高中数学第2章平面向量第三讲向量的坐标表示1平面向量基本定理习题苏教版必修4
高中数学 第2章 平面向量 2.3.1 平面向量基本定理优化训练 苏教版必修4(2021年整理)

2。
3.1 平面向量基本定理5分钟训练(预习类训练,可用于课前) 1.如图2-3—1所示,、不共线,=t(t∈R ),用、表示。
图2—3—1解:、不共线,则、可作基底,据定理有且只有一组实数λ1、λ2,使=λ1+λ2.2。
向量、、的终点A 、B 、C 在一条直线上,且=—3。
设=p ,=q ,=r ,则下列等式成立的是( )A 。
r =—p +qB 。
r =-p +2qC.r =p —q D 。
r =-q +2p思路解析:由=—3,得—),即2=-+3,∴=r =-p +q。
答案:A10分钟训练(强化类训练,可用于课中) 1.设一直线上三点A 、B 、P 满足=λ(λ≠1),O 是空间一点,则用、表示为( ) A 。
=+λ B.=λ+(1-λ)C 。
=D 。
思路解析:由=λ(λ≠1),得-=λ(-),即=.答案:COAOBAPABOAOBOPOA OB OA OB OP OA OB OA OB OC AC CB OA OB OC 21232321ACCB OC OA OB OC OCOAOBOC2123APPBOPOAOB OP OA OBOPOA OBOPλλ++1OBOA OP APPBOP OA OB OP OP λλ++1OBOA2.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A、C),则等于( )A.λ(+),λ∈(0,1)B。
λ(+),λ∈(0,)C.λ(-),λ∈(0,1)D。
λ(-),λ∈(0,)思路解析:∵点P在对角线AC上,∴与共线.又=+,=λ(+)。
当P与A重合时,λ=0;当P与C重合时,λ=1.答案:A3。
如图2-3—2所示,四边形ABCD为矩形,且AD=2AB,又△ADE为等腰直角三角形,F为ED的中点,=e1,=e2,以e1、e2为基底,表示向量、、及。
图2—3-2思路解析:可根据平面几何中有关知识,进行等量代换,并转化为向量的相关知识解决.解:∵=e1,=e2,∴=e2—e1.依题意有AD=2AB=DE,且F为ED中点,∴四边形ABDF为平行四边形.∴==e2—e1,==e2。
2020学年高中数学第2章平面向量3从速度的倍数到数乘向量3.2平面向量基本定理练习北师大版必修4

3.2 平面向量基本定理课时跟踪检测一、选择题1.如图所示,D 是△ABC 的边AB 的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA →C .BC →-12BA →D .BC →+12BA →解析:由三角形法则和D 是△ABC 的边AB 的中点得,BD →=12BA →,∴CD →=CB →+BD →=-BC →+12BA →.故选A . 答案:A2.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,则四边形ABCD 的形状是( )A .长方形B .平行四边形C .菱形D .梯形解析:AD →=AB →+BC →+CD →=-8a -2b =2BC →,故为梯形. 答案:D3.如图所示,点P 在∠AOB 的对角区域MON 的阴影内,且满足OP →=xOA →+yOB →,则实数对(x ,y )可以是( )A .⎝ ⎛⎭⎪⎫12,-13B .⎝ ⎛⎭⎪⎫14,12C .⎝ ⎛⎭⎪⎫-23,-13D .⎝ ⎛⎭⎪⎫-34,25 解析:由图及平面向量基本定理知x <0,y <0. 答案:C4.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=3DC →,则AD →=( )A .-34b +74cB .34b -14c C .34b +14c D .14b +34c 解析:AD →=AB →+BD →=c +34BC →=c +34(AC →-AB →)=c +34(b -c )=34b +14c .答案:C5.如果e 1、e 2是平面α内两个不共线的向量,那么在下列各命题中不正确的有( ) ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量;②对于平面α中的任一向量a ,使a =λe 1+μe 2的实数λ、μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若实数λ、μ使λe 1+μe 2=0,则λ=μ=0.A .①②B .②③C .③④D .②解析:易知①④正确;对于②λ,μ应该是唯一的,所以②不正确;对于③,当λ1=λ2=μ1=μ2=0时,λ的值有无穷多个,所以③不正确.答案:B6.如图,在△ABC 中,AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +n b ,则 m +n =( )A .12B .23C .67D .1解析:由题意可得AP →=2QP →,QB →=2QR →,因为AB →=a =AQ →+QB →=12AP →+2QR →,①AC →=AP →+PC →=AP →+RP →=AP →+QP →-QR →=AP →+12AP →-QR →=32AP →-QR →=b ,②由①②解方程求得AP →=27a +47b .再由AP →=m a +n b 可得m =27,n =47,m +n =67.答案:C 二、填空题7.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内所有向量的一组基底,则实数λ的取值范围是________.解析:使a 、b 为基底则使a 、b 不共线,∴λ-2×2≠0. ∴λ≠4. 答案:{λ|λ≠4}8.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________.解析:设e 1+e 2=m a +n b (m ,n ∈R ),∵a =e 1+2e 2,b =-e 1+e 2,∴e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )e 2.∵e 1与e 2不共线,∴⎩⎪⎨⎪⎧m -n =1,2m +n =1,∴m =23,n =-13,∴e 1+e 2=23a -13b .答案:23a -13b9.如图,在四边形ABCD 中,DC →=13AB →,E 为BC 的中点,且AE →=xAB →+yAD →,则3x -2y=________.解析:由题意得AE →=AB →+BE →=AB →+12BC →=AB →+12(BA →+AD →+DC →)=12AB →+12AD →+12·13AB →=23AB →+12AD →, 又AE →=xAB →+yAD →, ∴xAB →+yAD →=23AB →+12AD →,又∵AB →与AD →不共线, ∴x =23,y =12,∴3x -2y =3×23-2×12=2-1=1.答案:1 三、解答题10.如图,在▱ABCD 中,M 、N 分别为DC 、BC 的中点,已知AM →=c ,AN →=d ,试用c 、d 表示AB →和AD →.解:设AB →=a ,AD →=b ,则由M 、N 分别为DC 、BC 的中点可得 BN →=12b ,DM →=12a .AD →+DM →=AM →,即b +12a =c ,① AB →+BN →=AN →,即a +12b =d .