cns-gko_g排列组合问题解题思
【学习方法指导】解答排列组合问题

【学习方法指导】解答排列组合问题解答排列组合问题:解答排列组合问题解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。
同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。
下面介绍几种常用的解题方法和策略。
一、合理的分类和准确的分步方法来解决有约束的排列组合问题,应该根据元素的性质进行分类,并按照事物的连续过程逐步进行,以确保每一步都是独立的,从而达到分类标准清晰、层次分明、不重复、不遗漏的目的。
二、元素分析与位置分析法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
三、对于非相邻元件的排列,可以将非相邻元件插入排列的元件和两端的间隙之间。
四、总体淘汰法对于含有否定字眼的问题,可以从总体中把不符合要求的除去,此时需注意不能多减,也不能少减。
五、固定顺序问题使用“除法”。
对于某些元素按一定顺序排列的问题,可以将这些元素与其他元素一起排列,然后将总排列数除以这些元素的总排列数。
六、构造模型“隔板法”对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模型来解决问题。
七、“直接排列法”将若干元素排列在前排和后排。
如果没有其他特殊要求,可以统一排处理。
八、表格法有些较复杂的问题可以通过列图表使其直观化。
解决这类问题常用的数学思想是分类讨论、变换和对称。
排列组合是高中数学的重点和难点之一,也是进一步学习概率的基础。
事实上,许多概率问题也可归结为排列组合问题。
这一类问题不仅内容抽象,解法灵活,而且解题过程极易出现“重复”和“遗漏”的错误,这些错误甚至不容易检查出来,所以解题时要注意不断积累经验,总结解题规律,掌握若干技巧,最终达到能够灵活运用。
数学排列组合题的解题思路和方法

数学排列组合题的解题思路和方法数学排列组合题是高中数学中的重要内容之一,也是考试中常出现的题型。
解决这类题目需要掌握一定的思路和方法。
本文将介绍数学排列组合题的解题思路和方法,帮助读者更好地应对这类题目。
一、排列组合的基本概念在开始讨论解题思路和方法之前,我们先来回顾一下排列组合的基本概念。
排列是指从一组元素中选取若干个元素按一定的顺序排列的方式。
排列的公式为P(n, m),表示从n个元素中选取m个元素排列的方式数。
组合是指从一组元素中选取若干个元素不考虑顺序的方式。
组合的公式为C(n, m),表示从n个元素中选取m个元素组合的方式数。
在解决排列组合问题时,我们需要根据题目的要求确定使用排列还是组合的方式,并结合具体情况来计算。
二、解题思路和方法1. 确定题目要求在解决排列组合题时,首先要仔细阅读题目,理解题目的要求。
明确题目要求是使用排列还是组合的方式,以及需要计算的具体数值。
2. 确定元素个数根据题目的描述,确定参与排列组合的元素个数。
通常题目中会给出元素的个数,但也有一些题目需要根据题意进行推断。
3. 确定排列还是组合根据题目的要求,确定是使用排列还是组合的方式。
如果题目要求考虑元素的顺序,则使用排列;如果题目不考虑元素的顺序,则使用组合。
4. 计算排列组合的方式数根据确定的元素个数和使用的排列组合方式,计算出排列组合的方式数。
使用相应的公式,将元素个数代入公式中进行计算。
5. 考虑特殊情况有些排列组合题目中可能存在特殊情况,需要进行额外的考虑。
例如,题目中可能要求某些元素不能重复使用,或者要求某些元素必须同时出现等。
在解题过程中,要注意这些特殊情况,并根据题目要求进行相应的调整。
6. 检查和回答问题在计算出排列组合的方式数后,要对结果进行检查,确保计算的准确性。
同时,根据题目的要求,回答问题,给出最终的答案。
三、实例分析为了更好地理解解题思路和方法,我们来看一个具体的例子。
例题:某班有10名学生,其中3名男生和7名女生,从中选取3名学生组成一支代表队,要求队伍中至少有一名男生,有多少种不同的选择方式?解题思路和方法:1. 确定题目要求:从10名学生中选取3名学生组成代表队,要求队伍中至少有一名男生。
高中数学排列与组合算法解题思路

