n (2n +6)+4 =4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度. (上述等量关系,任选一个就可以) (3)选冰冰的方程:38-29x +2x =1, 去分母,得36+18=9x , 解得x =6,经检验,x =6是原分式方程的解. 答:小红步行的速度是6 km/h ; 选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ), 解得y =13,经检验,y =13是原分式方程的解,∴小红步行的速度是2÷13=6(km/h). 答:小红步行的速度是6 km/h. (对应(2)中所选方程解答问题即可) 26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm , ∴BP =5 cm , ∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ . ∴∠C =∠BPQ .易知∠C +∠APC =90°, ∴∠APC +∠BPQ =90°, ∴∠CPQ =90°, ∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ , 则AC =BP ,AP =BQ , ∴5=7-2t ,2t =xt , 解得x =2,t =1; ②若△ACP ≌△BQP , 则AC =BQ ,AP =BP , ∴5=xt ,2t =7-2t , 解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年最新华师大版八年级上册数学期末检测题(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的( )A.1倍B.2倍C.3倍D.4倍2.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为错误!未找到引用源。
,小正方形的面积为错误!未找到引用源。
,若用错误!未找到引用源。
表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
3.16的算术平方根和25的平方根的和是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.不论错误!未找到引用源。
为什么实数,代数式错误!未找到引用源。
的值( )A.总不小于2B.总不小于7C.可为任何实数D.可能为负数5.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③错误!未找到引用源。
的算术平方根是错误!未找到引用源。
;④错误!未找到引用源。
的算术平方根是错误!未找到引用源。
;⑤算术平方根不可能是负数.其中,不正确的有( )A.2个B.3个C.4个D.5个6.在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证△ABC ≌△A B C '''则补充的这个条件是( )A .BC =BC '' B .∠A =∠A 'C .AC =A C ''D .∠C =∠C '7.直角三角形中,两条直角边边长分别为12和5,则斜边长是( )A.10B.11C.12D.138.如图,矩形错误!未找到引用源。
的边错误!未找到引用源。
长为2,错误!未找到引用源。
长为1,错误!未找到引用源。
在数轴上,以原点错误!未找到引用源。
为圆心,对角线错误!未找到引用源。
的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A.2.5B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
9.要测量河两岸相对的两点错误!未找到引用源。
的距离,先在错误!未找到引用源。
的垂线错误!未找到引用源。
上取两点错误!未找到引用源。
,使错误!未找到引用源。
,再作出错误!未找到引用源。
的垂线错误!未找到引用源。
,使错误!未找到引用源。
在一条直线上(如图所示),可以说明△错误!未找到引用源。
≌△错误!未找到引用源。
,得错误!未找到引用源。
,因此测得错误!未找到引用源。
第9题图的长就是错误!未找到引用源。
的长,判定△错误!未找到引用源。
≌△错误!未找到引用源。
最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角10.某校公布了反映该校各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人.甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是( )A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙11.如果一个三角形的三边长错误!未找到引用源。
满足错误!未找到引用源。
,则这个三角形一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形12.把过期的药品随意丢弃,会造成土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图,其中对过期药品处理不正确...的家庭达到( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
二、填空题(每小题3分,共24分)13.如果一个正数的平方根是错误!未找到引用源。
与错误!未找到引用源。
,则这个正数是______.14.分解因式:错误!未找到引用源。
________________.15.已知0113=-++b a ,则错误!未找到引用源。
________.16.在△错误!未找到引用源。
中,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则△错误!未找到引用源。
