人教版八年级下册数学轴对称与中心对称

合集下载

八年级数学复习考点1 轴对称及轴对称图形的意义

八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。

4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。

二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。

变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。

变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。

三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。

3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。

人教版八年级数学教案:13.1.1轴对称

人教版八年级数学教案:13.1.1轴对称

《13.1.1轴对称》教学设计根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教法与学法分析,教学过程分析几个方面加以说明。

一、教材分析1、教材的地位及作用对称是数学中一个非常重要的概念,教科书分为轴对称和中心对称两部分讲述。

“轴对称和轴对称图形”这一节是在学生学习完三角形全等的基础上,在学习等腰三角形的性质,以及线段垂直平分线的性质定理及逆定理前安排的一节内容。

它是前面所学知识在生活中的应用,也是后面学习中心对称的重要的基础知识。

通过本节课的教学,主要是训练学生初步的审美能力和初步的动手操作技能,拓展学生的想象能力和归纳总结能力。

因此,这一节课无论在知识上,还是对学生能力的培养上,都起着十分重要的作用。

2、学情分析这节课的教学对象是初二年级的学生,他们对平面图形有了初步的认识,掌握了基本图形的特征。

轴对称对他们来说并不陌生,小学的时候他们就接触过,而且日常生活中轴对称图形随处可见,所以学生对轴对称图形也有了直观的认识,再加上动手操作,电脑课件展示等,也有利于提高学生对轴对称与轴对称图的认识,学生掌握本节课内容应该不困难。

二、教学目标解析1.教学目标中国学生发展核心素养,以科学性、时代性和民族性为基本原则,以培养“全面发展的人”为核心,分为文化基础、自主发展、社会参与三个方面.新课标指出,教学目标应包括知识与技能、数学思考、解决问题、情感与态度四个方面而这四维目标又应是紧密联系的一个有机整体.因此我从培养学生的核心素养出发将四维目标进行整合,确定本节课的教学目标为:(1)理解轴对称图形、成轴对称的概念及其区别与联系(2)掌握轴对称及轴对称图形的性质(3)通过具体动手操作,培养学生动手能力(4)通过轴对称图形和成轴对称的学习,让学生关注生活,学会观察,主动参与数学学习活动.同时培养学生审美情趣,增强鉴赏美的能力.2.教材重点、教学难点根据以上分析,结合新课标对本节课的要求,我将本节教材的重点确定为:轴对称图形和成轴对称的概念及性质.教学难点确定为:轴对称图形和两个图形成轴对称的区别以及轴对称的性质的应用.四、教学策略解析教无定法,教学有法,贵在得法。

人教版八年级数学13.2画轴对称图形(1定稿).ppt

人教版八年级数学13.2画轴对称图形(1定稿).ppt

要在燃气管道L上修建一个 泵站,分别向A、B两镇供 气,泵站修在管道的什么地 方,可使所用的输气管线最 短?
你可以在L上找几个点 试一试,能发现什么规 律吗?
B A C
哈,我知道怎样作
B
/
火眼金睛
轴对称变换的特征: 1、由一个平面图形可以得到它关于一条直线l对 称的图形,这个图形与原图形的形状、大小完全 一样;
八年级
上册
13.2 画轴对称图形
利用轴对称变换设计美丽图案
一个轴对称图形可以看作是以它的一部分作为基础,经 轴对称变换扩展而来.
知识点一、轴对称变换的定义和实质
对称轴的方向和位置 发生变化,得到图形的方 向和位置也会发生变化.
由一个平面图 形得到它的轴对称 图形的过程叫做轴 对称变换。轴对称 变换的实质就是图 形的翻折;翻折前 后两个图形全等。
2、新图形上的每一点,都是原图形上的某一点关 于直线l的对称点;
3、连接任意一对对应点的线段被对称轴垂直平分。
作已知图形关于已知直线对称的图形的一般步聚:
1、找点 (确定图形中的一些特殊点);
2、画点 (画出特殊点关于已知直线的对称点); (连接对称点)。 3、连线
知识点二、轴对称变换的特征:(书67页) 1、由一个平面图形可以得到它关于一 条直线l对称的图形,这个图形与原图 形的形状、大小完全相同(全等); 2、新图形上的每一点,都是原图形上的 某一点关于直线l的对称点; 3、连接任意一对对应点的线段被对称轴垂直平分。 (对应点的连线被对称轴垂直平分)
成轴对称的两个图形中的任何一个可以看作由另 一个图形经过轴对称变换后得到。 一个轴对称图形也可以看作以它的一部分为基础, 经轴对称变换扩展而成的。
网格作图(重点,考试必考,嘎嘎重要)