高中数学排列与组合算法解题思路在高中数学中,排列与组合是一个重要的概念,也是解题的常见考点之一。
掌握排列与组合的算法解题思路,对于高中学生来说是非常重要的。
本文将以具体的题目为例,分析和说明排列与组合的考点和解题技巧,帮助读者更好地理解和应用这一知识点。
一、排列问题排列问题是指从给定的元素中选取若干个元素按照一定的顺序排列的问题。
常见的排列问题有全排列、循环排列等。
1. 全排列问题全排列问题是指从给定的元素中选取所有的元素按照一定的顺序排列的问题。
下面以一个具体的例题来说明全排列的解题思路。
例题:有三个不同的字母A、B、C,从中选取两个字母进行排列,列出所有可能的情况。
解题思路:根据排列的定义,我们知道在这个问题中,有3个元素,选取2个进行排列。
根据排列的计算公式,可以得到全排列的个数为3 × 2 = 6。
我们可以使用穷举法列出所有的情况:AB, AC, BA, BC, CA, CB通过这个例题,我们可以看到全排列问题的解题思路是通过穷举法列出所有的情况,根据排列的计算公式计算出全排列的个数。
2. 循环排列问题循环排列问题是指从给定的元素中选取若干个元素按照一定的顺序排列,并且最后一个元素与第一个元素相连的问题。
下面以一个具体的例题来说明循环排列的解题思路。
例题:有三个不同的字母A、B、C,从中选取两个字母进行循环排列,列出所有可能的情况。
解题思路:根据循环排列的定义,我们知道在这个问题中,有3个元素,选取2个进行循环排列。
循环排列的个数等于全排列的个数除以元素个数,即6 ÷ 3 = 2。
我们可以使用穷举法列出所有的情况:AB, BC, CA通过这个例题,我们可以看到循环排列问题的解题思路是先计算出全排列的个数,然后除以元素个数得到循环排列的个数,最后使用穷举法列出所有的情况。
二、组合问题组合问题是指从给定的元素中选取若干个元素进行组合的问题。
常见的组合问题有从n个元素中选取m个元素的组合、有重复元素的组合等。
解排列组合题的两种方法

解排列组合题的两种方法一、基本计数原理与排列组合公式法基本计数原理是解排列组合题最基本的方法之一,通过分步骤求解问题中的每个小步骤,然后将结果相乘来得到最终的答案。
排列组合公式法是另一种常见的解题方法,通过应用排列组合计算公式来解决问题。
在排列组合问题中,我们经常会遇到排列数、组合数、多重集合的排列与组合等问题。
下面通过几个具体的例子来说明这两种方法的应用。
例1:有5个不同的球,将其放入3个不同的盒子中,要求每个盒子至少放一个球。
问有多少种放法?基本计数原理方法:1.第一个球有3种放置方法,放入三个盒子中的任一个;2.第二个球有3种放置方法,放入三个盒子中的任一个;3.第三个球有3种放置方法,放入三个盒子中的任一个;4.第四个球有3种放置方法,放入三个盒子中的任一个;5.第五个球有3种放置方法,放入三个盒子中的任一个。
根据基本计数原理,将每个步骤的种类数相乘,即可得到最终的答案:3×3×3×3×3=3^5=243排列组合公式法:将问题转化为将5个球放进3个盒子中,每个盒子可以为空的情况下根据排列组合公式,可以得到答案:C(5+3-1,3-1)=C(7,2)=7!/(2!×5!)=7×6/(2×1)=21例2:由4个字母A、B、C、D组成2位或3位的字母排列。
基本计数原理方法:有两种情况:1.2位字母排列:第一位字母有4种选择,第二位字母有3种选择,共有4×3=12种排列;2.3位字母排列:第一位字母有4种选择,第二位字母有3种选择,第三位字母有2种选择,共有4×3×2=24种排列。
根据基本计数原理,将每个情况的种类数相加,即可得到最终的答案:12+24=36种排列。
排列组合公式法:将问题转化为选择2位字母排列和选择3位字母排列两种情况根据排列组合公式,可以得到答案:P(4,2)+P(4,3)=4!/2!+4!/1!=12+24=36种排列。
高考数学如何解决复杂的排列组合题目

高考数学如何解决复杂的排列组合题目高考数学中,排列组合是一个常见的考点,也是考生们容易感到头疼的一部分。
在解决复杂的排列组合题目时,需要一定的方法和技巧。
本文将介绍一些解决复杂排列组合题目的方法和步骤。
一、理解排列和组合的概念在解决复杂排列组合问题之前,我们首先要明确排列和组合的概念。
排列是指从n个不同的元素中取出m个元素进行排列,其中元素的顺序是重要的。
组合是指从n个不同的元素中取出m个元素进行组合,其中元素的顺序是不重要的。
二、解决排列问题的方法对于复杂的排列问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:首先,我们需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定排列问题的类型。
一般来说,排列问题可以分为有重复元素和无重复元素两种情况。
3. 使用排列公式计算:根据问题的类型,使用相应的排列公式进行计算。
对于有重复元素的排列问题,可以使用n个元素中有重复元素的排列公式;对于无重复元素的排列问题,可以使用经典的排列公式进行计算。
4. 注意特殊情况:在解决排列问题时,需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
三、解决组合问题的方法对于复杂的组合问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:与解决排列问题类似,首先需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定组合问题的类型。
一般来说,组合问题可以分为有重复元素和无重复元素两种情况。
3. 使用组合公式计算:根据问题的类型,使用相应的组合公式进行计算。
对于有重复元素的组合问题,可以使用n个元素中有重复元素的组合公式;对于无重复元素的组合问题,可以使用经典的组合公式进行计算。
4. 注意特殊情况:在解决组合问题时,同样需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
如何运用排列组合解决高考数学题

