Computer simulation of short-circuiting transfer welding under waveform control on inverter pow
Simulation of circuits

专利名称:Simulation of circuits发明人:Rahul Razdan,Gabriel Bischoff,Ernst G. Ulrich 申请号:US08/139228申请日:19931019公开号:US05550760A公开日:19960827专利内容由知识产权出版社提供摘要:Computational requirements are reduced for executing simulation code for a logic circuit design having at least some elements which are synchronously clocked by multiple phase clock signals, the simulation code including data structures associated with circuit modules and nodes interconnecting the circuit modules. The simulation code is preanalyzed and phase waveforms are stored each representing values occurring at a node in successive phases. Based on the preanalysis, modules are categorized in a first category, for which an event-based evaluation is to be performed in each phase of the simulation, and a second category for which no event-based evaluation need be performed in at least one but not all phases. For each phase of a second category module, an appropriate response to an event occurring with respect to the module is determined. A data structure is then included in the simulation code, having an entry for each module of the code for controlling the phases in which simulation code for evaluation of the module is not executed.申请人:DIGITAL EQUIPMENT CORPORATION代理人:Denis G. Maloney,Arthur W. Fisher更多信息请下载全文后查看。
电气工程及其自动化毕业论文_利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型

摘要电力工业迅速发展,电力系统规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。
论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。
本文做的主要工作有:(1)Simulink下单机—无穷大仿真系统的搭建(2)系统故障仿真测试分析通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。
关键词电力系统;暂态稳定;MATLAB;单机—无穷大;AbstractWith the rapid development of power industry,the scale of power system is increasingly large and complex,all kinds of fault,to power plants and power plants and users in a variety of power equipment safety threat,and is likely to lead to the expansion of power system accident,from the technical and safety considering direct electricity experiment was carried out on the possibility is very small,urge electric power simulation are used to solve these problems,according to the power supply system of power grid power circuit model,as a result,paper use MATLAB dynamic simulation software Simulink has set up a simulation model for the single-infinite power system,can satisfy the needs of the running of a fault may encounter a variety of ways.Paper R2009b with MATLAB toolbox power system as a platform,through SimPowerSyetem set up power system in the operation of the common single-infinity system model,design the various kinds of short-circuit ground fault occurs in the system and simulation results of fault removed.The main work is:(1)Building this simulation system of single-infinite under Simulink(2)Fault simulation test analysis of systemThrough examples,if this method to the power system fault diagnosis,fast fault detection and diagnosis,automatic for improving the stability of power system has important significance.keywords:Single—infinite;SimPowerSyetem;Short circuit faults;Wavelettransform目录绪论 (1)第一章电力系统稳定性概述 (1)1.1电力系统的静态稳定性 (1)1.2电力系统的暂态稳定性 (1)第二章基于MATLAB的电力系统仿真 (3)2.1电力系统稳定运行的控制 (3)2.2MATLAB及SimPowerSystem简介 (3)2.3配电网的故障现状及分析 (4)2.4暂态稳定仿真流程 (5)第三章单机—无穷大暂态稳定仿真分析 (5)3.1电力系统暂态稳定性分析 (6)3.1.1引起电力系统大扰动的原因 (6)3.1.2定性分析 (6)3.1.3提高电力系统稳定性的措施 (8)3.2单机—无穷大系统原理 (9)第四章Simulink下SimPowerSystem模型应用 (12)4.1仿真模型的搭建 (12)4.2运行效果仿真图 (13)4.2.1改变故障模块中的短路类型 (13)4.2.2改变系统中的元件参数(改变线路的电阻) (17)4.3加入电容补偿器后的的仿真图 (18)4.4小结 (22)第五章结论和展望 (22)参考文献 (24)致谢 (25)绪论随着电力系统规模不断扩大,系统发生故障的影响也越来越大,尤其大区域联网背景下的电力系统故障将会给经济、社会造成重大经济损失,因此保证电力系统安全稳定运行是电力生产的首要任务。
精编汽车焊装英文词汇

