2020年七年级数学下期中模拟试题(带答案) (2)
2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)

xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
浙教版2020七年级数学下册期中综合复习培优训练题2(附答案详解)

解: ,
,
由光学原理可得 ,
由三角形外角性质可得 ,
在第2次“好的发射”的条件下, ,
在第3次“好的发射”的条件下, ,
,
若最多能进行n次“好的发射”,则 , 若 ,则反射光线 在 的左侧
解得 ,
故答案为:4.
【点睛】
本题考查了平行线的性质和图形的变化类问题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解 探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
18.化简(2b+3a)(3a﹣2b)﹣(2b﹣3a)(2b+3a),当a=﹣1,b=2时,原式的值是_____.
19.若x=2m,则将y=1+4m+1,则用含x的代数式表示y为______________________.
20.若9x=4,3y=﹣2,则34x﹣3y的值是.
21.
22.如图,在平面直角坐标系中,小方格边长为1,点A,B,P都在格点上.
故答案为
【点睛】
考查代数式的化简求值,掌握整式的乘法法则是解题的关键.
19.
【解析】
试题分析: ,则 .
点睛:本题主要考查的就是幂的几个公式的应用,属于中等难度的题型. , ,解答这个问题的关键就是对这两个公式的运用要非常的熟悉,将所求的量通过公式之间的转化转化为已知的量.
20.﹣2.
【解析】试题分析:∵9x=32x=4,3y=﹣2,
27.如图是一个由4条线段构成的“鱼”形图案,其中∠1=55°,∠2=55°,∠3=125°,找出图中的平行线,并说明理由.
28.计算:
(1)2(y6)2-(y4)3;(2)(ab2c)2÷(ab3c2);
湘教版2020七年级数学下册期中模拟测试题2(附答案)

湘教版2020七年级数学下册期中模拟测试题2(附答案)1.下列计算正确..的是( ) A .sin()43y x πω=++ B .632a a a ÷=C .326(2)4a a -=D .3362a a a += 2.不论a b ,为何有理数,2224a b a b c +--+的值总是非负数,则c 的最小值是( ) A .4 B .5 C .6 D .无法确定3.计算a 3(﹣ab 2)2的结果是( )A .a 5b 4B .a 4b 4C .﹣a 5b 4D .﹣a 4b 44.要使2425x mx ++成为一个完全平方式,则m 的值是( )A .10B .10±C .20D .20±5.34()()a b a b +⋅+的值为( ).A .77a b +B .7()a b -C .7()a b +D .12()a b +6.下列各式,计算正确的是( ).A .(a -b)2=a 2-b 2B .(x +y)(x -y)=x 2+y 2C .(a +b)2=a 2+b 2D .(a -b)2=a 2-2ab +b 27.计算2(2)xy -的结果是( )A .4x 2y 2B .4xy 2C .2x 2y 2D .4x 2y 8.下列方程是二元一次方程的是( )A .45y x +=B .2x y -=C .2102x y +=D .23x y z += 9.利用乘法公式计算正确的是( )A .(2x ﹣3)2=4x 2+12x ﹣9B .(4x+1)2=16x 2+8x+1C .(a+b )(a+b )=a 2+b 2D .(2m+3)(2m ﹣3)=4m 2﹣310.已知a m =5,a n =2,则a m+n 的值等于( )A .25B .10C .8D .711.若a +2c =3b ,则a 2-9b 2+4c 2+4ac =________.12.已知二元一次方程:()121x y +=;()23211x y -=;()3438x y -=.从这三个方程中任选两个方程组成一个方程组,并求出这个方程组的解.所选方程组为________.13.计算:(-2a 2b )4÷2a 6b 3=______.14.若实数x 、y 满足方程组+25347x y x y =⎧⎨+=⎩,则代数式2x+3y ﹣4的值是_____.15.在实数范围内因式分解:23-x y y =___________16.计算:2(2)a a -÷=_______(2xy)2 = __________17.如图所示,根据图形把多项式a 2+5ab+4b 2因式分解=__.18.因式分解:a 2﹣2ab +b 2=_________.19.分解因式:244m n mn n -+=______.20.分解因式:2x 2﹣6x=_______.21.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x =N (a >0,a≠1),那么x 叫做以a 为底N 的对数,记作:x=log a N .比如指数式24=16可以转化为4=log 216,对数式2=log 525可以转化为52=25. 