如何运用排列组合解决高考数学题高考数学中,排列组合是一个非常重要的知识点。
在考试中,很多数学题都涉及到排列组合的知识,掌握好排列组合的解题方法,可以轻松解决很多高考数学题目。
本文将介绍如何运用排列组合解决高考数学题目,从理论到实践,从简单到复杂,帮助考生更好地掌握排列组合的知识。
一、什么是排列组合排列组合是数学中比较基础的知识之一,在高中数学中也属于必修内容。
排列组合分为排列和组合两种情况。
排列是指将若干个不同的元素,按照一定的顺序排成一列,所得到的不同的序列的总数。
组合是指在一定数量的元素中,无序地选择出若干个元素的所有情况。
在数学符号中,排列记作A,组合记作C。
二、排列组合的公式及应用1. 排列的公式排列是将若干个不同的元素按照一定的顺序排成一列,每个元素只能使用一次。
那么,n个不同的元素能组成的长度为m的排列的总数是:A(n,m) = n!/(n-m)!其中,n!表示n的阶乘,也就是n*(n-1)*(n-2)*…*3*2*1。
以下是几个排列问题的例子:例1:有5个不同的球,要将3个球放到3个不同的盒子里,请问有多少种方案?解:由于是将球放到盒子里,所以是排列问题,应用排列公式,答案为A(5,3)=5*4*3=60种方案。
例2:6个人排成一排,其中甲丙二人必须要相邻,请问有多少种排列方案?解:因为甲丙两人必须相邻,所以将甲丙看做一个整体,这个整体与其他人排列成7个单独的元素,所以总方案为7!=5040种。
但是甲丙两人可以交换位置,所以最终答案为2*7!=10080种方案。
2. 组合的公式组合是无序选择若干个元素,所以在组合问题中每个元素只能使用一次,那么,n个不同的元素中取m个的组合的方案数为:C(n,m) = n!/m!(n-m)!以下是几个组合问题的例子:例3:从6个不同的球中取出3个球,求出取法的方案数。
解:因为是无序选择,所以应用组合公式,答案为C(6,3)=6!/3!3!=20种方案。
排列组合问题解题思路