序号英文全称缩写中文全称A1AC Gun工频焊钳2Accuracy /ˈækjurəsi/精度3acquisition of signal信号采集4aging /ˈeidʒiŋ/时效处理5air压缩空气6air hoist /hɔist /气动葫芦7air pipe气管8air pressure regulator-filter空气过滤减压阀9air spanner气动扳手10alternator /ˈɔːltəneitə/交流发电机11alternator bracket发电机支架12anneal /əˈniːl/退火13Anti-lock Brake System ABS防抱死刹车系统14Arc Welding弧焊15Arm电极臂16assembly drawing装配图17asynchronous /eiˋsiŋkrənəs/ motor异步电动机18ATC自动换枪装置19Auto Gun自动焊钳20automatic feed自动喂料21automatic mechanical transmission AMT自动换档机械式变速器22automatic transmission /trænzˈmiʃən/AT自动变速箱B23ball bearing球轴承24bar /bɑː/棒材25Bearing轴承26belt皮带27billet /ˈbilit /方钢28black oxide coating发黑/发蓝29blank /blæŋk/坯料,半成品30Blanking /ˈblæŋkiŋ/下料31Body In White BIW白车身32BODY INSPECTION FIXTURE车身综合检具33body respot line车身补焊线34Body Shop车身车间35boring/ˈbɔ:riŋ/镗削36breaker /ˈbreikə/断电器37Brittleness脆性38BURR /bɜː/毛刺C39C Type Welding Gun C型焊枪40calibration /ˌkæliˈbreiʆən/校准41capacity /kəˈpæsiti/容量,规格42carbon-dioxide arc welding; CO2arc welding二氧化碳气体保护电弧焊43case hardening表面硬化44casting铸造45catalog /ˈkætəlɒg/库46centering table 对中台47chain 链条48chain gear链轮49chamfer倒角50chromium /ˈkrəʊmiəm/铬51chuck吸盘52clamping force夹紧力53clearance fit间隙配合54commission /kəˈmiʆən/现场调试55Computer Aided Design CAD计算机辅助设计56Computer Aided Process Planning CAPP计算机辅助工艺过程57Computer Numerical Control CNC计算机数控加工58Concurrent /kənˈkʌrənt/EngineeringCE并行工程59configuration /kənˌfigəˈreiʆən/组态60control cabinet /ˈkæbinit/控制柜61control panel控制屏,控制盘62control system操纵系统63converter /kənˈvɜːtə/变频器64conveyor /kənˈveɪə/输送机65conveyor belt皮带机66cooperation/kəuˌɔpəˈreiʃən/合作67coordinate frame of car车身坐标系68corrosion/kəˈrəʊʒən/腐蚀69cotter /ˈkɔtə(r)/开口销70counter weight配重71crack /kræk/裂纹72current gauge电流测试仪73cycle time节拍74cylinder /ˈsilində/气缸D75damped glue膨胀减振胶76data acquisition /ækwiˈziʃ(ə)n/数据采集77data preprocessing数据预处理78data processing数据处理79data processor数据处理器80debug程序调试81debur去毛刺82definition /ˌdefiˈniʆən/定义83deflection /offset偏移84delta三角形85d elay /ˈdiːlei/延时86depalletizer/diˈpæliˌtaizə/拆垛小车87die/dai/冲模88die changer模具交换器89digital model数模90Digital Signal Processing DSP数字信号处理91display /diˈsplei/显示92dowel/daʊəl/ pin定位销93drilling/ˈdriliŋ/钻削94duty ratio负荷比E95electric hoist /hɔist/电动葫芦96electric welding machine; electricwelder电焊机97electrically operated valve电控阀98electrocladding /plating电镀99electrode holder焊钳100electromagnetic /ilektrəʊˈmæɡnitik/compatibility /kəmˌpætiˈbiliti/EMC电磁兼容性101engine /ˈendʒin/发动机102epoxy resin glue for hemming环氧折边胶F103fault diagnosis故障诊断feedback /ˈfiːdbæk/反馈104fender /ˈfendə/防护板、翼子板105106field bus现场总线107fillet /ˈfilit/角焊缝fillet welding角焊108flange /flændʒ/法兰109Flexible Body Line FBL柔性车身线110111flow chart流程图112forging锻造113fork truck叉车frame/coordination坐标114friction stir welding搅拌摩擦焊115G116gantry /ˈgæntri/龙门架117gap /gæp/间隙118gauge /geidʒ/型板119gears /giə:s/档位120Geo-Gripper定位抓具121Geometry /dʒiˈɒmitri/GEO几何122Geo-spot定位焊点123gluing/glu:iŋ/涂胶124Gluing Robot涂胶机器人125governor /ˈgʌvənə/调速器126grinder /ˈgraində/磨光机127grinding /ˈgraindiŋ/磨削128gripper抓具129groove /gruːv/坡口130ground地线;接地131gun hanger焊钳吊钩132gun switch焊钳开关H133hand gun手动焊钳handling robot取件机器人;搬运机器人134135hanger/ˈhæŋə/吊具hardening and tempering调质136heat/thermal treatment热处理137138hemming滚边139hemming bed胎模hemming die包边模具140hemming press包边压力机141142hemming tool滚边工具horizontal /ˌhɒriˈzɒntl/水平143144hot-melt adhesive热熔胶145human ergonomics/ˏɜːgəˈnɔmɪks/人机工程human-machine interface HMI人机界面146147hydraulic /haɪˈdrɔːlik/液压的148hydraulic absorber液压缓冲器I149induction machine感应式电机150inertia惯性;惯量151information of weld point焊点信息152inner dimension内部尺寸153inspection fixture I/F检具154interference /ˌintəˈfiərəns/干涉155interference fit过盈配合156invoice发票157isolating transformer隔离变压器J158jog /dʒɒg /点动(机器人等)159joint /dʒɔint/运动关节K160kinematic /kɪniˈmætɪk/运动学的, 运动学上的L161laser welding/ laser beam welding激光焊162layout规划,布局图163leg/ fillet weld leg焊脚164lifter升降机165light curtain /ˈkə:tən/安全光栅166linear unit直线单元167location位置168location pin定位销169lubricating oil润滑油M170magnet/ˈmægnit/磁铁171main reducer主减速器172man-machine coordination人机协调173mass production大批量生产174Master Control Point MCP主要控制点175master control point chart MCP图176Master Control Section MCS主控截面177master station主站178mechanical transmission MT机械式变速箱179mechanism /ˈmekənizəm/机构180Metal Active Gas welding MAG金属极(熔化极)活性性气体保护焊181Metal Inert Gas welding MIG 金属极(熔化极)惰性气体保护焊182MF Gun中频焊枪183milling/ˈmiliŋ/铣削184modify /ˈmɒdifai/更改185mounting plate安装面186multiple spot welding多点焊N187normalizing正火188nozzle /ˈnɒzəl/喷嘴O189Off-line Programming OLP离线编程190On-Board Diagnostics OBD在线检测191open大开192operating mechanism操作机构193orientation /ˌɔːriənˈteiʆən/方位194over voltage relay过电压继电器P195pallet /ˈpælit /物料架,小车托盘196parameter /pəˈræmitə/参数197part drawing零件图198patent/ˈpeɪtnt, ˈpætnt/专利199pay roll工资单200peak time峰值时间201performance characteristic工作特性202peripheral外围设备203pillar /ˈpilə/立柱204pipe joint管接头205piston/ˈpɪstən/活塞206pitch节距207planing /ˈpleiniŋ/刨削208planning规划209pneumatic /njuːˈmætik/气动210pneumatically /njuːˈmætikəli/drived slider气动滑台211position位置212positioner变位机213postweld heat treatment/postheattreatment焊后热处理214press压力机215Press Line冲压线216pressing robot冲压机器人217process /ˈprəʊses/工序;工艺(强调过程)218profile轮廓219project /ˈprɒdʒekt /工程、项目、投影220projection welding凸焊221property /ˈprɒpəti/属性Q222quenching /ˈkwentʃiŋ/淬火R223rack /ræk/支架;齿条224rail /reil/轨道;横梁225reachable可达226reducing valve减压阀227Regulator Interface Panel RIP水气排228Reinforce glue补强胶229reinforcement /ˌriːinˈfɔːsmənt/加强230reliability /riˌlaiəˈbiliti/可靠性231rid棱;加强肋232rigidity /riˈdʒidəti/刚度233robot programming language机器人编程语言234robot simulation机器人仿真235robot teaching机器人示教236roller /ˈrəulə/滚头237rope hemming水滴包边S238sandblast /ˈsændblɑːst/喷砂239Sealer Pump涂胶泵240seam /siːm/接缝241section型材,断面242security /siˈkjuəriti/lock安全锁243self-lubricant/self ˈlu:brikənt/ Bearing润滑轴承244semiopen小开245sensor /ˈsensə/传感器246Servo Gun伺服焊钳247servo motor伺服电机248short-circuiting,bridge短路249shuttle /ˈʆʌtl/往复输送250simulated interrupt仿真中断251Simulation仿真252simultaneous Engineering SE同步工程253solenoid /ˈsəulinɔid/valve/vælv/电磁阀254spatter /ˈspætə/飞溅255spherical /ˈsferɪk(ə)l / roller万向球256Spot Welding Sealants点焊密封胶257spot welding; resistance spotwelding点焊258spring /spriŋ/弹簧259squeeze挤压260stability /stəˈbiliti/稳定性261stand /stænd/换枪架262station /ˈsteiʆən/工位263steel rail 钢轨264strategic/strəˈtiːdʒɪk/战略的265strength /streŋθ, strenθ/强度266stud /stʌd/welding植焊267summary /ˈsʌməri/摘要268surface roughness表面粗糙度269symmetrical对称的;平衡的T270tapping攻丝271task /tɑːsk/任务272technique /tekˈniːk /工艺(强调技术手段)273temperature control device温度控制元件274tensioning/ˈtenʃəniŋ/wheel张紧轮275terminal电极,终端(点);接线柱276test signal测试信号277thread/θred/螺纹278through /θru:/直通279throughput产量;生产能力280TIMER CONTROLLER T/C焊接控制箱281TIP电极帽282tip dresser修磨器283tip; contact tube导电咀284tool changer换枪装置285torch /tɔːtʆ/焊炬;弧焊焊枪286torque /tɔ:k/扭矩;转矩287touch screen;touch panel触摸屏288TRANSFORMER T/R焊接变压器289transition fit过渡配合290Trolly滑车291Tungsten Inert Gas/Gas TungstenArc WeldingTIG/GTAW钨极(非熔化极)惰性气体保护焊;钨极氩弧焊292Turn table回转台293turning /ˈtə:niŋ/车削294twist drill麻花钻295two-way valve二通阀U296unmanned无人化的V297valve /vælv/阀298velocity transducer速度传感器299vertical /ˈvɜːtikəl/垂直300virtual manufacturing虚拟制造W301washer垫片302wear and tear磨损303weldability焊接性304welding controller焊接控制器305welding current downslope time焊接电流衰减时间306welding cycle焊接循环307welding gun焊枪308welding machine; welder焊机309welding power source焊接电源310welding process焊接工艺311Welding Robot焊接机器人312welding spot焊点313welding technique焊接技术314wire cutting电火花线切割315worm蜗杆316worm gear=worm wheel蜗轮X317X Type Welding Gun X型焊枪BIW相关词汇318ASSEMBLY