我们根据对数的定义可得到对数的一个性质:log a (M•N )=log a M+log a N (a >0,a≠1,M >0,N >0);理由如下:设log a M=m ,log a N=n ,则M=a m ,N=a n∴M•N=a m •a n =a m+n ,由对数的定义得m+n=log a (M•N )又∵m+n=log a M+log a N∴log a (M•N )=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式_____;(2)证明log a M N=log a M ﹣log a N (a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 32+log 36﹣log 34=_____.22.先化简,再求值:(2)(2)()a b a b b a b -+++,其中 2a =,1b =-23.某商场准备购进两种型号的摩托车共25辆,预计投资10万元.现有甲、乙、丙三种摩托车,甲种每辆4200元,可获利400元;乙种每辆3700元,可获利350元;丙种每辆3200元,可获利320元,且10万元资本全部用完.(1)请你帮助该商场设计进货方案;(2)从销售利润上考虑,应选择哪种方案?24.本学期我们学习了“有理数乘方”运算,知道乘方的结果叫做“幂”,下面介绍一种有关“幂”的新运算.定义:a m 与 a n (a≠0,m 、n 都是正整数)叫做同底数幂,同底数幂除法记作 a m ÷a n . 运算法则如下:a m ÷a n =,{=,11,m n m nm n m n n m m n a a a m n a a m n a a a --÷=÷=÷=当>时当时当<时根据“同底数幂除法”的运算法则,回答下列问题:(1)填空:5211()()22÷ = ,43÷45= . (2)如果 3x-1÷33x-4=127,求出 x 的值. (3)如果(x ﹣1)2x+2÷(x ﹣1)x+6=1,请直接写出 x 的值.25.某药品有大小两种包装瓶,9大瓶和25小瓶共装640g ,12大瓶和10小瓶共装760g .现在对两种包装瓶进行改装,大瓶比原来少装20%,小瓶比原来多装50%,这样10大瓶和7小瓶共装多少g ?26.先化简,再求值:(1)(2)(2)(2)(2)x y y x x y y x -+-+-,其中1x =,2y =.(2)(2)(2)(3)x x x x +-+-,其中2x =.27.已知x+y=5,xy=1.(1)求x 2+y 2的值.(2)求(x ﹣y )2的值.参考答案1.C【解析】根据同底数幂的乘法,底数不变,指数相加,可知358a a a ⋅=,故不正确;根据同底数幂相除,底数不变,指数相减,可知633a a a ÷=,故不正确;根据积的乘方,等于各个因式分别乘方,可知()23624a a -= ,故正确;根据合并同类项法则,可知3332a a a +=,故不正确.故选:C.点睛:此题主要考查了幂的相关性质,解题关键是合理利用同底数幂相乘除的法则,积的乘方,幂的乘方进行计算即可.2.B【解析】试题解析:∵a 2+b 2-2a-4b+c=(a-1)2-1+(b-2)2-4+c=(a-1)2+(b-2)2+c-5≥0,∴c 的最小值是5;故选B .3.A【解析】【分析】先进行积的乘方运算,然后再进行单项式的乘法运算即可得.【详解】a 3(﹣ab 2)2=a 3•a 2b 4=a 5b 4,故选A .【点睛】本题考查了积的运算、单项式的乘法运算,熟练掌握各运算的运算法则是解题的关键. 4.D【解析】∵两平方项是4x 2与25,∵这两个数是2x 和5,∴mx=±2×5×2x ,解得m=±20. 故选:D.5.C【解析】试题解析:347()()()a b a b a b +⋅+=+.故选C .6.D【解析】【分析】根据平方差公式和完全平方公式对各选项分析判断即可得解.【详解】A. 应为(a−b)2=a 2−2ab+b 2,故本选项错误;B. 应为(x+y)(x−y)=x 2−y 2,故本选项错误;C. 应为(a+b)2=a 2+2ab+b 2,故本选项错误;D. (a−b)2=a 2−2ab+b 2,故本选项正确.故答案选:D.【点睛】本题考查了平方差公式与完全平方公式,解题的关键是熟练的掌握平方差公式与完全平方公式.7.A【解析】【分析】直接利用积的乘方运算法则求出答案.【详解】∵()22224xy x y -=,∴A 选项正确,故本题选A.【点睛】本题考查了利用积的乘方运算法则,掌握各类数学运算法则是解决本题的关键.8.B【解析】【分析】只含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程.据此分析即可.【详解】A. 45y x+= ,分母有未知数,是分式方程,故不能选; B. 2x y -= ,符合条件,故能选; C. 2102x y +=,x 的次数是2,不符合条件,故不能选; D. 23x y z +=,含有三个未知数,不是二元一次方程,故不能选.故选:B【点睛】本题考核知识点:二元一次方程.解题关键点:理解二元一次方程定义.9.B【解析】【分析】根据完全平方公式和平方差公式进行分析对照可得出结论.【详解】A. (2x ﹣3)2=4x 2+12x+9,故本选项不能选;B. (4x+1)2=16x 2+8x+1, 故本选项能选;C. (a+b )(a+b )=a 2+2ab+b 2,故本选项不能选;D. (2m+3)(2m ﹣3)=4m 2﹣9,故本选项不能选.