是_________.17.如果△ABC 和△DEF 这两个三角形全等,点C 和点E ,点B 和点D分别是对应点,则另一组对应点是 ,对应边是 ,对应角是 ,表示这两个三角形全等的式子是 .18.若一个直角三角形的一条直角边长是错误!未找到引用源。
,另一条直角边长比斜边长短错误!未找到引用源。
,则该直角三角形的斜边长为 ________.19.在△错误!未找到引用源。
中,错误!未找到引用源。
cm ,错误!未找到引用源。
cm ,错误!未找到引用源。
⊥错误!未找到引用源。
于点错误!未找到引用源。
,则错误!未找到引用源。
_______.20.学校团委会为了举办庆祝活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有 人.第10题 第12题第20题图三、解答题(共60分)21.(6分)计算:错误!未找到引用源。
.22.(6分)已知错误!未找到引用源。
,求错误!未找到引用源。
的值.23.(7分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
.因此错误!未找到引用源。
都是“神秘数”.(1)错误!未找到引用源。
和错误!未找到引用源。
这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为错误!未找到引用源。
和错误!未找到引用源。
(其中错误!未找到引用源。
取非负整数),由这两个连续偶数构成的“神秘数”是错误!未找到引用源。
的倍数吗?为什么?24.(8分)观察下列勾股数:错误!未找到引用源。
根据你发现的规律,请写出:(1)当错误!未找到引用源。
时,求错误!未找到引用源。
的值;(2)当错误!未找到引用源。
时,求错误!未找到引用源。
的值;(3)用(2)的结论判断错误!未找到引用源。
是否为一组勾股数,并说明理由.25.(6分)阅读下列解题过程:已知错误!未找到引用源。
为△错误!未找到引用源。
的三边长,且满足错误!未找到引用源。
,试判断△错误!未找到引用源。
的形状.解:因为错误!未找到引用源。
,①所以错误!未找到引用源。
. ②所以错误!未找到引用源。
.③所以△错误!未找到引用源。
是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为 .(2)错误的原因为 .(3)请你将正确的解答过程写下来.26.(6分) 如图,已知△错误!未找到引用源。
≌△错误!未找到引用源。
是对应角.(1)写出相等的线段与相等的角;(2)若EF = 2.1 cm,FH = 1.1 cm,HM = 3.3 cm,求MN和HG的长度.27.(6分)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8 m处,已知旗杆原长16 m,你能求出旗杆在离底部多少米的位置断裂吗?28.(7分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF.29.(8分)某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整.(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有______人达标.(3)若该校学生有错误!未找到引用源。
人,请你估计此次测试中,全校达标的学生有多少人?第28题图第29题图期末检测题参考答案1.B 解析:设原直角三角形的三边长分别是错误!未找到引用源。
,且错误!未找到引用源。
,则扩大后的三角形的斜边长为错误!未找到引用源。
,即斜边长扩大到原来的2倍,故选B.2.C 解析:A.因为正方形图案的边长为7,同时还可用错误!未找到引用源。
来表示,故错误!未找到引用源。
正确; B.因为正方形图案面积从整体看是错误!未找到引用源。
,从组合来看,可以是错误!未找到引用源。
,还可以是错误!未找到引用源。
,所以有错误!未找到引用源。
即错误!未找到引用源。
,错误!未找到引用源。
所以错误!未找到引用源。
,即错误!未找到引用源。
;C.错误!未找到引用源。
,故错误!未找到引用源。
是错误的;D.由B可知错误!未找到引用源。
.故选C.3.C 解析:因为16的算术平方根是4,25的平方根是±5,所以16的算术平方根和25的平方根的和为错误!未找到引用源。
.4.A 解析:错误!未找到引用源。
错误!未找到引用源。
因为错误!未找到引用源。
,所以错误!未找到引用源。
,所以错误!未找到引用源。
.5.C 解析:负数没有算术平方根,故①不正确;0的算术平方根是0,故②不正确;错误!未找到引用源。
可能是负数,如果是负数,则不成立,故③不正确;错误!未找到引用源。
是负数,一个非负数的算术平方根是非负数,故④不正确;⑤正确.6.C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C不满足三角形全等的条件.7.D 解析:由勾股定理,知斜边长错误!未找到引用源。
.8.D 解析:由勾股定理可知,错误!未找到引用源。
,所以这个点表示的实数是错误!未找到引用源。
,故选D.9.B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.10.B 解析:由题图可以得出:八年级共有学生错误!未找到引用源。
.七年级的体育达标率为错误!未找到引用源。
;九年级的体育达标率为错误!未找到引用源。
;八年级的体育达标率为错误!未找到引用源。
.所以九年级的体育达标率最高.故乙、丙的说法是正确的,故选B.11. B 解析:由错误!未找到引用源。
,整理,得错误!未找到引用源。
,即错误!未找到引用源。
,所以错误!未找到引用源。
,符合错误!未找到引用源。
,所以这个三角形一定是直角三角形.12.D 解析:由题图可知,只有封存家中等待处理属于正确的处理方法,所以对过期药品处理不正确的家庭达到错误!未找到引用源。
,故选D.13.49 解析:由一个正数的两个平方根互为相反数,知错误!未找到引用源。
,解得错误!未找到引用源。
,所以这个正数的平方根是错误!未找到引用源。