ASSY总成319BODY BUILD B/B总成320BODY COMPLETE B/C总成321BODY FLOOR B/F地板322BODY IN WHITE BIW白车身323BODY SIDE B/S侧围324BRACKET BRKT支架325CENTER CTR中央通道326COMPLETE COMPLT组件;总成327DOOR DR门328ENGINE ENG发动机329EXTENTION EXTN延伸330FLOOR FLR地板331FRONT FR;FRT前部332HEAD LAMP H/LAMP前大灯333INNER INR内部的334LEFT HAND LH左侧335LOWER LWR下部336MEMBER MBR纵梁337OUTER OTR外部338PANEL PNL面板339RADIATOR RAD水箱340RADIATOR SUPPORT R/SUPT水箱横梁341REAR RR后部342REINFORCEMENT REINF加强343RIGHT HAND RH右侧344ROOF RF顶盖345SIDE OUTER S/OTR外侧346SIDE SILL S/SILL侧裙边347SUB ASSEMBLY SUB ASSY分总成348SUN ROOF S/RF天窗349SUPPORT SUPT支撑350UNDERBODY UB地板351UPPER UPR上部352intake pipe进气管353fire wall,dash panel前围板354rear wall后围板355tailgate后背板356fender翼子板;挡泥板357fuel filler加油口358front pillar,A-pillar A柱359center pillar,B-pillar B柱360rear pillar,C-pillar C柱361rail横梁362hinge铰链363guide rail导轨。
ShortCircuit

Simple Methods for Calculating Short Circuit CurrentWithout a ComputerBy Dennis McKeown, PEGE Senior System Application EngineerA Short Circuit analysis is used to determine the magnitude of short circuit current the system is capable of producing and compares that magnitude with the interrupting rating of the overcurrent protective devices (OCPD). Since the interrupting ratings are based by the standards, the methods used in conducting a short circuit analysis must conform to the procedures which the standard making organizations specify for this purpose. In the United States, the America National Standards Institute (ANSI) publishes both the standards for equipment and the application guides, which describes the calculation methods.Short circuit currents impose the most serious general hazard to power distribution system components and are the prime concerns in developing and applying protection systems. Fortunately, short circuit currents are relatively easy to calculate. The application of three or four fundamental concepts of circuit analysis will derive the basic nature of short circuit currents. These concepts will be stated and utilized in a step-by-step development.The three phase bolted short circuit currents are the basic reference quantities in a system study. In all cases, knowledge of the three phase bolted fault value is wanted and needs to be singled out for independent treatment. This will set the pattern to be used in other cases.A device that interrupts short circuit current, is a device connected into an electric circuit to provide protection against excessive damage when a short circuit occurs. It provides this protection by automatically interrupting the large value of current flow, so the device should be rated to interrupt and stop the flow of fault current without damage to the overcurrent protection device. The OCPD will also provide automatic interruption of overload currents.Listed here are reference values that will be needed in the calculation of fault current. Impedance Values for Three phase transformersHV Rating 2.4KV – 13.8KV 300 – 500KVA Not less than 4.5%HV Rating 2.4KV – 13.8KV 750 – 2500KVA 5.75%General Purpose less then 600V 15 – 1000KVA 3% to 5.75%Reactance Values for Induction and Synchronous MachineX” SubtransientSalient pole Gen 12 pole 0.1614 pole 0.21Synchronous motor 6 pole 0.158-14 pole 0.20Induction motor above 600V 0.17Induction motor below 600V 0.25TRANSFORMER FAULT CURRENTCalculating the Short Circuit Current when there is a Transformer in the circuit. Every transformer has “ %” impedance value stamped on the nameplate. Why is it stamped? It is stamped because it is a tested value after the transformer has been manufactured. The test is as follows: A voltmeter is connected to the primary of the transformer and the secondary 3-Phase windings are bolted together