②由①②可得a =23(2d -c ),b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).11.如图,已知在△OAB 中,点C 是以点A 为中心的点B 的对称点,点D 是将OB →分成2∶1的一个内分点,DC →和OA →交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →; (2)若OE →=λOA →,求实数λ的值.解:(1)∵OC →=OB →+BC →=OB →+2BA →,BA →=OA →-OB →, ∴OC →=2a -b , DC →=DB →+BC →=13OB →+2BA →=13OB →+2(OA →-OB →)=2OA →-53OB →=2a -53b . (2)AB →=b -a ,CB →=2(b -a ),OC →=OB →+BC →=b +2(a -b )=2a -b , CE →=OE →-OC →=λa -(2a -b )=(λ-2)a +b ,又CD →=OD →-OC →=23b -(2a -b )=53b -2a .又CD →、CE →共线,存在唯一的实数m ,使CE →=mCD →.(λ-2)a +b =m ⎝ ⎛⎭⎪⎫53b -2a . 由向量相等的定义,得⎩⎪⎨⎪⎧λ-2=-2m ,1=53m ⇒⎩⎪⎨⎪⎧m =35,λ=45.∴λ=45.12. 在△OAB 中,AB 上有一点P (P 与A 、B 不重合)设OA →=a ,OB →=b ,OP →=x a +y b (x ,y 均为非零实数).证明:x +y =1且AP →=y xPB →.证明:设AP →=λPB →(λ>0),则AP →=λλ+1AB →=λλ+1·(OB →-OA →)=λλ+1·(b -a ),OP →=OA →+AP →=a +λλ+1(b -a )=λλ+1b +1λ+1a , 又∵OP →=x a +y b ,∴x =11+λ,y =λ1+λ,∴x +y =11+λ+λ1+λ=1,且y x =λ,即AP →=y xPB →.13.如图,在△ABC 中,E 为AB 的中点,BD =14BC ,AD ∩CE =M .设BA →=a ,BC →=b ,试用a ,b 表示向量BM →.解:过E 作EF ∥BC 交AD 于F ,∵E 是AB 中点, ∴F 为AD 中点,∴EF →=12BD →=12⎝ ⎛⎭⎪⎫13DC →=16DC →.∵△EFM ∽△CDM , ∴EM →=16MC →=16(BC →-BM →).∵BM →-BE →=EM →=16(BC →-BM →),∴76BM →=BE →+16BC →=12BA →+16BC →=12a +16b . ∴BM →=37a +17b .。
苏教版必修四第二章 平面向量 第三讲 向量的坐标表示1 平面向量基本定理(学案含答案)

苏教版必修四第二章平面向量第三讲向量的坐标表示1 平面向量基本定理(学案含答案)2. 零向量与任意向量共线,故不能作为基底。
考点二:平面向量基本定理定理:如果e 1,e 2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2。
其中当e 1,e 2所在直线互相垂直时,这种分解也称为向量a 的正交分解。
【难点剖析】准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的。
(2)平面向量基本定理中,实数λ1、λ2的唯一性是相对于基底e 1,e 2而言的,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是唯一的。
(3)平面向量基本定理揭示了平面向量的基本结构,即同一平面内任意三个向量之间的关系是:其中任意一个向量都可以作为其他两个不共线的向量的线性组合。
【核心突破】关于基底的一个结论设e 1,e 2是平面内的一组基底,当1λ1e +2λ2e =0时,恒有λ1=λ2=0。
注意:这个结论很有用,可以实现向量向代数值的转化。
【随堂练习】已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值为________。
思路分析:利用结论:“若e 1,e 2是平面内的一组基底,当1λ1e +2λ2e =0时,恒有λ1=λ2=0”解决。
答案:3∵(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,且e 1,e 2不共线,∴⎩⎨⎧=-=-,332,643y x y x 解得⎩⎨⎧==,3,6y x ∴x -y =6-3=3。
技巧点拨:向量是数形结合的知识交汇,注意掌握从向量向代数转化的这个重要结论:“设e 1,e 2是平面内的一组基底,当1λ1e +2λ2e =0时,恒有λ1=λ2=0。
高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,
(压轴题)高中数学必修四第二章《平面向量》测试题(包含答案解析)(1)

一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .33.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6 B .4 C .3 D .24.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .523,523-+⎡⎣D .1023,1023-+⎡⎤⎣⎦5.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(0,21⎤-⎦B .(0,21⎤+⎦C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣ 6.在平行四边形ABCD 中,3DE CE =,若AE 交BD 于点M .且AM AB AD λμ=+,则λμ=( ) A .23 B .32 C .34 D .437.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( )A .14B .12C .2D .48.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .42,0B .4,42C .16,0D .4,010.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的时间为6 min ,则客船在静水中的速度为( )A .2B .8 km/hC .34D .10 km/h11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( )A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .22B .122+C .222+D .42 二、填空题13.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G ,作用在行李包上的两个拉力分别为1F ,2F ,且12F F =,1F 与2F 的夹角为θ.给出以下结论:①θ越大越费力,θ越小越省力;②θ的范围为[]0,π;③当2πθ=时,1F G =; ④当23πθ=时,1F G =. 其中正确结论的序号是______.14.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AMMB =__________.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.17.