轴对称图形中心对称图形的定义及性质

轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。

轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。

(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。

这条直线就是对称轴。

两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。

(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。

中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。

中心对称的性质:①于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。

【中考备战策略】2014中考数学总复习 第27讲 轴对称与中心对称课件 新人教版

【中考备战策略】2014中考数学总复习 第27讲 轴对称与中心对称课件 新人教版

A.△ ABD≌△ ACD B. AF 垂直平分 EG C.直线 BG, CE 的交点在 AF 上 D.△ DEG 是等边三角形
解析: 因为风筝图案关于直线 AF 对 称,所以 △ ABD≌△ ACD.AF 垂直平分 EG,点 B 和点 C 关于 直线 AF 对称,点 E 和点 G 关于直线 AF 对称,连接 BG, CE,则 BG 和 CE 关于直线 AF 对称.所以直线 BG, CE 的交点在 AF 上.故选 D.
2. (2013· 烟台 )以下是回收、绿色包装、节水、低 碳四个标志,其中是中心对称图形的是( B )
解析:由中心对称图形、轴对称图形的定义可知, A 和 D 既不是中心对称图形, 也不是轴对称图形;B 是 中心对称图形; C 是轴对称图形,但不是中心对称图 形.故选 B.
3. (2013· 汕头 )下列四个几何体中,俯视图为四边 形的是 ( D )
考点训练
一、选择题 (每小题 4 分,共 48 分 ) 1 . (2013· 德 州 ) 民 族图案是 数学文化 中的一块 瑰 宝.下列图案中,既不是中心对称图形也不是轴对称图 形的是 ( C )
解析: A 选项是中心对称图形, 但不是轴对称图形; B 选项既是中心对称图形,也是轴对称图形;D 选项是 轴对称图形,但不是中心对称图形;只有 C 花瓣个数 为奇数,既不是中心对称图形,也不是轴对称图形.故 选 C.
解析:等腰梯形是轴对称图形,但不是中心对称图 形;菱形既是轴对称图形又是中心对称图形;函数 1 y= 的图象是一对双曲线,既是轴对称图形又是中心对 x 称图形;函数 y=kx+b(k≠0)的图象是一条直线,既是轴 对称图形又是中心对称图形.故选 D.
4.如图是一个风筝的图案,它是以直线 AF 为对 称 轴 的 轴 对称 图 形, 下 列 结论 中 不一 定 成 立的 是 ( D )