故选B【点睛】本题考核知识点:整式乘法公式. 解题关键点:熟记完全平方公式和平方差公式.10.B【解析】∵a m =5,a n =2,∴a m+n =a m ·a n =5×2=10,故选B.11.0【解析】a 2-9b 2+4c 2+4ac=a2+4c2+4ac-9b2=(a+2c)2-(3b)2=(a+2c+3b)(a+2c-3b)∵a+2c=3b,∴原式=(a+2c+3b)(a+2c-3b)= =(3b+3b)(3b-3b)=0.点睛:本题考查了分组分解法分解因式及整体代入法求代数式的值.先把a2+4c2+4ac作为一组,利用完全平方公式可分解为(a+2c)2,从而原式变为(a+2c)2-(3b)2,再利用平方差公式可分解为(a+2c+3b)(a+2c-3b),然后把a+2c=3b代入即可.12.21 3211 x yx y+=⎧⎨-=⎩【解析】【分析】选择(1)与(2)组成方程组,利用加减消元法求出解即可.【详解】所选方程组为:21 3211x yx y+=⎧⎨-=⎩①②,①+②得4x=12,解得:x=3,把x=3代入①得2y=-2,解得:y=-1,则方程组的解为31 xy=⎧⎨=-⎩,故答案为21 3211 x yx y+=⎧⎨-=⎩.【点睛】本题考查了解二元一次方程组以及二元一次方程组的定义,熟练掌握代入消元法与加减消元法是解题的关键.13.8a2b【解析】解:(-2a 2b )4÷2a 6b 3=8463162a b a b ÷=28a b .故答案为: 28a b . 14.2【解析】【分析】将方程组标上①②式,通过①+②式的计算,可以得到4x+6y=12,从而得到2x+3y=6,即可解题.【详解】25347x y x y +=⎧⎨+=⎩①②, ①+②得:4x+6y=12,即2x+3y=6,则原式=6﹣4=2,故答案为2【点睛】本题主要主要应用了整体法进行求解,此方法在数学中应用较为广泛.15.(y x x -【解析】()(2233?x y y y x y x x -=-=.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m (a+b+c ).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.(4)实数范围内因式分解.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.16.4a 224x y【解析】 ()22a a -÷=4a 2÷a=4a , (2xy)2 = 22x 2y 2=4x 2y 2,故答案为:4a ,4x 2y 2.17.(a+b )(a+4b )【解析】由图可知,a 2+5ab +4b 2=(a +b )(a +4b ).点睛:本题考查因式分解的应用,解题的关键是明确题意,会用等积法解答.18.(a ﹣b )2【解析】分析:根据完全平方公式即可求出答案.详解:原式()2.a b =-故答案为()2.a b -点睛:本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型. 19.2n(m 2)-【解析】【分析】根据题意先提取公因式n ,再根据完全平方公式进行二次分解.【详解】 244m n mn n -+,()244n m m =-+,2(2)n m =-.故答案为:2(2)n m -. 【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.2x (x ﹣3)【解析】【分析】因式分解的题,一般先考虑提公因数法,再考虑公式法,最后再用十字相乘即可分解到位.【详解】2x2﹣6x=2x(x﹣3).故答案为2x(x﹣3).21.(1)3=log464;(2)证明见解析;(3)1. 【解析】【分析】(1)根据题意可以把指数式43=64写成对数式;(2)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算M N的结果,同理由所给材料的证明过程可得结论;(3)由题意和(2)可得,将所求式子表示为:log3(2×6÷4),然后计算可得结果.【详解】(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为3=log464;(2)设log a M=m,log a N=n,则M=a m,N=a n,∴MN=mnaa=a m﹣n,由对数的定义得m﹣n=log aMN,又∵m﹣n=log a M﹣log a N,∴log a MN=log a M﹣log a N(a>0,a≠1,M>0,N>0);(3)log32+log36﹣log34,=log3(2×6÷4),=log33,=1,故答案为1.【点睛】本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.22.24+a ab,14.【解析】【分析】先根据整式的乘法计算化简,然后代入求值即可.【详解】解:原式222=4+a b ab b -+2=4+a ab当=2=1a b -,时,原式2=42+21⨯⨯-()=14 23.(1)进货方案有两种:①甲种进15辆,乙种进10辆;②甲种进20辆,乙种进5辆;(2)从销售利润上看要选择方案2.