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.18.在ABC ∆中,1AC BC ==,3AB =,且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.19.如图所示,已知OAB ,由射线OA 和射线OB 及线段AB 构成如图所示的阴影区(不含边界).已知下列四个向量:①12=+OM OA OB ; ②23143OM OA OB =+;③33145=+OM OA OB ;④44899=+OM OA OB .对于点1M ,2M ,3M ,4M 落在阴影区域内(不含边界)的点有________(把所有符合条件点都填上)20.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,向量()()sin sin ,sin sin ,sin sin ,sin m B C A B n B C A =++=-,且m n ⊥.(1)求角C 的大小;(2)若3c =2a b +的取值范围.23.已知向量()1,2a =,(),1b x =.(1)若|2|||a b a b -=+,求实数x 的值;(2)若2x =,求2a b -与a b +的夹角.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值. (2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.已知,,a b c 是同一平面内的三个向量,其中(1,2)a =(1)若||25c =,且//c a ,求c 的坐标;(2)若5||b =,且2 a b +与2a b -垂直,求a 与b 的夹角θ. 26.在平面直角坐标系xOy 中,已知向量(1,2)a =-,(1,)b k =.(1)若()a a b ⊥+,求实数k 的值; (2)若对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,求实数k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.故选:D.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 2.A解析:A【解析】 因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 3.C解析:C【分析】 根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解.【详解】由题意,作出图形,如图所示: 由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+, 所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=. 故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力. 4.B解析:B【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】 由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 602OQ OM ==Q 的轨迹为圆2234x y +=, 又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B.【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.5.C解析:C【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+.故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy a c x y x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.B解析:B【分析】根据已知找到相似三角形,用向量AB 、AD 线性 表示向量AM .【详解】如图,平行四边形ABCD 中,3DE CE =,ABM EDM ,3322DE DC AB ∴==,()22223323555255AM ME AE AD DE AD AB AB AD ⎛⎫===+=+=+ ⎪⎝⎭. 32λμ= 故选:B【点睛】此题考查平面向量的线性运算,属于中档题.7.C解析:C【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos 62b a b t a a π⋅=-=-时,()g t 取得最小值1,变形可得22sin 16b π=,从而可求出b【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<, 所以()g t 恒大于零, 所以当232cos 622b b a b t a a a π⋅=-=-=-时,()g t 取得最小值1, 所以2223332122b b b g a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =, 所以2b =,故选:C【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C【分析】建立直角坐标系,利用向量的坐标运算求解即可.【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值.【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1), 所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin(3πθ-), 所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0;故选:D .【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()bc a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 为圆心,2为半径的圆M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径22, ∴d 最大值为222+. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.二、填空题13.①④【分析】根据为定值求出再对题目中的命题分析判断正误即可【详解】解:对于①由为定值所以解得;由题意知时单调递减所以单调递增即越大越费力越小越省力;①正确对于②由题意知的取值范围是所以②错误对于③当解析:①④. 【分析】根据12G F F =+为定值,求出()22121cos GF θ=+,再对题目中的命题分析、判断正误即可. 【详解】解:对于①,由12G F F =+为定值, 所以()2222121212cos 21cos G F F F F F θθ=++⨯⨯=+,解得(22121cos GF θ=+;由题意知()0,θπ∈时,cos y θ=单调递减,所以21F 单调递增, 即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是()0,π,所以②错误. 