八年级数学上册第十三章《轴对称》PPT课件

合集下载

人教版八年级数学上册课件:13.1 轴对称(共25张PPT)

人教版八年级数学上册课件:13.1  轴对称(共25张PPT)

的形式,逆命题就容易写出.鼓励学生找出原命题的条件和
结论. 原命题的条件是“有一个点是线段垂直平分线上的点”, 结论是“这个点与这条线段两个端点的距离相等”.
此时 , 逆命题就很容易写出来.“如果有一个点与线 段两个端点的距离相等,那么这个点在这条线段的垂直平 分线上.” 写出逆命题后,就想到判断它的真假.如果真,那么 需证明它;如果假 ,那么需用反例说明.请同学们自行在 练习册上完成. 学生给出了如下的四种证法.
M A A′
P
B C C′ B′
N
下图是一个轴对称图形,你能发现什么结论?能说明 理由吗?
l
A B
A′ B′
(一)线段的垂直平分线的性质
教师出示教材第61页探究,让学生测量,思考有什
么发现?
如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点, 分别量一量点 P1 , P2 , P3…到点 A 与点 B 的距离,你有什么 发现? 学生回答,教师小结:线段垂直平分线上的点与这条 线段两个端点的距离相等. 性质的证明:
证得PA=PB. 教师要求学生自己写已知 , 求证,证明过程.学 生证明完后教师板书证明过程供学生对照.
已知:MN⊥AB,垂足为点 C , AC = BC ,点 P 是直线 MN 上任 意一点.求证:PA=PB. 证明:在△APC和△BPC中,
∵PC=PC(公共边),∠PCA=∠PCB(垂直的定义),
如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做轴对称图形,这 条直线就是它的对称轴.这时,我们也说这个图形关
于这条直线(成轴)对称.
猜字游戏: 在艺术字中,有些汉字是轴对称的,你能猜一猜下 列是哪些字的一半吗?
问题2 观察下面每对图形(如图),你能类比前面的 内容概括出它们的共同特征吗?

新人教版八年级数学上册13.1.1轴对称ppt课件

新人教版八年级数学上册13.1.1轴对称ppt课件

轴对称
形状
是否轴对称图 对称轴的数

量(条)

2
是 不是
4 -------


20
1
无数
可编辑课件PPT
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不 能画成线段。
21
可编辑课件PPT
形,那么这两个图形关于这条直线_对_称_;如果
把两个成轴对称的图形看成一个图形,那么这个
图形就是__轴__对__称__图__形___.
30
可编辑课件PPT
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
31
可编辑课件PPT
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
3、(日照·中考)已知以下四个汽车标志图案: 其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
39
可编辑课件PPT
通过本课时的学习,需要我们: 1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出 两个图形关于某直线对称的对称点.
28
可编辑课件PPT
想一想
轴对称
轴对称图形
两个图形成轴对称
29
可编辑课件PPT
比较归纳
轴对称
区别 联系
轴对称图形
_一___个图形
两个图形成轴对称
__两___个图形

人教版初中数学八年级上册 13.1.1《轴对称》 课件 (共61张PPT)

人教版初中数学八年级上册 13.1.1《轴对称》 课件 (共61张PPT)

学习反馈一
1、如图所示的图形是轴对称图 形吗?如果是,指出它的对称轴。
有的轴对称图形不止一条对称轴哟! 以后找对称轴可得仔细想想呀!
学习反馈一
2、如图所示的每幅图形中的两 个图案是轴对称的吗?如果是,指出 它们的对称轴。
问题2
成轴对称的两个图形全等吗?如果把一个 轴对称图形沿对称轴分成两个图形,那么这两 个图形全等吗?这两个图形成轴对称吗?
51
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
52
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
53
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
12
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
13
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
14
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
42
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
43
结束练习
深化提高
1、观察下列由4个方块构成的L形图形, 请在适当的位置增加一个方块,使其成为 轴对称图形.
45
结束练习

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?





方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!

新人教版八年级数学上册 第十三章 轴对称全章课件

新人教版八年级数学上册    第十三章 轴对称全章课件

(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
重合,那么就说这两个图形关于这条直线对称,这条直线就是它
的对称轴.
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有的特 殊形状
两个全等图形的特殊 的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分
1.下列表情图中,属于轴对称图形的是( D )
2.下列图形,对称轴最多的是( D )
A.长方形
B.正方形
C.角
D.圆
3.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
4.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为__1_0_°___.
A
A′
B
N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.