人教版八年级下册数学专题复习及练习(含解析):轴对称

人教版八年级下册数学专题复习及练习(含解析):轴对称

专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。

这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。

4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。

知识点2:轴对称的性质(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。

八年级数学轴对称和中心对称图形专题练习线段的垂直平分线的性质定理及其逆定理的应用

八年级数学轴对称和中心对称图形专题练习线段的垂直平分线的性质定理及其逆定理的应用

线段的垂直平分线的性质定理及其逆定理的应用1.撑伞时,把伞“两侧的伞骨”和支架分别看作AB,AC和DB,DC,始终有AB=AC,DB=DC,则伞杆AD 与B,C的连线BC的位置关系为 _________.2.如图所示,在△ABC中,DM,EN分别垂直平分AB和AC,交BC于D,E,若∠DAE=50°,则∠BA C= _____度,若△ADE的周长为19 cm,则BC=__________cm.3.如图,△ABC与△ADC关于直线AC对称,连接BD,若已知四边形ABCD的面积是125,AC=25,则BD的长为 ________.4.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.专题二线段垂直平分线与轴对称的综合应用5.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()6.如图,四边形ABCD是一个长方形的台球桌,台球桌上还剩一个黑球没有被打进球袋,在点P的位置,现在轮到你打,你应该把在点Q位置的白球打到AB边上的哪一点,才能反弹回来撞到黑球?7.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30° B.45° C.60° D.90°专题三作图题8.如图所示,靠近河边有一块三角形菜地,要分给张、王、李、赵四家,为了分配合理,要求面积相同,为了便于浇地,每家都有靠河边的菜地,你能想办法将菜地合理分配吗?(尺规作图,保留作图痕迹)9.如图,△ABC 与△A B C '''关于直线MN 对称,△A B C '''与△A B C ''''''关于直线EF 对称. (1)画出直线EF (尺规作图);(2)设直线MN 与EF 相交于点O ,夹角为α,试探求∠BOB ''与α的数量关系.参考答案1. 垂直 解析:连结BC ,AD ,∵AB=AC ,DB=DC ,∴A 在线段BC 的垂直平分线上,D 在线段BC 的垂直平分线上, ∴AD 是线段BC 的垂直平分线,即AD ⊥BC ,故答案为:垂直. 2.115 19 解析:①∵DM ,EN 分别垂直平分AB 和AC ,∴AM=BM ,∠AMD=∠BMD=90°,又MD=MD ,∴△AMD ≌△BMD ,∴∠B=∠BAD ,AD=BD. 同理∠C=∠CAE ,AE=CE. ∵∠BAC=∠DAE+∠BAD+∠CAE , ∴∠BAC=∠DAE+∠B+∠C ;又∵∠BAC+∠B+∠C=180°,∠DAE=50°,∴∠BAC=115°; ②∵△ADE 的周长为19 cm , ∴AD+AE+DE=19, 由②知,AD=BD ,AE=EC , ∴BD+DE+EC=19,即BC=19 cm.3. 10 解析:因为△ABC 与△ADC 关于直线AC 对称,所以AC 垂直平分BD ,所以BE=DE=12BD ,所以1=2ABCD S AC BD ⋅四边形,所以BD=10. 4.解:∵MN 是边AB 的中垂线,∴AN =BN ,∠ANM=∠BNM=90°,又MN=MN ,∴△AMN ≌△BMN , ∴AM=BM ,∠BAM=∠B. 设∠B=x ,则∠BAM=x ,∵∠C=3∠B ,∴∠C=3x.在△ABC 中,由三角形内角和定理,得x+x+3x+50°=180°, ∴x=26°,即∠B=26°.5.D 解析:(1)作点P 关于直线l 的对称点P ';(2)连结P 'Q ,交直线l 于点M ;沿着P —M —Q 的路线铺设,即为最短.6.解:如图,作点P 关于AB 的对称点P ',连结P Q '交AB 于点M ,则点M 就是所求的点,即把在点Q 位置的白球打到边AB 上的点M 处,才能反弹回来撞到黑球.7.A 解析:如图,作点P 关于OA 的对称点C ,关于OB 的对称点D ,连结CD ,交OA 于E ,OB 于F .此时,△PEF 的周长最小.连结OC ,OD ,PE ,PF .∵点P 与点C 关于OA 对称,∴OA 垂直平分PC ,∴∠COA=∠AOP ,PE=CE ,OC=OP ,同理,可得∠DOB=∠BOP ,PF=DF ,OD=OP .∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF 的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=C D=2,∴△COD 是等边三角形, ∴2α=60°,∴α=30°.故选A .8. 解:如图所示:(1)作BC 的垂直平分线b ,交BC 于E ;(2)分别作BE 、CE 的垂直平分线a ,c ,分别交BC 于D ,F ;(3)连接AD ,AE ,AF ,则AD ,AE ,AF 即为分割线.9.