排列组合问题解题思路首先,怎样分析排列组合综合题?1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别是在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。
4)按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
5)处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。
6)在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
“16字方针”是解决排列组合问题的基本规律,即“12个技巧”是迅速解决排列组合的捷径,具体方法与运用如下:一.特殊元素的“优先排列法”:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考其他的元素。
二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。
三.合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。
二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!_世界上有两种人,一种人,虚度年华;另一种人,过着有意义的生活。
在第一种人的眼里,生活就是一场睡眠,如果在他看来,是睡在既温暖又柔和的床铺上,那他便十分心满意足了;在第二种人眼里,可以说,生活就是建立功绩……人就在完成这个功绩中享到自己的幸福。
--别林斯基排列组合问题解题思路首先,怎样分析排列组合综合题?1)使用“分类计数原理”还是“分步计数原理”要根据我们完成某事件时采取的方式而定,分类来完成这件事时用“分类计数原理”,分步来完成这件事时就用“分步计数原理”,怎样确定分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步骤”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。
2)排列与组合定义相近,它们的区别是在于是否与顺序有关。
3)复杂的排列问题常常通过试验、画简图、小数字化等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,亦常常需要用不同的方法求解来获得检验。
4)按元素的性质进行分类,按事件发生的连续性进行分步是处理组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。
5)处理排列、组合综合性问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题基本方法和原理,通过解题训要注意积累分类和分步的基本技能。
6)在解决排列、组合综合性问题时,必须深刻理解排列组合的概念,能熟练确定问题是排列问题还是组合问题,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。
“16字方针”是解决排列组合问题的基本规律,即“12个技巧”是迅速解决排列组合的捷径,具体方法与运用如下:一.特殊元素的“优先排列法”:对于特殊元素的排列组合问题,一般先考虑特殊元素,再考其他的元素。
二.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。
三.合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
四.相邻问题用捆绑法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
五.不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
七.分排问题用直接法:把几个元素排成若干排的问题,可采用统一排成一排的排方法来处理。
八.试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。
例.将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )A,6 B.9 C.11 D.23 解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。
一共有9种填法,故选B九.探索:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律;例.从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。
解:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,…,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,52为被加数有48种,…,99为被捕加数的只有1种,故不同的取法有(1+2+3+…+50)+(49+48+…+1)=2500种十.消序例。
4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。
解:先在7个位置中任取4个给男生,有47A 种排法,余下的3个位置给女生,只有一种排法,故有47A 种排法。
十一.住店法:解决“允许重复排列问题”要区分两类元素,一类元素可以重复,另一类不能重复,把不能重复的元素看作店,再利用分步计数原理直接求解称“住店法”;例.7名学生争五项冠军,获得冠军的可能种数有( ) A. 57种 B. 75种 C. 57A 种 D. 57C 种解.七名学生看作七家“店”,五项冠军看作5名“客”,每个客有7种住法,由分步计数原理可得57种,故选A十二.对应例.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比几场?解.要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故赛99场。
以上十二种方法是解决一般排列组合问题常用方法,数学是一门非常灵活的课程,解题法仅仅限于这“12个技巧”,此外,常用的还有“隔板法”,“倍缩法”。
排列组合问题中的数学思想方法也是用得多的(教师点评:这句可改为“排列组合问题中蕴藏着数学思想方法”) 一.分类讨论的思想:许多“数数”问题往往情境复杂,层次多,视角广,这就需要我们在分析问题时,选择恰当的切入点,从不同的侧面,把原问题变成几个小问题,分而治之,各种击破。
例.已知集合A 和集合B 各含有12个元素,A B 含有4个元素,求同时满足下列条件的集合C 的个数:1)C A B ≠⊂ 且C 中含有3个元素,2)C A φ≠解:如图,因为A ,B 各含有12个元素,A B 含有4个元素,所以A B 中的元素有12+12-4=20个,其中属于A 的有12个,属于A 而不属于B 的有8个,要使C A φ≠ ,则C 中的元素至少含在A 中,集合C 的个数是:1)只含A 中1个元素的有12128C C ;2)含A 中2个元素的有21128C C ;3)含A 中3个元素的有30128C C ,故不求的集合C 的个数共有12128C C +21128C C +3128C C =1084个二.等价转化的思想:很多“数数”问题的解决,如果能跳出题没有限定的“圈子”,根据题目的特征构思设计出一个等价转化的途径,可使问题的解决呈现出“要柳暗花明”的格局。
1.具体与抽象的转化例.某人射击7枪,击中5枪,问击中和末击中的不同顺序情况有多少种?分析:没击中用“1”表示,击中的用“0”表示,可将问题转化不下列问题:数列1234567,,,,,,a a a a a a a 有两项为0,5项是1,不同的数列个数有多少个?解:1)两个0不相邻的情况有26C 种,2)两个0相邻的情况有16C 种,所以击中和末击中的不同顺序情况有26C +16C =21种。
2)不同的数学概念之间的转化例.连结正方体8个顶点的直线中,为异面直线有多少对?分析:正面求解或反面求解(利用补集,虽可行,但容易遗漏或重复,注意这样一个事实,每一个三棱锥对应着三对异面直线,因而转化为计算以正方体顶点,可以构成多少个三棱锥)解:从正文体珠8个顶点中任取4个,有48C 种,其中4点共面的有12种,(6个表面和6个对角面)将不共面的4点可构一个三棱锥,共有48C -12个三棱锥,因而共有3(48C -12)=174对异面直线。
综上所述,有以上几种解排列组合的方法,此外,当然也还有其他的方法要靠我们去发现和积累,我们要掌握好这些方法,并且能够灵活运用,这样,在日常生活中,我们们能轻易解决很多问题。
教师点评:对排列组合问题的处理方法总结得很细、很全面,而且挖掘出其中所蕴藏的数学思想方法,对学习排列组合有一定的指导性。
1、文氏图:在文氏图中,以下图形的含义如下:矩形:其内部的点表示全集的所有元素;矩形内的圆(或其它闭曲线):表示不同的集合;圆(或闭曲线)内部的点:表示相应集合的元素。
2、三交集公式:A+B+C=A∪B∪C+A∩B+B∩C+A∩C-A∩B∩C(A∪B∪C指的是E,A∩B∩C指的是D)二、应用举例例:[2005年真题]对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢所戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:A 22人B 28人C 30人D 36人【解析】首先,根据题意画出文氏图如下:A(球迷)=58B(戏迷)=38C(影迷)=52E(员工总数)=100。
A+B+C=58+38+52=148A∪B∪C=100A∩B=18B∩C=16A∩B∩C=12然后,根据三交集公式A+B+C=A∪B∪C+A∩B+B∩C+A∩C-A∩B∩C推出:A∩C=A+B+C-A∪B∪C-A∩B-B∩C+ A∩B∩C=148-100-18-16+12=26最后得出:只喜欢看电影的人=C- A∩C-(B∩C- A∩B∩C)=52-26-(16-12)=52-26-4=22选择A正确。
例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。
(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法。
解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。
(2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。
(3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。
故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。
例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射?分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。
”因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。
因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=53(种)。
2.排列数与组合数的两个公式排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。