人教版数学八年级上册13 轴对称(第一课时)课件

人教版数学八年级上册13 轴对称(第一课时)课件

►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
11
是轴对称图形且有两条对称轴的是 A.①② C.②④
B.②③ D.③④
第十三章 轴对称
(A)
上一页 返回导航 下一页
数学·八年级 (上)·配人教
12
8.【易错题】观察下列图形,其中所有轴对称图形的对称轴条数之和为 (B)
A.13 C.10
B.11 D.8
第十三章 轴对称
上一页 返回导航 下一页
数学·八年级 (上)·配人教
第十三章 轴对称
小房子
上一页 返回导航 下一页
数学·八年级 (上)·配人教
18
思维训练
14.【核心素养题】舞蹈教室的东西墙壁有平面镜AC、BD,如图.小华在平 面镜AC、BD之间练习舞蹈,她在每个平面镜中都能看到自己的一列身形,且越来 越小.若AC、BD都垂直于地面,AB=6 m.试问:
(1)小华在每个平面镜中看到的第二个身形之间的距离是多少? (2)猜想小华在每个平面镜中的第10个身形之间的距离是多少?并说明理由.
解:(1)点A对应点A,点B对应点D,点C对应点E. (2)AB=AD,AC=AE,BC=DE,∠BAC=∠DAE,∠B=∠D,∠C=∠E.
(3)△AFC与△AFE,△ABF与△ADF,四边形ABFE和四边形ADFC.
第十三章 轴对称
上一页 返回导航 下一页
能力提升
7.【山东泰安中考】下列图形:
数学·八年级 (上)·配人教