with an ampere meter to read the value of current flowing in the 3-Phase bolted fault on the secondary. The voltage is brought up in steps until the secondary full load current is reached on the ampere meter connected on the transformer secondary.So what does this mean for a 1000KVA 13.8KV – 480Y/277V.First you will need to know the transformer Full Load AmpsFull Load Ampere = KVA / 1.73 x L-L KVFLA = 1000 / 1.732 x 0.48FLA = 1,202.85The 1000KVA 480V secondary full load ampere is 1,202A.When the secondary ampere meter reads 1,202A and the primary Voltage Meter reads 793.5V. The percent of impedance value is 793.5 / 13800 = 0.0575. Therefore;% Z = 0.0575 x 100 = 5.75%This shows that if there was a 3-Phase Bolted fault on the secondary of the transformer then the maximum fault current that could flow through the transformer would be the ratio of 100 / 5.75 times the FLA of the transformer, or 17.39 x the FLA = 20,903ABased on the infinite source method at the primary of the transformer. A quick calculation for the Maximum Fault Current at the transformer secondary terminals is FC = FLA / %PU Z FC = 1202 / 0.0575 = 20,904AThis quick calculation can help you determine the fault current on the secondary of a transformer for the purpose of selecting the correct overcurrent protective devices that can interrupt the available fault current. The main breaker that is to be installed in the circuit on the secondary of the transformer has to have a KA Interrupting Rating greater then 21,000A. Be aware that feeder breakers should include the estimated motor contribution too. If the actual connected motors are not known, then assume the contribution to be 4 x FLA of the transformer. Therefore, in this case the feeders would be sized at 20.904 + (4 x 1202 = 25,712 AmpsGENERATOR FAULT CURRENTGenerator fault current differs from a Transformer. Below, we will walk through a 1000KVA example.800KW 0.8% PF 1000KVA 480V 1,202FLAKVA = KW / PFKVA = 800 / .8KVA = 1000FLA = KVA / 1.732 x L-L VoltsFLA = 1000 / 1.732 x 0.48FLA = 1,202(As listed in the table for generator subtransient X” values is 0.16)FC = FLA / X”FC = 1202 / 0.16FC = 7,513ASo, the fault current of a 1000KVA Generator is a lot less then a 1000KVA transformer. The reason is the impedance value at the transformer and Generator reactance values are very different. Transformer 5.75% vs. a Generator 16%SYSTEM FAULT CURRENTBelow is a quick way to get a MVA calculated value. The MVA method is fast and simple as compared to the per unit or ohmic methods. There is no need to convert to an MVA base or worry about voltage levels. This is a useful method to obtain an estimated value of fault current. The elements have to be converted to an MVA value and then the circuit is converted to admittance values.Utility MVA at the Primary of the TransformerMVAsc = 500MVATransformer Data13.8KV - 480Y/277V1000KVA Transformer Z = 5.75%MVA Value1000KVA / 1000 = 1 MVAMVA Value = 1MVA / Z pu = 1MVA / .0575 = 17.39 MVAUse the admittance method to calculate Fault Current1 / Utility MVA + 1 / Trans MVA = 1 / MVAsc1 / 500 + 1 / 17.39 = 1 / MVAsc0.002 + 0.06 = 1/ MVAscMVAsc = 1 / (0.002 + 0.06)MVAsc = 16.129FC at 480V = MVAsc / (1.73 x 0.48)FC = 16.129 / 0.8304FC = 19.423KAFC = 19, 423 AThe 480V Fault Current Value at the secondary of the 1000KVA transformer based on an Infinite Utility Source at the Primary of the transformer as calculated in the Transformer Fault Current section in this article is 20,904AThe 480V Fault Current Value at the secondary of the 1000KVA transformer based on a 500MVA Utility Source at the Primary of the transformer as calculated in the System Fault Current section in this article is 19,432AThe 480V Fault