对于③,当2πθ=时,2212GF =,所以12F G =,③错误. 对于④,当23πθ=时,221F G =,所以1F G =,④正确.综上知,正确结论的序号是①④. 故答案为:①④. 【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题14.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB , 所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 17.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在 解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=,所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.18.【分析】根据平面向量的数量积运算求得的值再利用中线的性质表示出由此求得计算当的最小时的值即可【详解】解:连接如图所示:由等腰三角形中知所以∵是的中线∴同理可得∴又∴故当时有最小值此时故答案为:【点睛 解析:47【分析】根据平面向量的数量积运算求得CA CB 的值,再利用中线的性质表示出CM 、CN ,由此求得MN ,计算当||MN 的最小时x y +的值即可. 【详解】解:连接CM ,CN ,如图所示:由等腰三角形中,1AC BC ==,3AB =120ACB ∠=︒,所以1=2CA CB ⋅-.∵CM 是CEF ∆的中线,∴()()1122CM CE CF xCA yCB =+=+. 同理可得()1=2CN CA CB +. ∴()()111122MN CN CM x CA y CB =-=-+-, ()()()()222111111114224MN x x y y ⎛⎫=-+--⨯-+- ⎪⎝⎭, 又41x y +=,∴222131424MN y y =-+,(),0,1x y ∈. 故当17y =时,2MN 有最小值,此时3147x y =-=. 故答案为:47. 【点睛】本题考查了平面向量数量积公式及其运算性质问题,也考查了二次函数求最值的应用问题,属于中档题.19.①②④【分析】射线与线段的公共点记为根据平面向量基本定理可得到由在阴影区域内可得实从而且得出结论【详解】解:设在阴影区域内则射线与线段有公共点记为则存在实数使得且存在实数使得从而且又由于故对于①中解解析:①②④ 【分析】射线OM 与线段AB 的公共点记为N ,根据平面向量基本定理,可得到(1)ON tOA t OB =+-,由M 在阴影区域内可得实1r ≥,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥得出结论【详解】解:设M 在阴影区域内,则射线OM 与线段AB 有公共点,记为N , 则存在实数(0,1]t ∈,使得(1)ON tOA t OB =+-,且存在实数1r ≥,使得OM rON =,从而(1)OM rtOA r t OB =+-,且(1)1rt r t r +-=≥.又由于01t ≤≤,故(1)0r t -≥. 对于①中1,(1)2rt r t =-=,解得313,r t ==,满足1r ≥也满足(1)0r t -≥,故①满足条件. 对于②中31,(1)43rt r t =-=,解得139,1213r t ==,满足1r ≥也满足(1)0r t -≥,故②满足条件, 对于③31,(15)4rt r t =-=,解得19,152019r t ==,不满足1r ≥,故③不满足条件, 对于④,(189)49rt r t =-=,解得,4133r t ==,满足1r ≥也满足(1)0r t -≥,故④满足条件.故答案为:①②④. 【点睛】本题主要考查平面向量基本定理,向量数乘的运算及其几何意义,属于中档题.20.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点,∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3ay =, 所以,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭,所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 22.(1)2C 3π=;(2)(323,.【分析】(1)根据向量m n ⊥得到22sin sin (sin sin )sin 0B C A B B -++=,再由正弦定理将边化为角的表达式,结合余弦定理求得角C 的值.(2)利用正弦定理求的△ABC 的外接圆半径,将2a b +表示成A 与B 的三角函数式,利用辅助角公式化为角A 的函数表达式;再由角A 的取值范围求得2a b +的范围. 【详解】 (1)∵m n ⊥ ∴0m n ⋅=∴22sin sin (sin sin )sin 0B C A B B -++= ∴222c a b ab =++ ∴1cos 2C =- 又()0,C π∈ . ∴23C π=.(2)∵23C π=,c = ∴△ABC 外接圆直径2R=2∴24sin 2sin a b A B +=+4sin 2sin 3A A π⎛⎫=+- ⎪⎝⎭4sin sin A A A =+-3sin A A =6A π⎛⎫=+ ⎪⎝⎭∵0,3A π⎛⎫∈ ⎪⎝⎭∴,662A πππ⎛⎫+∈ ⎪⎝⎭∴1sin ,162A π⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭∴2a b + 的取值范围是 .【点睛】本题考查了向量垂直的坐标表示,正弦定理、余弦定理的综合应用,辅助角公式化简三角函数表达式,知识点多,较为综合,属于中档题. 23.(1)12;(2)4π. 【分析】(1)求出向量2a b -与a b +的坐标,然后由模的坐标运算列出方程可求得x ; (2)求出向量2a b -与a b +的坐标,由向量夹角的坐标运算计算. 【详解】(1)因为()1,2a =,(),1b x =, 所以()22,3a b x -=-,()1,3a b x +=+. 因为|2|||a b a b -=+,=解得12x =. (2)当2x =时,()20,3a b -=,()3,3a b +=, 所以()()203339a b a b -⋅+=⨯+⨯=,23a b -=,32a b +=.设2a b -与a b +的夹角为θ.则(2)()cos |2|||332a b a b a b a b θ-⋅+===-⋅+⋅. 又[]0,θπ∈,所以4πθ=,即2a b -与a b +的夹角为4π. 【点睛】 本题考查向量模的坐标运算,考查向量夹角的坐标运算,掌握向量的坐标运算是解题基础.24.(1)16;(2)32. 【分析】(1)先转化得到13CF AB =-,12EC AD =,再表示出1132EF AB AD =-+,求出λ13=-,μ12=,最后求λ+μ的值; (2)先得到12AE AB AD =+和0AB AD ⋅=,再建立方程421λ-+=求解λ14=,最后求DF 的长.【详解】 (1)∵点E 是BC 边上中点,点F 是CD 上靠近C 的三等分点,∴1133CF DC AB =-=-,1122EC BC AD ==, ∴1132EF EC CF AB AD =+=-+, ∴λ13=-,μ12=, 故λ+μ111326=-+=. (2)设CF =λCD ,则BF BC CF AD =+=-λAB ,又12=+=+AE AB BE AB AD ,AB AD ⋅=0, ∴AE BF ⋅=(12AB AD +)•(AD -λAB )=﹣λAB 2212AD +=-4λ+2=1, 故λ14=, ∴DF =(1﹣λ)×232=. 