解:如图,连结C C ''',作线段C C '''的垂直平分线EF ,则直线EF 即为所求.(2)连结BO ,B O ',B O ''.由△ABC 与△A B C '''关于直线MN 对称,易知∠BOM=∠B OM '.由△A B C '''与△A B C ''''''关于直线EF 对称,易知∠B OE '=∠B OE '',所以∠B OB '''=∠BOM+∠B OM '+∠OF B '+∠OF B ''=2(∠B OM '+∠OF B ')=2α,即∠BOB ''=2α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称与中心对称▴课前热身1.下列四个图形中,不是..轴对称图形的是()2.如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P’BA,则∠PBP’的度数是() A.45° B.60° C.90° D.120°3.如图,镜子中号码的实际号码是___________.4.请写出一个是轴对称图形的图形名称.答:.【参考答案】1. D2. B3.32654.圆、矩形等▴考点聚焦1.理解轴对称和轴对称图形的联系与区别,•会判断一个图形是否是轴对称图形或中心对称图形.2.掌握轴对称的基本特征,并能用这些特征解决简单的问题(如折叠).3.能用轴对称和中心对称的性质设计图案.▴备考兵法1.本节试题多以日常生活中的工艺品、商标图案、宣传画、字母、数字为材料,判断是否是轴对称图形或中心对称图形,所以应熟练掌握基本图形的轴对称性,结合实际图形进行辨认.2.在解轴对称和折叠类问题时,应知道折叠问题要用轴对称解决,•折痕就是两个重叠部分的对称轴,往往需要设未知数,利用勾股定理建立方程(组)解决.3.平面上的最短距离问题,往往要作出对称点,•利用“两点之间线段最短”解决. ▴考点链接1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . ▴典例精析例1(内蒙古包头)下列图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个【答案】B【解析】本题考查轴对称图形和中心对称图形的定义,轴对称图形是指将图形沿某条直线折叠,直线两旁部分能够完全重合的图形,而中心对称图形是指将图形沿某个点旋转180°后得到的图形与原图形完全重合的图形.故同时符合上面两个条件的是第1、3和4个图形,正确答案选B.例2如图,半圆A和半圆B均与y轴相切于点O,其直径CD,EF均与x轴垂直,以O•为顶点,仅开口方向相反的两条抛物线分别经过点两半圆的C,E和D,F,则图中阴影部分的面积是_______.π【答案】2【解析】由题可知,半圆A与半圆B关于y轴对称,两条抛物线关于x轴对称,∴S1=S3,S2=S4,∴图中阴影部分的面积实际为半圆A的面积.例3如图,已知折叠矩形的一边AD,使得点D落在BC边上的点F处,且AB=8cm,BC=10cm,求EC的长.【答案】解:由折叠性质知,AF=AD=10cm,EF=DE.设EC=xcm,则DE=(8-x)cm.在Rt△ABF中,,∴FC=BC-BF=10-6=4cm.在Rt△CEF中,EF2=EC2+FC2,∴(8-x)2=x2+42,∴x=3.即EC的长为3cm.【点拨】①折叠问题中注意它的对称性即对应边(角)的相等性;②求这类问题中的未知线段长,常设所求线段长为x,把其他线段用含x的代数式表示,选择一个直角三角形.根据勾股定理列方程,用方程的思想求解.拓展变式1如图,在矩形ABCD中,AB=4,BC=8,将矩形沿AC对折,点D落在D′处,•求:(1)线段CF的长;(2)△AFC的面积.答案 (1)CF=5 (2)S △AFC =10拓展变式2 如图,ABCD 是矩形,AB=4cm ,AD=3cm ,把矩形沿直线AC 重叠,点B•落在E 处,连结DE .四边形ACED 是什么图形?为什么?它的面积是多少?周长是多少? 答案 四边形ACED 是等腰梯形.(理由略) 面积为19225cm 2.周长为265cm .▴迎考精练一、选择题1.(四川内江)下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )2.(辽宁锦州)下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D3.(湖北荆门)如图,Rt△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°4.(广东深圳)下列图形中,既是轴对称图形,又是中心对称图形的是()A B C D5.(山东烟台)视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变换是()A.平移B.旋转C.对称D.位似6.(浙江嘉兴)判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形,结果(▲)A.①②都正确 B.①②都错误C.①正确,②错误D.①错误,②正确7.(黑龙江哈尔滨)下列图形中,既是轴对称图形,又是中心对称图形的是().8.(广东省)如图所示的矩形纸片,先沿虑线按箭头方向向右对折,接着将对折后的纸片沿虑线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个()二、填空题1.