Current Value at the secondary of the 1000KVA transformer based on a 250MVA Utility Source at the Primary of the transformer the calculated value is 18,790AWhen the cable and its length is added to the circuit the fault current in a 480V system will decrease to a smaller value. To add cable into your calculation use the formula. Cable MVA Value MVAsc = KV2 / Z cable. Use the cable X & R values to calculate the Z value then add to the Admittance calculation as shown in this article.The conclusion is that you need to know the fault current value in a system to select and install the correct Overcurrent Protective Devices (OCPD). The available FC will be reduced as shown in the calculations when the fault current value at the primary of the transformer is reduced. If the infinite method is applied when calculating fault current and 4 x FLA is added for motor contributions, then the fault current value that is obtained will be very conservative. This means the calculated value in reality will never be reached, so you reduce any potential overcurrent protection device failures due to fault current.。
基于matlab的电力系统故障分析与仿真(毕业论文毕业设计)[管理资料]
![基于matlab的电力系统故障分析与仿真(毕业论文毕业设计)[管理资料]](https://img.taocdn.com/s3/m/fc5da7eebed5b9f3f80f1c30.png)
毕业设计(论文)基于MATLAB的电力系统故障分析与仿真学号:姓名:专业:电气工程及其自动化系别:指导教师:二〇一三年六月毕业设计(论文)基于MATLAB的电力系统故障分析与仿真学号:姓名:专业:电气工程及其自动化系别:指导教师:二〇一三年六月北京交通大学毕业设计(论文)成绩评议题目:基于MATLAB的电力系统故障分析与仿真系别:专业:电气工程及其自动化姓名:学号:指导教师建议成绩:84评阅教师建议成绩:86答辩小组建议成绩:82总成绩:84答辩委员会主席签字:年月日北京交通大学毕业设计(论文)任务书北京交通大学毕业设计(论文)开题报告北京交通大学毕业设计(论文)指导教师评阅意见北京交通大学毕业设计(论文)评阅教师评阅意见北京交通大学毕业设计(论文)答辩小组评议意见毕业设计(论文)诚信声明本人声明所呈交的毕业设计(论文),是本人在指导教师的指导下,独立进行研究工作所取得的成果,除了文中特别加以标注和致谢中所罗列的内容以外,毕业设计(论文)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京交通大学或其他教育机构的学位或证书而使用过的材料。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:毕业设计(论文)使用授权书本人完全了解北京交通大学有关保管、使用论文的规定,其中包括:①学校有权保管、并向有关部门送交学位论文的原件与复印件;②学校可以采用影印、缩印或其它复制手段复制并保存论文;③学校可允许论文被查阅或借阅;④学校可以学术交流为目的,复制赠送和交换学位论文;⑤学校可以公布学位论文的全部或部分内容。
本人签名:日期:摘要本设计分析了电力系统短路故障的电气特征,并利用Matlab/Simulink软件对其进行仿真,进一步研究短路故障的特点。
通过算例对电力系统短路故障进行分析计算。
然后运用Matlab/Simulink对算例进行电力系统短路故障仿真,得出仿真结果。
并将电力系统短路故障的分析计算结果与Matlab仿真的分析结果进行比较,从而得出结论。
基于MAYR电弧模型的船舶直流配电系统熔断器仿真研究

0已经成为第三 大大气污染来源。随着蓄电池储能和快速充电技术的 不断革新,无噪声零排放的新能源电动船舶得到了巨 大发展 [1]。但是,大量变频器、逆变器以及储能等设 备的加入,给船舶直流配电系统的安全性和可靠性带 来了挑战。
熔断器是直流微电网保护中的重要组成器件 。 [2-4] 熔断器的核心部件为熔体。正常工况下,熔体温度保 持稳定,不会熔断;发生短路故障时,流经熔体的电 流过大致使熔体温度不断上升,直至熔体熔断。熔体 熔断后,断点两端高压高温会在间隙产生电弧。只要 有电弧存在,电路中的电流就无法完全切断。只有电 弧完全熄灭后,电路中短路电流才能为零 [5]。因此, 有必要分析熔断器电弧特性,为熔断器的容量选型提 供依据。
长的实际情况,因此本文选用 Mayr 模型对故障电弧进 行准确描述。
本文基于船舶直流配电系统短路故障的应用场
景,使用基于 MAYR 电弧模型的熔断器,在 MATLAB/ SIMULINK 平台上设计、搭建仿真系统,并进行短路故 障仿真以验证其保护效果。最后,通过在实际平台上
国内外对电弧的研究方法基本分为仿真法、理论 计算法和现场实测法 3 类。由于理论计算法无法准确 描述短路电流和短路电压随时间的变化趋势,而现场 实测法代价高昂且有一定的危险性,因此多采用仿真 法研究电弧。
通常在进行仿真保护验证时,为评估熔断器开断
收稿日期:2019-10-10 作者简介:兰 喆(1994-),男,河南信阳人,硕士研究生, 研究方向为电气工程; 胡伟毅(1986-),男,湖北荆州人,本科,研究方向为电力 工程项目管理。
Abstract:The access of high-power frequency converter and energy storage equipment puts forward a test for the safe operation of ship DC distribution system under various working conditions. Due to the complexity and high cost of setting up special experiment environment to simulate short-circuit fault in marine DC distribution system,a simulation selection scheme based on MAYR arc model fuse is proposed. The simulation of short-circuit fault on MATLAB/Simulink platform can accurately reproduce the state of short-circuit fault fuse. Combined with the actual condition of short-circuit fault,the system fault model is built for simulation. The results show that the fuse based on MAYR model can effectively protect the network components in case of short circuit fault,and provide more reliable reference for the selection of fuse and circuit breaker.