【点睛】 本题考查利用向量的运算求参数,是基础题25.(1)(2,4)或(2,4)--;(2)π.【分析】(1)根据共线向量的坐标关系运算即可求解;(2)由向量垂直及数量积的运算性质可得52a b ⋅=-,再利用夹角公式计算即可. 【详解】(1)设(,)c x y =,||25c =且//c a , 222020x y x y ⎧+=∴⎨-=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, (2,4)c ∴=或(2,4)c =--;(2)由 已知得(2)(2),(2)(2)0a b a b a b a b +⊥-∴+⋅-= ,即2252320,253204a ab b a b +⋅-=∴⨯+⋅-⨯=, 整理得52a b ⋅=-,cos 1||||a b a b θ⋅∴==-, 又[0,π]θ∈,πθ∴=.【点睛】本题主要考查了共线向量的坐标运算,数量积的运算,夹角公式,属于中档题. 26.(1)2k =-;(2)2k ≠-.【分析】(1)根据向量垂直,其数量积等于0,利用向量数量积公式得到对应的等量关系式,求得结果;(2)平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,其等价结果为向量(1,2)a =-和向量(1,)b k =是两个不共线向量,根据坐标关系得到结果.【详解】(1)若()a a b ⊥+,则有()0a a b ⋅+=,即20a a b +⋅=,又因为(1,2)a =-,(1,)b k =,所以222[(1)2](1)120a a b k +⋅=-++-⋅+=,即5120k -+=,解得2k =-;(2)对于平面xOy 内任意向量c ,都存在实数λ、μ,使得c a b λμ=+,所以向量(1,2)a =-和向量(1,)b k =是两个不共线向量,所以121k -⋅≠⋅,即2k ≠-,所以实数k 的取值范围是2k ≠-.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量垂直的坐标表示,平面向量基本定理,一组向量可以作为基底的条件,属于基础题目.。
数学苏教版必修4学案:第2章 2.3 2.3.1 平面向量基本定理

向量的坐标表示2.3.1平面向量基本定理[对应学生用书P42]预习课本P74~76,思考并完成下列问题1.平面向量基本定理的内容是什么?2.平面向量基本定理与向量共线定理,在内容和表述形式上有什么区别和联系?3.如何定义平面向量的基底?[新知初探]1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.2.基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是惟一的;③基底不惟一,只要是同一平面内的两个不共线向量都可作为基底.3.正交分解一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2所在直线互相垂直时,这种分解也称为向量a的正交分解.[小试身手]1.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =________. ★答案★:12(e 1+e 2)2.已知ABCDEF 是正六边形,且AB =a ,AE =b ,则BC =________. 解析:AD =AE +ED =AE +AB =b +a , 又AD =2BC ,∴BC =12(a +b ).★答案★:12(a +b )3.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是________. ①e 1-e 2,e 2-e 1;②2e 1+e 2,e 1+2e 2;③2e 2-3e 1,6e 1-4e 2;④e 1+e 2,e 1-e 2. ★答案★:②④4.设e 1,e 2是两个不共线的向量,若向量a =2e 1-e 2与向量b =e 1+λe 2(λ∈R)共线,则λ=________.★答案★:-12对基底概念的理解[典例] 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________.①a =λe 1+μe 2(λ,μ∈R)可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则λ1μ2=λ2μ1; ④若实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.[解析] 由平面向量基本定理可知,①③④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的.[★答案★] ②基底具备两个主要特征: (1)基底是两个不共线向量;(2)基底的选择是不惟一的.e 1,e 2是表示平面内所有向量的一组基底,则下列各组向量中,不能作为一组基底的序号是________.①e 1+e 2,e 1-e 2;②3e 1-2e 2,4e 2-6e 1;③e 1+2e 2,e 2+2e 1;④e 2,e 1+e 2;⑤2e 1-15e 2,e 1-110e 2.解析:由题意,知e 1,e 2不共线,易知②中,4e 2-6e 1=-2(3e 1-2e 2),即3e 1-2e 2与4e 2-6e 1共线,∴②不能作基底.⑤中,2e 1-15e 2=2⎝⎛⎭⎫e 1-110e 2, ∴2e 1-15e 2与e 1-110e 2共线不能作基底.★答案★:②⑤向量的分解[典例] 如图,已知▱ABCD 的对角线AC ,BD 交于O 点,设AB =l 1,AD =l 2,OA =l 3,OB =l 4.(1)试以l 1,l 2为基底表示AC ,BD ,DC ,BC ; (2)试以l 1,l 3为基底表示BC ,DA ; (3)试以l 3,l 4为基底表示AB ,BC .[解] (1)AC =l 1+l 2,BD =l 2-l 1,DC =l 1,BC =l 2. (2)BC =AC -AB =-2OA -AB =-l 1-2l 3,DA =CB =-BC =l 1+2l 3.(3)AB =l 4-l 3,BC =OC -OB =-OA -OB =-l 3-l 4.向量分解的方法(1)将两个不共线的向量作为基底,运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;(2)通过列向量方程或方程组的形式,利用基底表示向量的惟一性求解. 如图,在▱ABCD 中,AB =a ,AD =b ,E ,F 分别是AB ,BC 的中点,G 点使DG =13DC ,试以a ,b 为基底表示向量AF 与EG .解:AF =AB +BF =AB +12BC=AB +12AD =a +12b .EG =EA +AD +DG =-12AB +AD +13DC=-12a +b +13a =-16a +b .平面向量基本定理的应用[若AB =λAM +μAN ,则λ+μ=________.[解析] [法一 基向量法] 由AB =λAM +μAN ,得AB =λ·12(AD +AC )+μ·12(AC +AB ),则⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2AC =0, 得⎝⎛⎭⎫μ2-1AB +λ2AD +⎝⎛⎭⎫λ2+μ2⎝⎛⎭⎫AD +12 AB =0, 得⎝⎛⎭⎫14λ+34μ-1AB +⎝⎛⎭⎫λ+μ2AD =0. 