【解析】试题分析:(1)分当购进甲、乙两种型号的摩托车;购进甲、丙两种型号的摩托车;购进乙、丙两种型号的摩托车三种情况.并分别通过设出未知数,解二元一次方程组来解答. (2)根据(1)的结论求出每种近货方案的利润,选择利润最大的那种方案就可以了. 试题解析:解:(1)设购进甲种摩托车x 辆,乙种摩托车y 辆,则2542003700100000x y x y +=⎧⎨+=⎩,解得:1510x y =⎧⎨=⎩; 设购进甲种摩托车m 辆,丙种摩托车n 辆,则2542003200100000m n m n +=⎧⎨+=⎩,解得:205m n =⎧⎨=⎩; 设购进乙种摩托车a 辆,丙种摩托车b 辆,则2537003200100000a b a b +=⎧⎨+=⎩,解得:4015a b =⎧⎨=-⎩(不符合题意,舍去) 故进货方案有两种:①甲种摩托车进15辆,乙种摩托车进10辆;②甲种摩托车进20辆,丙种摩托车进5辆.(2)由(1)得,方案1的销售利润为:400×15+350×10=9500元; 方案2的销售利润为:400×20+320×5=9600元. ∵9600元>9500元,∴从销售利润上看要选择方案2.点睛:本题考查了二元一次方程组的运用,在方案设计中全面考虑问题是很关键的. 24.(1)18、116;(2)x=3;(3)x=4,x=0,x=2. 【解析】【分析】根据同底数幂的乘法、除法法则求解即可.【详解】解:(1)填空:521122⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭=18,43÷45=116, 故答案为18 、116; (2)由题意,得3x ﹣4﹣(x ﹣1)=3,解得:x=3,∴x=3.(3)由题意知,①2x+2﹣(x+6)=0,解得:x=4;②x ﹣1=1,解得:x=2;③x ﹣1=﹣1且2x+2与x+6为偶数,解得:x=0;综上,x=4,x=0,x=2.【点睛】本题主要考查同底数幂的乘法、除法法则,其中同底数幂相乘: ·m n m n a a a +=,同底数幂相乘,底数不变, 指数相加;同底数幂相除, m n m n a a a -÷=,同底数幂相除, 底数不变, 指数相减.25.522g .【解析】【分析】设每个大瓶装xg ,每个小瓶装yg ,根据9大瓶和25小瓶共装640g ,12大瓶和10小瓶共装760g ,列出方程组,求出,x y 的值,再列式求解即可.【详解】解:设每个大瓶装xg ,每个小瓶装yg ,根据题意得: 9256401210760,x y x y +=⎧⎨+=⎩解得:604,x y =⎧⎨=⎩∴(1﹣20%)x=48,(1+50%)y=6,∴48×10+6×7=522g .答:这样10大瓶和7小瓶共装522g .【点睛】考查二元一次方程组的应用,读懂题目,找出等量关系列出方程组是解题的关键. 26.(1)-15;(2)2【解析】试题分析:(1)原式利用平方差公式化简,去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;(2)原式利用平方差公式,单项式乘以多项式计算,合并得到最简结果,把x 的值代入计算即可求出值.试题解析:解:(1)原式2222224455x y y x x y =--+=-当1x =,2y =时,原式22515215=⨯-⨯=-.(2)原式224334x x x x =-+-=-当2x =时,原式3242=⨯-=.27.(1)23;(2)21.【解析】【分析】(1)原式利用完全平方公式变形,将各自的值代入计算即可求出值;(2)原式利用完全平方公式变形,将各自的值代入计算即可求出值.【详解】(1)∵x+y=5,xy=1,∴原式=(x+y )2﹣2xy=25﹣2=23;(2)∵x+y=5,xy=1,∴原式=(x+y )2﹣4xy=25﹣4=21.【点睛】本题考查了完全平方公式,把完全平方公式熟练进行变形是解本题的关键.解题时注意运用整体的数学思想.。
2020-2021苏州星海学校七年级数学下期中模拟试卷(含答案)

∵ >1
∴这个点的坐标为( ,-1)
故选:C.
【点睛】
此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a的关系即可.
2.C
解析:C
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
【详解】
解:在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比,
图案向左平移了a个单位长度,并且向下平移了a个单位长度.
故选:C.
【点睛】
本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
3.D
解析:D
【解析】
【分析】
分 和 两种情况将所求方程变形,求出解即可.
【详解】
解:∵点A(0,1)的对应点C的坐标为(4,2),
即(0+4,1+1),
∴点B(3,3)的对应点D的坐标为(3+4,3+1),
即D(7,4);
故选:C.
【点睛】
此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.
7.B
解析:B
【解析】
【分析】
根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.