基于MATLAB的电力系统短路故障分析与仿真设计

·……………………. ………………. …………………毕业论文基于MATLAB的电力系统短路故障分析与仿真院部机械与电子工程学院专业班级电气工程及其自动化届次 2015届学生学号指导教师装订线……………….……. …………. …………. ………摘要 (I)Abstract (II)1 引言 (1)1.1 课题研究的背景 (1)1.2 课题研究的国外现状 (1)2 短路故障分析 (1)2.1 近年来短路故障 (1)2.2 短路的定义及其分类 (2)2.3 短路故障产生的原因及危害 (4)2.4 预防措施 (4)2.5 短路故障的分析诊断方法 (5)3 仿真与建模 (6)3.1 仿真工具简介 (6)3.1.1 MATLAB的特点 (7)3.1.2 Simulink简介 (7)3.1.3 SPS(SimPowerSystems) (8)3.1.4 GUI(图形用户界面) (8)3.2 模型的建立 (9)3.2.1 无限大电源系统短路故障仿真模型 (9)3.2.2 仿真参数的设置 (10)4 仿真结果分析 (16)4.1 三相短路分析 (16)4.2 单相短路分析(以A相短路为例) (18)4.3 两相短路(以A、B相短路为例) (22)4.4 两相接地短路(以A、B相短路为例) (25)5 结论 (28)6 前景与展望 (28)参考文献 (29)致 (30)Abstract .............................................................................. I I 1 Introduction.. (1)1.1 Project background to the study (1)1.2 The research situation at home and abroad (1)2 Analysis of short-circuit fault (1)2.1 Short-circuit fault in recent years (1)2.2 Definition and classification of short-circuit fault (2)2.3 Causes and damage of short-circuit fault (4)2.4 Precautionary measures (4)2.5 Method to analysis and diagnosis of short-circuit fault (5)3 Simulation and modeling (6)3.1 Introduction to simulation tools (6)3.1.1 Features of MATLAB (7)3.1.2 Introduction to simulink (7)3.1.3 SPS(SimPowerSystems) (8)3.1.4 GUI(Graphical User Interfaces) (8)3.2 Establishment of the model (9)3.2.1 Infinite power system short-circuit fault simulation model (9)3.2.2 Simulation parameter settings (10)4 Simulation analysis (16)4.1 Analysis of three-phase short-circuit (16)4.2 Analysis of single-phase short circuit (18)4.3 Analysis of two-phase short circuit (22)4.4 Analysis of two-phase short circuit to ground (25)5 Conclusions (28)6 Outlook and prospect (28)References (29)Acknowledgement (30)基于MATLAB的电力系统短路故障分析与仿真继文(农业大学机械与电子工程学院 271018)摘要:短路是电力系统中最容易发生的故障,每年因短路而引发的电气事故不计其数。
电气专业英语词汇

电气专业英语词汇电磁感应定律(electromagnetic inductive law)变压器的分类(classification of transformer)短路实验(short circuit test)标么值的定义(definition of pre-unit value)基准值的选取(selection of basic value)变压器的运行性能(operation characteristics of transformer)电压变化率 (voltage regulation factor)变压器的电压调节(voltage regulation of transformer)三相变压器 (three-phase transformer)三相变压器的磁路系统(magnetic circuit system of three-phase transformer)交流电机绕组、电动势及磁动势(winding, emf and mmf of alternating current machine) 磁动势magnetomotive force [电磁]交流绕组简介(the outline of alternating current winding)主磁通和漏磁通main flux and leakage flux功率平衡 (power balance)转矩平衡(and torque balance)电磁转矩 (electromagnetic torque)参数表达式parameter expression转矩特性(torque characteristics)实用表达式(practical expression)转速特性 (speed characteristic)输出转矩特性(output torque characteristic)定子电流特性(Characteristics of stator current)效率特性(efficiency characteristic)定子功率因数特性(Characteristics of the stator power factor)机械特性mechanical characteristics感应式电机induction machine马蹄形磁铁horseshoe magnet磁场magnetic field涡流eddy current右手定则right-hand rule左手定则left-hand rule转差率slip感应电动机induction motor旋转磁场rotating magnetic field绕组winding定子stator转子rotor感生电流induced current时间相位time-phase励磁电压exciting voltage槽solt叠片lamination ,叠片铁芯laminated core短路环short-circuiting ring鼠笼squirrel cage转子铁芯rotor core铸铝转子cast-aluminum rotor青铜bronze马力horsepower散绕random-wound绝缘insulation交流环电动机ac motor端环end ring合金alloy线圈绕组coil winding模绕form-wound工作特性performance characteristic转/分revolutions per minute电动机驱动motor drivegenerating 发电per-unit value 标么值breakdown torque 极限转矩breakaway force 起步阻力overhauling 检修wind-driven generator 风动发电机revolutions per second 转/秒number of poles 极数speed-torque curve 转速力矩特性曲线plugging 反向制动synchronous speed 同步转速percentage 百分数locked-rotor torque 锁定转子转矩full-load torque 满载转矩prime mover 原动机inrush current 涌流magnetizing reacance 磁化电抗line-to-neutral线到中性点staor winding 定子绕组leakage reactance 漏磁电抗no-load 空载full load 满载polyphase 多相iron-loss 铁损complex impedance 复数阻抗rotor resistance 转子电阻leakage flux 漏磁通locked-rotor 锁定转子chopper circuit 斩波电路separately excited 他励的compounded 复励dc motor 直流电动机de machine 直流电机speed regulation 速度调节shunt 并励series 串励armature circuit 电枢电路optical fiber 光纤interoffice 局间的wave guide 波导波导管bandwidth 带宽light emitting diode 发光二极管silica 硅石二氧化硅regeneration 再生, 后反馈放大coaxial 共轴的,同轴的high-performance 高性能的carrier 载波mature 成熟的Single Side Band(SSB) 单边带coupling capacitor 结合电容propagate 传导传播modulator 调制器demodulator 解调器line trap 限波器shunt 分路器Amplitude Modulation(AM 