又因为AB ,AD 不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.[法二 待定系数法]连接MN 并延长交AB 的延长线于点T ,由已知易得AB =45AT ,所以,45AT =AB =λAM +μAN ,即AT =54λAM +54μAN ,因为T ,M ,N 三点共线. 所以54λ+54μ=1.所以λ+μ=45.[★答案★] 45当直接利用基底表示向量比较困难时,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.已知向量e 1,e 2是平面α内所有向量的一组基底,且a =e 1+e 2,b =3e 1-2e 2,c =2e 1+3e 2,若c =λa +μb (λ,μ∈R),试求λ,μ的值.解:将a =e 1+e 2与b =3e 1-2e 2代入c =λa +μb 得 c =λ(e 1+e 2)+μ(3e 1-2e 2)=(λ+3μ)e 1+(λ-2μ)e 2.因为c =2e 1+3e 2,且向量e 1,e 2是平面α内所有向量的一组基底,根据平面向量基本定理中的惟一性可得方程组⎩⎪⎨⎪⎧λ+3μ=2,λ-2μ=3,解得⎩⎨⎧λ=135,μ=-15.层级一 学业水平达标1.设e 1,e 2是平面的一组基底,且a =e 1+2e 2,b =-e 1+e 2,则e 1+e 2=________a +________b .解析:由方程组:⎩⎪⎨⎪⎧a =e 1+2e 2,b =-e 1+e 2,解得⎩⎨⎧e 1=13a -23b ,e 2=13a +13b ,所以e 1+e 2=⎝⎛⎭⎫13a -23b +⎝⎛⎭⎫13a +13b =23a +⎝⎛⎭⎫-13b . ★答案★:23 -132.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是________.①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .解析:寻找不共线的向量组即可,在▱ABCD 中,AD 与AB 不共线,CA 与DC 不共线;而DA ∥BC ,OD ∥OB ,故①③可作为基底.★答案★:①③3.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =________.解析:设AD 与BE 交点为F ,则FD =13a ,BF =23b .所以BD =BF +FD =23b +13a ,所以BC =2BD =23a +43b .★答案★:23a +43b4.在▱ABCD 中,AB =a ,AD =b ,AM =4MC ,P 为AD 的中点,则MP =______. 解析:如图,MP =AP -AM =12AD -45AC =12AD -45(AB +BC )=12b -45(a +b )=-45a -310b . ★答案★:-45a -310b5.在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC =23OA +13OB ,则|AC ||AB |=________. 解析:因为OC =23OA +13OB ,所以OC -OA =-13OA +13OB =13(OB -OA ),所以AC =13AB ,所以|AC ||AB |=13.★答案★:136.如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB +k (AN -AB )=AB +k ⎝⎛⎭⎫14 AC -AB =(1-k )AB +k 4AC ,且AP =m AB +211AC ,所以1-k =m ,k 4=211,解得k =811,m =311.★答案★:3117.下面三种说法中,正确的是________.①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; ②一个平面内有无数多对不共线向量可作为该平面所有向量的基底; ③零向量不可作为基底中的向量.解析:同一平面内两个不共线的向量都可以作为基底. ★答案★:②③8.已知△ABC 中,点D 在BC 边上,且CD =2DB ,CD =r AB +s AC ,则r +s =________.解析:如图,因为CD =AD -AC ,DB =AB -AD .所以CD =AB -DB -AC =AB -12CD -AC .所以32CD =AB -AC ,所以CD =23AB -23AC .又CD =r AB +s AC ,所以r =23,s =-23,所以r +s =0.★答案★:09.已知▱ABCD 的两条对角线相交于点M ,设AB =a ,AD =b ,以a ,b 为基底表示MA ,MB ,MC 和MD .解:AC =AB +AD =a +b ,DB =AB -AD =a -b ,MA =-12AC =-12(a +b )=-12a -12b , MB =12DB =12(a -b )=12a -12b . MC =12AC =12a +12b ,MD =-12DB =-12a +12b .10.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解:(1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.所以λ不存在,故a 与b 不共线,可以作为一组基底. (2)设c =ma +nb (m ,n ∈R),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.所以⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.所以c =2a +b .(3)由4e 1-3e 2=λa +μb ,得4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2)=(λ+μ)e 1+(-2λ+3μ)e 2.所以⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.层级二 应试能力达标1.设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ,μ满足λa +μb =5e 1-e 2,则λ,μ的值分别为_________________.解析:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb=5e 1-e 2.由平面向量基本定理,知⎩⎪⎨⎪⎧3λ-2μ=5,4λ+5μ=-1.解之,得λ=1,μ=-1.★答案★:1,-12.在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =13CA +λCB ,则λ=________.解析:∵AD =2DB ,∴CD =CA +AD =CA +23AB =CA +23(CB -CA )=13CA +23CB .又∵CD =13CA +λCB ,∴λ=23.★答案★:233.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.解析:∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. ★答案★:34.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是________.