10.在平面直角坐标中,点M(-2,3)在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.如图所示,在ABC中,点D、E、F分别是AB,BC,AC上,且EF∥AB,要使DF∥BC,还需添加条件是()
华东师大版2020-2021学年七年级下册数学期中复习试卷二(含答案)

华东师大版2020-2021学年七年级下册数学期中复习试卷二一、选择题二、1.不等式293(2)x x ++≥的解集是( )A.3x ≤B.3x -≤C.3x ≥D.3x -≥2.根据等式的性质,下列变形正确的是( )A.若2x a =,则2x a =B.若123x x +=,则321x x += C.若ab bc =,则a c = D.若a b c c =,则a b = 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A.9B.8C.5D.4 4.若m n >,下列不等式不一定成立的是( )A.33m n ++>B.33m n --<C.33m n >D.22m n >5.不等式组271532x x +⎧⎨-⎩>≥的解集在数轴上表示正确的是( ) A.B. C. D.6.若关于x 的不等式组2(1)20x a x -⎧⎨-⎩><的解集是x a >,则a 的取值范围是( )A.2a <B.2a ≤C.2a >D.2a ≥7.已知232a x y 与214a b x y +-是同类项,则a b 的值为( )A.2B.2-C.1D.1-8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少15元。
”乙说:“至多12元。
”丙说:“至多10元。
”小明说:“你们三个人都说错了”。
则这本书的价格x (元)所在的范围为( )A.1012x <<B.1215x <<C.1015x <<D.1114x <<9.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数。
甲得乙半而钱五十,乙得甲太半而钱亦五十。
问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B.15022503x y x y +=+= C.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ D.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩10.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A.106 cmB.110 cmC.114 cmD.116 cm二、填空题(每小题3分,共15分)11.若1m +与2-互为相反数,则m 的值为________。
2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
2020-2021学年华师大版七年级数学下册期中检测题(含答案)

2020-2021学年华师大版七年级数学下册期中检测题(考试时间:120分钟 满分:120分)第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是( )A .xy =1B .y =3x -1C .x +1y =2D .x 2+x -3=02.若a>b ,则下列不等式不一定成立的是( )A .a +m>b +mB .a(m 2+1)>b(m 2+1)C .-a 2 <-b 2D .a 2>b 23.二元一次方程组⎩⎪⎨⎪⎧x +y =2x -y =-2的解是( ) A .⎩⎪⎨⎪⎧x =0,y =-2 B .⎩⎪⎨⎪⎧x =0,y =2 C .⎩⎪⎨⎪⎧x =2,y =0 D .⎩⎪⎨⎪⎧x =-2,y =0 4.(嘉兴中考)不等式1-x ≥2的解在数轴上表示正确的是( )5.(毕节中考)不等式组⎩⎨⎧2x +1≥-3x<1的解集在数轴上表示正确的是( )6.研究下面解方程120 +2x -35 =3x 4 -1-3x 20 的过程:①去分母,得1+4(2x-3)=15x -(1-3x);②去括号,得1+8x -12=15x -1-3x ;③移项,得8x -15x +3x =-1-1+12;④合并同类项,得-4x =10;⑤系数化为1,得x =-52 .对于上面的解法,你认为( )A .完全正确B .变形错误的是②C .变形错误的是③D .变形错误的是⑤7.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=448.甲、乙两人环湖竞走,环湖一周400米,乙的速度是80米/分,甲的速度是乙的速度的114 倍,且甲在乙前100米,若两人同时走,多少分钟两人第一次相遇?设经过x 分钟两人第一次相遇,则所列方程为( )A .80x +100=54 ·80xB .80x +300=54 ·80xC .80x -100=54 ·80xD .80x -300=54 ·80x第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.当x = 时,代数式3x -2与代数式6-x 的值相等.10.(盘锦中考)不等式组⎩⎨⎧2x +3≤x +112x +53-1>2-x的解集是 . 11.(包头中考)如果2x a +1y 与x 2y b -1是同类项,那么a b 的值是 .12.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是 .13.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x -3y =m ①3x -4y =3m -2 ②的解都是正数,则m 的取值范围是 .14.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是 .15.某餐厅为招揽生意,规定凡订餐五桌以上,多于五桌的部分按定价的7折收费.某人预定10桌,消费后共付了现金2 550元,则每桌的定价是 元.16.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆共10辆,则甲种运输车至少应安排 辆.三、解答题(本大题共8小题,共72分)17.(10分)解下列方程(组):(1)2-2x +13 =1+x 2 ; (2)2-3x =⎪⎭⎫ ⎝⎛-x 2412118.(6分)用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;② (2)⎩⎨⎧x +2y +12=4(x -1),3x -2(2y +1)=4.19.(8分)(威海中考)解不等式组⎩⎨⎧2x -7<3(x -1), ①5-12(x +4)≥x ,② 并将解集在数轴上表示出来.20.(8分)已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a +9)x =4(x+1)的解,求a 2-1a 的值.21.