(湖北孝感)在平面直角坐标系中,有A(3,-2),B(4,2)两点,现另取一点C(1,n),当n = 时,AC + BC的值最小.2.(北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2n ,且n为整数),则A′N= (用含有n的式子表示)3.(湖南娄底)如图,⊙O的半径为2,C1是函数y=1 2x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是 .4.(陕西省) 如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、解答题1.(湖南娄底)如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.(1)画出四边形OABC 关于y 轴对称的四边形OA 1B 1C 1,并写出点B 1的坐标是 .(2)画出四边形OABC 绕点O 顺时针方向旋转90°后得到的四边形OA 2B 2C 2,并求出点C 旋转到点C 2经过的路径的长度.2.(吉林长春)图①、图②均为76 的正方形网格,点A B C 、、在格点上.(1)在图①中确定格点D ,并画出以A B C D 、、、为顶点的四边形,使其为轴对称图形.(画一个即可)(3分)(2)在图②中确定格点E ,并画出以A B C E 、、、为顶点的四边形,使其为中心对称图形.(画一个即可)(3分)图①图②3.(湖北恩施)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷()A 和世界级自然保护区星斗山()B 位于笔直的沪渝高速公路X 同侧,50km AB A =,、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和1S PA PB =+,图(2)是方案二的示意图(点A 关于直线X 的对称点是A ',连接BA '交直线X 于点P ),P 到A 、B 的距离之和2S PA PB =+.(1)求1S 、2S ,并比较它们的大小; (2)请你说明2S PA PB =+的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.4.(广西南宁)已知ABC △在平面直角坐标系中的位置如图10所示. (1)分别写出图中点A C 和点的坐标;(2)画出ABC △绕点C 按顺时针方向旋转90A B C '''°后的△; (3)求点A 旋转到点A '所经过的路线长(结果保留π).5.(湖南益阳)如图,△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题. 请按照小萍的思路,探究并解答下列问题:(1)分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,证明四边形AEGF 是正方形;(2)设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值.【参考答案】选择题1. D2. B3.D解析:本题考查轴对称的有关知识,由折叠可知,∠ACD=∠A′CD=45°,∠A=∠CA′D=50°,∴∠ADC=∠A′DC=85°,∴∠A′DB=10°,故选D.4. D5. D6. C7. D【解析】A、B均是轴对称图形但不是中心对称图形,C是中心对称图形但不是轴对称图形.只有D即是轴对称图形又是中心对称图形8.C填空题1.25-(或–0.4)2.2n≥,且n为整数)3.2π4.4解答题1. 解:(1)如图:B1的坐标是(-6,2) (2)如图:L=903180π⨯⨯=32π2. 解:(1)有以下答案供参考:(2)有以下答案供参考:3. 解:⑴图10(1)中过B 作BC ⊥AP,垂足为C,则PC=40,又AP=10, ∴AC=30在Rt △ABC 中,AB=50 AC=30 ∴BC=40∴ BP=24022=+BC CPS 1=10240+⑵图10(2)中,过B 作BC ⊥AA ′垂足为C ,则A ′C=50,又BC=40∴BA'=4110504022=+由轴对称知:PA=PA'∴S 2=BA'=4110∴1S ﹥2S(2)如 图10(2),在公路上任找一点M,连接MA,MB,MA',由轴对称知MA=MA' ∴MB+MA=MB+MA'﹥A'B∴S 2=BA'为最小(3)过A 作关于X 轴的对称点A', 过B 作关于Y 轴的对称点B', 连接A'B',交X 轴于点P, 交Y 轴于点Q,则P,Q 即为所求过A'、 B'分别作X 轴、Y 轴的平行线交于点G, A'B'=5505010022=+ ∴所求四边形的周长为55050+4. 解:(1)()04A ,、()31C ,;(2)图略.(3)AC = 90π180AA ⨯'= π2= 5. (1)证明:由题意可得:△ABD ≌△ABE ,△ACD ≌△ACF .∴∠DAB =∠EAB ,∠DAC =∠FAC ,又∠BAC =45°,∴∠EAF =90°.又∵AD ⊥BC∴∠E =∠ADB =90°∠F =∠ADC =90°.又∵AE =AD ,AF =AD∴AE =AF .∴四边形AEGF是正方形.(2)解:设AD=x,则AE=EG=GF=x.∵BD=2,DC=3∴BE=2 ,CF=3∴BG=x-2,CG=x-3.在Rt△BGC中,BG2+CG2=BC2∴( x-2)2+(x-3)2=52.化简得,x2-5x-6=0解得x1=6,x2=-1(舍)所以AD=x=6。

相关文档
最新文档