解析:由PA =λAB ,得OA -OP =λ(OB -OA ), 即OP =(1+λ)OA -λOB .又2OP =x OA +y OB ,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. ★答案★:x +y -2=05.如图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.解析:以a ,c 为基底时,将BD 平移,使B 与A 重合,再由三角形法则或平行四边形法则即得.★答案★:a +b 2a +c6.如图,平面内有三个向量OA ,OB ,OC ,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且|OA |=|OB |=1,|OC |=2 3.若OC =λOA +μOB (λ,μ∈R),则λ+μ的值为________.解析:以OC 为对角线,OA ,OB 方向为边作平行四边形ODCE ,由已知∠COD =30°,∠COE =∠OCD =90°.在Rt △OCD 中,因为|OC |=23,所以|OD |=|OC |cos 30°=4,在Rt △OCE 中,|OE |=|OC |·tan 30°=2,所以OD =4OA ,OE =2OB ,又OC =OD +OE=4OA +2OB ,故λ=4,μ=2,所以λ+μ=6.★答案★:67. 如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.证明:设AB =b ,AC =c , 则AM =12b +12c ,AN =23AC ,BN =BA +AN =23c -b .因为AP ∥AM ,BP ∥BN ,所以存在λ,μ∈R ,使得AP =λAM ,BP =μBN , 又因为AP +PB =AB ,所以λAM -μBN =AB , 所以由λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b 得⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又因为b 与c 不共线.所以⎩⎨⎧12λ+μ=1,12λ-23μ=0.解得⎩⎨⎧λ=45,μ=35.故AP =45AM ,即AP ∶PM =4∶1.8.在△OAB 中,OC =14OA ,OD =12OB ,AD 与BC 交于点M ,设OA =a ,OB =b ,以a ,b 为基底表示OM .解:设OM =ma +nb (m ,n ∈R), 则AM =OM -OA =(m -1)a +nb ,AD =OD -OA =12b -a .因为A ,M ,D 三点共线,所以m -1-1=n12,即m +2n =1. 又CM =OM -OC =⎝⎛⎭⎫m -14a +nb ,CB =OB -OC =-14a +b ,因为C ,M ,B 三点共线,所以m -14-14=n 1, 即4m +n =1,由⎩⎪⎨⎪⎧ m +2n =1,4m +n =1,解得⎩⎨⎧ m =17,n =37,所以OM =17a +37b .。
【金版学案】2015-2016学年高中数学 2.3.1平面向量基本定理练习(含解析)苏教版必修4

2.3 向量的坐标表示2.3.1 平面向量基本定理情景:“神舟”十号宇宙飞船在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度.在力的分解的平行四边形法则中,我们看到一个力可以分解为两个不共线方向的力的和.思考:平面内任一向量是否可以用两个不共线的向量来表示呢?1.如果e1,e2是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使________.这个定理叫________________.答案:a=λ1e1+λ2e2平面向量基本定理2.不共线的向量e1,e2叫做表示这一平面内所有向量的一组________.答案:基底3.基底的特征是________、________.答案:两个向量不共线平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.向量的正交分解:一个平面向量用一组基底e1,e2表示成a=λ1e1+λ2e2的形式,我们称它为向量的分解.当e1,e2互相垂直时,就称为向量的正交分解.重点诠释:对平面向量基本定理的理解主要体现在以下几个方面:(1)基底不唯一,关键是两基底不共线;(2)由定理可将任一向量a在给出基底e1,e2的条件下进行分解;(3)基底给定时,分解形式唯一;(4)以共线向量为基础,通过把一个向量在其他两个向量上分解,就可以揭示出该定理的本质,由此定理可以得到一个常用结论:若e1,e2不共线,则λ1e1+λ2e2=0⇔λ1=λ2=0.基础巩固1.e1,e2是平面内的一组基底,则下面四组向量中,不能作为一组基底的是( ) A.e1和e1+e2B.e1-2e2和e2-2e1C.e1-2e2和4e2-2e1 D.e1+e2和e1-e2答案:C2.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为表示该平面所有向量的基底;③零向量不可作为基底中的向量.其中正确的说法是________(填序号).答案:②③3.已知向量a,b不共线,且c=λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1=________.答案:04.若3x+4y=a且2x-3y=b,其中a,b为已知向量,则x+y=________(用a,b表示).答案:517a +117b能力升级5.向量OA →,OB →,OC →的终点A 、B 、C 在一条直线上,且AC →=-3CB →,设OA →=p ,OB →=q ,OC →=r ,则以下等式成立的是( )A .r =-12p +32q B .r =-p +2qC .r =32p -12q D .r =-q +2q解析:由AC →=-3CB →,得OC →-OA →=-3(OB →-OC →),2OC →=-OA →+3OB →,OC →=-12OA →+32OB →,即r =-12p +32q .答案:A6.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么AO →=________AD →.解析:由D 为BC 边中点可得: OD →=12(OB →+OC →),又2OA →+OB →+OC →=0,所以2OA →+2OD →=0.故AO →=OD →,从而AO →=12AD →.答案:127.在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,故λ=23.答案:238.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析:依题意可知M 为△ABC 的重心,连接AM 并延长交BC 于点D ,则AM →=23AD →.①因为AD 为中线,所以AB →+AC →=2AD →=mAM →,即2AD →=mAM →.② 联立①②解得m =3.答案:39.用向量证明三角形的三条边的中线共点.证明:设AD 、BE 、CF 是△ABC 的三条中线.设AC →=a ,BC →=b ,AG →=23AD →,则AB →=a -b ,AD →=a -12b ,BE →=-12a +b .设AD 与BE 交于点G 1, 并设AG 1→=λAD →,BG 1→=μBE →, 则AG 1→=λa -λ2b ,BG 1→=-μ2a +μb .