(8分)当m 为何值时,方程组⎩⎪⎨⎪⎧5x +6y =2m -3,①7x -4y =m -2, ②的解满足x<0,y<0.22.(10分)(来宾中考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案.甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?23.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1 244元,则该水果每千克售价至少为多少元?24.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.参考答案第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,是二元一次方程的是 (B )A .xy =1B .y =3x -1C .x +1y =2D .x 2+x -3=02.若a>b ,则下列不等式不一定成立的是 ( D ) A .a +m>b +m B .a(m 2+1)>b(m 2+1)C .-a 2 <-b 2D .a 2>b 23.二元一次方程组⎩⎪⎨⎪⎧x +y =2x -y =-2 的解是 ( B ) A .⎩⎪⎨⎪⎧x =0,y =-2 B .⎩⎪⎨⎪⎧x =0,y =2 C .⎩⎪⎨⎪⎧x =2,y =0 D .⎩⎪⎨⎪⎧x =-2,y =0 4.(嘉兴中考)不等式1-x ≥2的解在数轴上表示正确的是 (A )5.(毕节中考)不等式组⎩⎨⎧2x +1≥-3x<1的解集在数轴上表示正确的是(D )6.研究下面解方程120 +2x -35 =3x 4 -1-3x 20 的过程:①去分母,得1+4(2x-3)=15x -(1-3x);②去括号,得1+8x -12=15x -1-3x ;③移项,得8x -15x +3x =-1-1+12;④合并同类项,得-4x =10;⑤系数化为1,得x =-52 .对于上面的解法,你认为 (B )A .完全正确B .变形错误的是②C .变形错误的是③D .变形错误的是⑤7.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是 (A )A .5x +4(x +2)=44B .5x +4(x -2)=44C .9(x +2)=44D .9(x +2)-4×2=448.甲、乙两人环湖竞走,环湖一周400米,乙的速度是80米/分,甲的速度是乙的速度的114 倍,且甲在乙前100米,若两人同时走,多少分钟两人第一次相遇?设经过x 分钟两人第一次相遇,则所列方程为(B )A .80x +100=54 ·80xB .80x +300=54 ·80xC .80x -100=54 ·80xD .80x -300=54 ·80x第Ⅱ卷(非选择题 共96分)二、填空题(本大题共8小题,每小题3分,共24分)9.当x =2时,代数式3x -2与代数式6-x 的值相等. 10.(盘锦中考)不等式组⎩⎨⎧2x +3≤x +112x +53-1>2-x 的解集是45 <x ≤8.11.(包头中考)如果2x a +1y 与x 2y b -1是同类项,那么a b 的值是12 .12.已知x =3-2a 是不等式2(x -3)<x -1的一个解,那么a 的取值范围是a>-1.13.已知关于x ,y 的方程组⎩⎪⎨⎪⎧2x -3y =m ①3x -4y =3m -2 ② 的解都是正数,则m 的取值范围是m>43 .14.已知关于x 的方程2x +4=m -x 的解是负数,则m 的取值范围是m<4.15.某餐厅为招揽生意,规定凡订餐五桌以上,多于五桌的部分按定价的7折收费.某人预定10桌,消费后共付了现金2 550元,则每桌的定价是300元.16.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆共10辆,则甲种运输车至少应安排6辆.三、解答题(本大题共8小题,共72分)17.(10分)解下列方程(组):(1)2-2x +13 =1+x 2 ;解:去分母,得12-2(2x +1)=3(1+x),去括号,得12-4x -2=3+3x ,移项合并,得-7x =-7,解得x =1.(2)2-3x =12 ⎝ ⎛⎭⎪⎫14-2x . 解:去括号,得2-3x =18 -x ,移项,得-3x +x =18 -2,即-2x =-158 ,两边都除以-2,得x =1516 .18.(6分)用适当的方法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;②解:将①代入②,得3x +2x -4=1,解得x =1, 将x =1代入①,得y =-2,所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-2.(2)⎩⎨⎧x +2y +12=4(x -1),3x -2(2y +1)=4.解:整理,得⎩⎪⎨⎪⎧6x -2y =9,①3x -4y =6,②①×2-②,得x =43 ,把x =43 代入①,得6×43 -2y =9,解得y =-12 ,所以原方程组的解为⎩⎪⎨⎪⎧x =43,y =-12.19.(8分)(威海中考)解不等式组⎩⎨⎧2x -7<3(x -1),①5-12(x +4)≥x ,② 并将解集在数轴上表示出来.解:解不等式①得,x>-4,解不等式②得,x ≤2,因此不等式组的解集为-4<x ≤2.在数轴上表示不等式组的解集如图.20.(8分)已知满足不等式5-3x ≤1的最小正整数是关于x 的方程(a +9)x =4(x+1)的解,求a 2-1a 的值. 解:解不等式5-3x ≤1,得x ≥43 ,∴x 的最小正整数是2.又∵x 的最小正整数是关于x 的方程(a +9)x =4(x +1)的解,∴(a +9)×2=4×(2+1),解得a =-3,∴a 2-1a =9+13 =913 .21.(8分)当m 为何值时,方程组⎩⎪⎨⎪⎧5x +6y =2m -3,①7x -4y =m -2, ② 的解满足x<0,y<0.解:由①×2+②×3得10x +12y +21x -12y =4m -6+3m -6,31x =7m -12,x =7m -1231 <0,∴m<127 .由①×7-②×5得35x +42y -35x +20y =14m -21-5m +10,62y =9m -11,y =9m -1162 <0,∴m<119 .∵119 <127 ,∴m<119 .22.(10分)(来宾中考)甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案.甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x 张(x ≥9).(1)分别用含x 的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?解:(1)甲厂家所需金额为3×800+80(x -9)=1 680+80x ;乙厂家所需金额为(3×800+80x)×0.8=1 920+64x ;(2)由题意得1 680+80x>1 920+64x ,解得x>15.