调幅Frequency Shift Keying(FSK) 移频键控tuner 调谐器incident 入射的two-way configuration 二线制generator voltage 发电机电压dc generator 直流发电机polyphase rectifier 多相整流器boost 增压time constant 时间常数forward transfer function 正向传递函数error signal 误差信号regulator 调节器stabilizing transformer 稳定变压器time delay 延时direct axis transient time constant 直轴瞬变时间常数transient response 瞬态响应solid state 固体buck 补偿operational calculus 算符演算gain 增益pole 极点feedback signal 反馈信号dynamic response 动态响应voltage control system 电压控制系统mismatch 失配error detector 误差检测器excitation system 励磁系统field current 励磁电流transistor 晶体管high-gain 高增益boost-buck 升压去磁feedback system 反馈系统reactive power 无功功率feedback loop 反馈回路Automatic Voltage Regulator(AVR)自动电压调整器reference Voltage 基准电压magnetic amplifier 磁放大器amplidyne 微场扩流发电机self-exciting 自励的limiter 限幅器manual control 手动控制block diagram 方框图linear zone 线性区potential transformer 电压互感器stabilization network 稳定网络stabilizer 稳定器air-gap flux 气隙磁通saturation effect 饱和效应saturation curve 饱和曲线flux linkage 磁链per unit value 标么值shunt field并励磁场magnetic circuit 磁路load-saturation curve 负载饱和曲线air-gap line 气隙磁化线polyphase rectifier 多相整流器circuit components 电路元件circuit parameters 电路参数electrical device 电气设备electric energy 电能primary cell 原生电池energy converter 电能转换器heating appliance 电热器direct-current 直流时变线性系统linear time variant system时不变线性系统linear time invariant system 自感self-inductor互感mutual-inductor电介质the dielectric蓄电池storage battery电动势e.m.f = electromotive force发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-up transformer母线bus变压器transformer空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current有功损耗reactive loss无功损耗active loss输电系统 power transmission system高压侧 high side输电线 transmission line高压high voltage低压low voltage中压middle voltage功角稳定 angle stability稳定 stability电压稳定voltage stability暂态稳定transient stability电厂power plant能量输送 power transfer交流 AC直流 DC电网 power system落点 drop point开关站 switch station调节 regulation高抗 high voltage shunt reactor并列的:apposable裕度 margin故障 fault三相故障 three phase fault分接头tap切机 generator triping高顶值 high limited value静态 static (state)动态 dynamic (state)机端电压控制 AVR电抗 reactance电阻 resistance功角 power angle有功(功率) active power电容器Capacitor电抗器Reactor断路器Breaker功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltage grade有功负载active load PLoad无功负载reactive load档位tap position电阻resistor电抗reactance电导conductance电纳susceptance上限upper limit下限lower limit正序阻抗positive sequence impedance负序阻抗negative sequence impedance零序阻抗zero sequence impedance无功(功率)reactive power功率因数 power factor无功电流 reactive current斜率 slope额定 rating变比 ratio参考值 reference value电压互感器 voltage transformer分接头 tap仿真分析 simulation analysis下降率 droop rate传递函数 transfer function框图 block diagram受端 receive-side同步 synchronization保护断路器 circuit breaker摇摆 swing阻尼 damping无刷直流电机Brusless DC motor刀闸(隔离开关)Isolator机端 generator terminal变电站 transformer substation永磁同步电机Permanent-magnet Synchronism Motor异步电机Asynchronous Motor三绕组变压器three-column transformer ThrClnTrans双绕组变压器double-column transformer DblClmnTrans 固定串联电容补偿fixed series capacitor compensation 双回同杆并架 double-circuit lines on the same tower 单机无穷大系统 one machine - infinity bus system励磁电流magnetizing current补偿度 degree of compensationElectromagnetic fields 电磁场失去同步 loss of synchronization装机容量 installed capacity无功补偿 reactive power compensation故障切除时间 fault clearing time极限切除时间 critical clearing time强行励磁reinforced excitation并联电容器shunt capacitor下降特性 droop characteristics线路电压降补偿器 LDC(line drop compensation)电机学 Electrical Machinery自动控制理论 Automatic Control Theory电磁场 Electromagnetic Field微机原理 Principle of Microcomputer电工学 Electrotechnics电路原理Principle of circuits电机学Electrical Machinery电力系统稳态分析 Steady-State Analysis of Power System电力系统暂态分析 Transient-State Analysis of Power System电力系统继电保护原理 Principle of Electrical System's Relay Protection 电力系统元件保护原理 Protection Principle of Power System 's Element 电力系统内部过电压 Past Voltage within Power system模拟电子技术基础 Basis of Analogue Electronic Technique数字电子技术 Digital Electrical Technique电路原理实验Lab. of principle of circuits电气工程讲座 Lectures on electrical power production电力电子基础Basic fundamentals of power electronics高电压工程High voltage engineering电子专题实践Topics on experimental project of electronics电气工程概论Introduction to electrical engineering电子电机集成系统electronic machine system电力传动与控制Electrical Drive and Control电力系统继电保护 Power System Relaying Protection。