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件

人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0

初中数学 轴对称PPT课件

初中数学 轴对称PPT课件
某条直线成轴对称,你能作出这条直线吗?
C A
D
∴直线CD即为所求
分析:我们只要连接点A和点B,画 出线段AB的垂直平分线,就可以得 到点A和点B的对称轴. 而由两点确 定一条直线和线段垂直平分线的性 B 质,只要作出到点A、B距离相等的 两点即可.
作法: 1.分别以点A、B为圆心,以大于1/2AB的 长为半径作弧,两弧交于C、D两点; 2.作直线CD.
B′
将△ABC和 △A′B′C′沿直线
MN折叠后,点A与A′重
N
合,于是有:
第21页/共43页
AP=PA′,∠MPA= ∠MPA′=90°
对称轴所在的直线经过对称点所连线段的中点,
并且垂直于这条线段。
M
p
A
A′
P.
.Q
Q
C
C′
B
G
B′
N
第22页/共43页
定义:
经过线段的中点并且垂直于 这条线段的直线,就叫这条线段 的垂直平分线,也叫中垂线。 A
的直线垂直平分线段AB.其中正确的个C数有( )
A.1个 B.2个 C.3个 D.4个
第33页/共43页
4如图,若AC=12,BC=7,AB的垂直平 分线交AB于E,交AC于D,求△BCD的周 长。
解:∵ED是线段AB的垂直平分线
E
∴ BD=AD
∵ C△BCD=BD+DC+BC
B
∴ C△BCD=AD+DC+BC
= AC+BC = 12+7=19
第34页/共43页
A D C
M
1.垂直平分线的定义:
P
∵MN是AB的垂直平分线
∴ MN⊥AB , AD=BD ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典例精析 例 下列四组图片中有哪几组图形成轴对称?
A
B
C
D
知识要点
比较归纳
轴对称图形
两个图形成轴对称
图形
区别 联系
一个图形具有 的特殊形状
两个全等图形的特 殊的位置关系
1.都是沿着某条直线折叠后能重合. 2.可以互相转化.
这是轴对称图形还是两个图形成轴对称?
二 轴对称的性质
观察与思考 1.动画(1)中的两个三角形有什么关系? 2.动画(2)中的三角形是个什么图形?
线段的垂直平分线
定义
轴对称 图形
性质
轴对称与 轴对称图形
联系 区别
第十三章 轴对称
13.1.2 线段的垂直平分线的性质
第1课时 线段的垂直平分线的性质和判定
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,பைடு நூலகம்的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
知识要点
轴对称图形的性质
ABCDE FG HI J KLMN OPQRST U VWXYZ
做一做:找出下列各图形中的对称轴,并说明哪一个 图形的对称轴最多.
想一想:下面的每对图形有什么共同特点?
对称轴 A A′
对称轴
B C
B′ C′
如果一个图形沿一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称, 这条直线就是它的对称轴.
7.想一想:一辆汽车的车牌在水中的倒影如图所 示,你能确定该车的车牌号码吗?
拓展提升: 8.如图,O为△ABC内部一点,OB= 3 ,P、R为O 分别以直线AB、BC为对称轴的对称点. (1)请指出当∠ABC是什么角度时,会使得PR的长
度等于6?并完整说明PR的长度为何在此时等于 6的理由.
解:如图,∠ABC=90°时,PR=6. 证明如下:连接PB、RB, ∵P、R为O分别以直线AB、BC为对称轴 的对称点, ∴PB=OB=3,RB=OB=3. ∵∠ABC=90°,∴∠ABP+∠CBR= ∠ABO+∠CBO=∠ABC=90°, ∴∠PBR=180°,即P、B、R三点共线, ∴PR=PB+RB=3+3=6;
A.AB∥DF
B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分
5.如图,Rt△ABC中,∠ACB= 90°,∠A=50°,将其折叠,使 点A落在边CB上A′处,折痕为 CD,则∠A′DB的度数为___1_0_°__.
6.(1)整个图形是轴对称图形吗?对称轴是什么? (2)图中红色的三角形与哪些三角形成轴对称? (3)图形可以看作某两个图形成轴对称吗?
(2)承(1)小题,请判断当∠ABC不是你指出的角 度时,PR的长度小于6还是大于6?并完整说 明你判断的理由.
解:PR的长度小于6,理由如下: ∠ABC≠90°,则点P、B、R三点不在 同一直线上,∴PB+BR>PR. ∵PB+BR=2OB=2×3=6, ∴PR<6.
课堂小结
轴对称
定义
轴对称 性质
类似地,轴对称图形的对称轴,是任何一对
对称点所连线段的垂直平分线.
M
如图,MN垂直平分AA ′, MN垂直平分BB ′.
A B
A′ N B′
典例精析
例1 如图,一种滑翔伞的形状是左右成轴对称的 四边形ABCD,其中∠BAD=150°,∠B=40°, 则∠BCD的度数是( A ) A.130° B.150° C.40° D.65°
正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?







2.找出下面每个轴对称图形的对称轴.
3.找出下文中成轴对称的文字: 一叶孤舟,坐着两三个骚客,启用四桨五帆,
经过六滩七湾,历尽八颠九簸,可叹十分来迟.十 年寒窗,进了九八家书院,抛却七情六欲,苦读五 经四书,考了三番两次,今天一定要中. 一; 三; 个; 八; 十; 来; 苦; 天; 中.
4.如图,△ABC与△DEF关于直线MN轴对称,则以 下结论中错误的是( A )
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
一 轴对称和轴对称图形
轴对称
a
图形
m
对称轴
如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做轴对称图形,这 条直线就是它的对称轴.
做一做 下列哪些是属于轴对称图形?
A
B
C
你能举出一些轴对称图形的例子吗?
全班总动员
ABCDEFGHIJKLM
N O P Q R S T U VW X Y Z 游戏规则: 每人轮流按顺序报一个字母.如果你认为 你所报的字母的形状是一个轴对称图形,你就迅速 站起来报出,并说出它有几条对称轴;如果你认为你 报的字母的形状不是轴对称图形,那么,你只需坐 在座位上报就可以了.其他同学认真听,如果报错了, 及时提醒.
第十三章 轴对称
13.1.1 轴对称
学习目标
1.通过展示轴对称图形的图片,初步认识轴对称图形. 2.能够识别简单的轴对称图形及其对称轴.(重点) 3.理解轴对称图形和两个图形成轴对称这两个概念的区 别与联系,探索轴对称现象共同特征.(重点、难点)
导入新课
情境引入
它们有什么共同的特点?
讲授新课
相关文档
最新文档