答:购买的椅子至少16张时,到乙厂家购买更划算.23.(10分)某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2 200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1 244元,则该水果每千克售价至少为多少元?解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得⎩⎨⎧x +y =2 200,y 4-0.5=x 4×2, 解得⎩⎪⎨⎪⎧x =800,y =1 400. 答:水果店两次分别购买了800元和1 400元的水果.(2)设该水果每千克售价为a 元,第一次所购该水果的重量为800÷4=200千克.第二次所购该水果的重量为200×2=400千克.根据题意,得[200×(1-3%)+400×(1-5%)]a -800-1 400≥1 244.解得a ≥6.答:该水果每千克售价至少为6元.24.(12分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9 000元;购买10副横拍球拍比购买5副直拍球拍多花费1 600元.(1)求两种球拍每副各多少元;(2)若学校购买两种球拍共40副,其中直拍球拍的数量不低于总数量的70%,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设直拍球拍每副x 元,横拍球拍每副y 元,由题意得⎩⎪⎨⎪⎧20(x +20)+15(y +20)=9 000,5(x +20)+1 600=10(y +20), 解得⎩⎪⎨⎪⎧x =220,y =260. 答:直拍球拍每副220元,横拍球拍每副260元.(2)设购买直拍球拍m 副,则购买横拍球拍(40-m)副,由题意得⎩⎪⎨⎪⎧m ≥40×70%,m ≤3(40-m ), 解得28≤m ≤30. ∵m 为正整数,∴m 为28,29,30.设买40副球拍所需的费用为w ,则w =(220+20)m +(260+20)(40-m)=11 200-40m.∴当m =28时,w =10 080元;当m =29时,w =10 040元;当m=30时,w=10 000元;∴当m=30时,w取最小值,最小值为10 000元.答:购买直拍球拍30副,购买横拍球拍10副时,费用最少,最少费用为10 000元.1、三人行,必有我师。
浙教版2020七年级数学下册期中模拟基础测试题2(附答案)

浙教版2020七年级数学下册期中模拟基础测试题2(附答案)1.下列计算正确的是( )A .a 2·a 3=a 6B .a 6÷a 3=a 2C .4x 2-3x 2=1D .3x 2+2x 2=5x 2 2.下列计算正确的是( )A .32 6(3)2x x x ÷-=-B .236 ·a a a =C .25(?)a a =D .2363(2)2a b a b = 3.下列运算中,正确的是( )A .235a a a +=B .43a a a -=C .3412a a a ⋅=D .632a a a ÷= 4.如图,AB ∥CD ,CE ∥BF ,A .E 、F 、D 在一直线上,BC 与AD 交于点O ,且OE=OF ,则图中有全等三角形的对数为( )A . 2B .3C .4D .55.若4x 2+kx+25=(2x+a )2,则k+a 的值可以是( )A .-25B .-15C .15D .20 6.若方程组的解 x 和 y 相等,则 a 的值为( ) A .1 B .2 C .3 D .47.下列计算错误的是( )A .4x 3•2x 2=8x 5B .a 4﹣a 3=aC .(﹣x 2)5=﹣x 10D .(a ﹣b )2=a 2﹣2ab+b 28.如图,下列四组角中是同位角的是( )A .∠1与∠7B .∠3与∠5C .∠4 与∠5D .∠2与∠6 9.如图,已知a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=46°,则∠2的度数是( )A .44oB .46oC .54oD .56o10.某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x 人,学生有y 人,则可列方程组为( ) 景点 票价开放时间泰山门票旺季:125元/人淡季:100元/人全天 说明:(1)旺季时间(2月~11月),淡季时间(12月-次年1月);(2)老年人(60岁~70岁)、学生、儿童(1.2米~1.4米)享受5折优惠;(3)教师、省部级劳模、英模、道德模范享受8折优惠;(4)现役军人、伤残军人、70岁以上老年人、残疾人,凭本人有效证件免费进山;(5)享受优惠的游客请出示本人有效证件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:C
【解析】
解:∵ ,∴x﹣1=0,x+y=0,解得:x=1,y=﹣1,所以xy=﹣1.故选C.
5.A
解析:A
【解析】
分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE= S△A′EF=2,S△ABD= S△ABC= ,根据△DA′E∽△DAB知 ,据此求解可得.
详解:如图,
B.相等的角是对顶角
C.两条直线被第三条直线所截,同旁内角互补
D.过一点有且只有一条直线与已知直线平行
10.请你观察、思考下列计算过程:因为112=121,所以 =11:,因为1112=12321所以 =111…,由此猜想 =( )
A.111111B.1111111C.11111111D.111111111
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
14.关于 的不等式 的解集为 ,写出一组满足条件的实数 , 的值: _________, ___________.
15.如图,已知 , , ,则 __________.
16.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(-1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为___.
解:A、1600名学生的体重是总体,故A正确;
B、1600名学生的体重是总体,故B错误;
C、每个学生的体重是个体,故C错误;
D、从中抽取了100名学生的体重是一个样本,故D错误;
故选:A.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
15.95°【解析】如图作EF∥AB则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本
解析:95°
【解析】
如图,作EF∥AB,则EF∥CD,
∴∠ABE+∠BEF=180°,∵∠ABE=120°,∴∠BEF=60°,
12.C
解析:C
【解析】
【分析】
利用平行线的判定和性质即可解决问题.
【详解】
如图,
∵∠1+∠2=180°,
∴a∥b,
∴∠4=∠5,
∵∠3=∠5,∠3=55°,
∴∠4=∠3=55°,
故选C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.
二、填空题
13.如果两个角相等那么它们是对顶角【解析】【分析】将原命题的条件及结论进行交换即可得到其逆命题【详解】∵原命题的条件是:如果两个角是对顶角结论是:那么这两个角相等;∴其逆命题应该为:如两个角相等那么这两
详解:∵ =11, =111…,…,
∴ ═111 111 111.
故选D.
点睛:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
11.C
解析:C
【解析】
【分析】
根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.
解析:如果两个角相等,那么它们是对顶角
【解析】
【分析】
将原命题的条件及结论进行交换即可得到其逆命题.
【详解】
∵原命题的条件是:如果两个角是对顶角,结论是:那么这两个角相等;
∴其逆命题应该为:如两个角相等,那么这两个角是对顶角,简化后即为:相等的角是对顶角.
【点睛】
考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.
解析:(3,2)
【解析】
【分析】
根据平移的性质即可得到结论.
【详解】
∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),
∵-1+3=2,
∴0+3=3
∴A′(3,2),
故答案为:(3,2)
【点睛】
本题考查了坐标与图形变化-平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.
【详解】
已知直线a∥b,
∴∠3=∠1=60°(两直线平行,同位角相等),
∠4=90°(已知),
∠2+∠3+∠4=180°(已知直线),
∴∠2=180°-60°-90°=30°.
故选:A.
【点睛】
此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.
3.A
解析:A
【解析】
【详解】
点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,
于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,
故D(0,1).
故选C.
【点睛】
此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.
【详解】
解:解不等式 下一步为化系数为1,且解集为 ,说明 , ,
∴可取 ,则 ,
故答案为:2, .(答案不唯一)
【点睛】
此题考查运用不等式的性质解一元一次不等式,不等式的性质为:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2::不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.
6.C
解析:C
【解析】
【分析】
根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B、C内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断 ,即可得到答案.
【详解】
解:A. , ,此项正确,不合题意;
B. , ,此项正确,不合题意;
C.∵∠2=∠4,
∴CD∥AB,
∴不能判定 ,此项错误,符合题意;
17.±2【解析】【分析】首先估计出a的值进而得出M的值再得出N的值再利用平方根的定义得出答案【详解】解:∵M是满足不等式-的所有整数a的和∴M=-1+0+1+2=2∵N是满足不等式x≤的最大整数∴N=2
17.已知M是满足不等式 的所有整数的和,N是满足不等式x≤ 的最大整数,则M+N的平方根为________.
18.如图,将边长为6cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为______cm2.
19.知 , 为两个连续的整数,且 ,则 ______.
2020年七年级数学下期中模拟试题(带答案) (2)
一、选择题
1.已知点P(3 , +2)在x轴上,则P点的坐标是( )
A.(3,2)B.(6,0)C.(-6,0)D.(6,2)
2.如图,直线 ,三角板的直角顶点放在直线 上,两直角边与直线 相交,如果 ,那么 等于()
A. B. C. D.
3.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()
14.【解析】【分析】通关观察解不等式下一步为化系数为1且解集为说明据此可写出ab的值【详解】解:解不等式下一步为化系数为1且解集为说明∴可取则故答案为:2(答案不唯一)【点睛】此题考查运用不等式的性质解
解析:
【解析】
【分析】
通关观察解不等式 下一步为化系数为1,且解集为 ,说明 , ,据此可写出a,b的值.
20.为了估计湖里有多少条鱼,先捕了100条鱼,做好标记然后放回到湖里,过一段时间,待带有标记的鱼完全混合于鱼群后,再捕上200条鱼,发现其中带有标记的鱼为8条,湖里大约有鱼_____条.
三、解答题
21.解方程组: .
22.解不等式(组):
(1)解不等式 ,并把它的解集表示在数轴上;
(2)解不等式组:
23.计算:
(1) (2)
24.如图,点E在DF上,点B在AC上, , ,试说明: ,将过程补充完整.
解: 已知
______
等量代换
______
______
又 已知
______
______
25.解方程组:
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据点P在x轴上,即y=0,可得出a的值,从而得出点P的坐标.
故选B.
【点睛】
此题主要考查了估算无理数的大小,正确得出 的取值范围是解题关键.
9.A
解析:A
【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可.
详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;
根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;
A.2B.3C. D.
6.如图,点 在 的延长线上,则下列条件中,不能判定 的是()
A. B.
C. D.
7.比较 、 、 的大小()
A. B. C. D.
8.已知m= ,则以下对m的估算正确的( )