又因为AG 1→=AB →+BG 1→=⎝ ⎛⎭⎪⎫1-μ2a +(μ-1)b .所以⎩⎪⎨⎪⎧λ=1-μ2,-λ2=μ-1,解得λ=μ=23,即AG 1→=23AD →.再设AD 与CF 交于点G 2,同理可得AG 2→=23AD →,故点G 1与点G 2重合,即AD 、BE 、CF 相交于一点.所以三角形的三条边的中线共点.10.如右下图,在△ABC 中,M 是边AB 的中点,E 是CM 的中点,AE 的延长线交BC 于点F ,MH ∥AF.求证:BH →=HF →=FC →.证明:设BH →=a ,BM →=b .则BA →=2b ,MH →=a -b ,AF →=2MH →=2a -2b ,BF →=AF →+BA →=2a -2b +2b =2a . 所以HF →=BF →-BH →=a .因此BH →=HF →. 同理可证:HF →=FC →. 因此结论成立.11.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为60°,OA →与OC →,OB →与OC →的夹角都为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →,求λ+μ的值.解析:过点C 分别作CN ∥OA ,交射线OB 于点N ,作CM ∥OB ,交射线OA 于点M ,则OC →=OM →+ON →=λOA →+μOB →.所以OM →=λOA →,ON →=μOB →.由已知,|OA →|=|OB →|=1, 在平行四边形OMCN 中, ∠MOC =∠NOC =∠NCO =30°, 所以△NOC 为等腰三角形. 所以ON =NC =OM .所以平行四边形OMCN 为菱形.连接MN 交OC 于点H ,则OC ⊥MN ,且H 为O C 中点.在Rt △OHM 中, cos ∠HOM =OH OM =12OC OM,即cos 30°=3OM=32,解得OM =2,所以ON =2.所以λ=|OM →||OA →|=2,μ=|ON →||OB →|=2.故λ+μ=4.12.在一个平面内有不共线的三个定点O 、A 、B ,动点P 关于点A 的对称点为Q ,Q 关于点B 的对称点为R.已知OA →=a ,OB →=b ,用a 、b 表示PR →.解析:如右图所示.方法一 由题意知A 为PQ 的中点,B 为QR 的中点, ∴PR ∥AB 且PR =2AB .∴PR →=2·AB →=2(OB →-OA →)=2(b -a ). 方法二 PR →=OR →-OP →, 在△OQR 中,B 为QR 的中点, ∴2OB →=OR →+OQ →.∴OR →=2OB →-OQ →. 同理有2OA →=OP →+OQ →,∴OP →=2OA →-OQ →.则PR →=2OB →-OQ →-(2OA →-OQ →)=2b -OQ →-2a +OQ →=2b -2a .。
高中数学2.3.1平面向量基本定理教案苏教版必修4

2.3.1 平面向量基本定理教学目标:1.了解平面向量的基本定理及其意义;2.通过定理用两个不共线向量来表示另一向量或将一个向量分解为两个向量; 3.能运用平面向量基本定理处理简单的几何问题.教学重点平面向量基本定理的应用;平面内任一向量都可以用两个不共线非零向量表示. 教学难点:平面向量基本定理的理解.教学方法:引导发现、合作探究.教学过程:一、创设情境,揭示课题问题1 研究火箭升空的某一时刻的速度. 问题2 物理中的力的分解. 二、学生活动1.火箭升空的某一时刻的速度可分解为在竖直向上和水平向前的分速度.2.l 1→,l 2→是两个不共线的向量,a 是平面内的任一向量,如何将a 分解到l 1→,l 2→方向上去?三、构建数学 平面向量基本定理:探索 (1)是不是每一个向量都可以分解成两个不共线向量?且分解是惟一的? (2)对于平面上两个不共线向量1e r ,2e r ,是不是平面上的所有向量都可以用它们来表示? 教师引导学生分析设1e r ,2e r是不共线向量,a 是平面内任一向量.−→−OA =1e r −→−OM =1λ1e r −→−OC =a r =−→−OM +−→−ON =1λ1e r +2λ2e r−→−OB =2e r −→−ON =2λ2e r平面向量基本定理:如果1e r ,2e r是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a r ,有且只有一对实数1λ,2λ,使a r 1λ=1e r +2λ2e r .我们把不共线向量1e r 、2e r叫做表示这一平面内所有向量的一组基底;这个定理也叫共面..向量定理. 注意:(1)1e r ,2e r均是非零向量,必须不共线...,则它是这一平面内所有向量的一组基底. (2)基底不唯一,当基底给定时,分解形式唯一;1λ,2λ是被a r ,1e r ,2e r唯一确定的实数.(3)由定理可将任一向量a r 在给出基底1e r 、2e r的条件下进行分解;同一平面内任一向量....都可以表示为两个不共线向量的线性组合.(4)20λ=时,a r 与1e r 共线;10λ=时,a r 与2e r 共线;120λλ==时,0a =r r . 基底:我们把不共线的向量1e r ,2e r叫做表示这一平面内所有向量的一组基底.正交分解:一个平面向量用一组基底1e r ,2e r 表示成a r 1λ=1e r +2λ2e r的形式,我们称它为向量a r 的分解,当1e r ,2e r 所在直线互相垂直时,这种分解也称为向量a r的正交分解.思考 平面向量基本定理与前面所学的向量共线定理,在内容和表述形式上有什么区别和联系?四、数学运用 1. 例题.例 1 平行四边形ABCD 的对角线AC 和BD 交于点M ,=−→−AB a r ,=−→−AD b r ,试用向量a r ,b r 表示−→−MA ,−→−MB ,−→−MC ,−→−MD .1e r2e ra COBAP例2 如图2-3-4,质量为m 的物体静止地放在斜面上,斜面与水平面的夹角为θ,求斜面对物体的磨擦力→f .例3 已知向量12,e e r r,求作向量-2.51e r +32e r作法:(1)取点O ,作−→−OA =-251e r −→−OB =32e r ;(2)作OACB ,−→−OC 即为所求-251e r +32e r.例4 设1e r ,2e r 是平面内的一组基底,如果−→−AB =31e r -22e r ,−→−BC =41e r +2e r ,−→−CD =81e r -92e r.求证:A ,B ,D 三点共线.变式 设12,e e r r 是两个不共线的向量,已知−→−AB =21e r +k 2e r ,−→−CB =1e r +32e r ,−→−CD =21e r -2e r,若A ,B ,D 三点共线,求k 的值.解 −→−BD =−→−CD -=−→−CB (21e r -2e r )-(1e r +32e r )=1e r -42e r ,∵A ,B ,D三点共线,∴−→−AB 与−→−BD 共线,即存在实数λ,使得−→−AB =λ−→−BD , 即是12122(4)e ke e e λ+=-r r r r.由向量相等的条件,得24k λλ=⎧⎨=-⎩,∴8k =-.例5 如图,−→−OA 、−→−OB 不共线,t AP =−→−−→−AB )(R t ∈, 用−→−OA 、−→−OB 表示−→−OP .变式1 如图,−→−OA ,−→−OB 不共线,P 点在AB 上,求证:存在实数1.=+μλμλ且 使−→−−→−−→−+=OB OA OP μλ.变式2 设−→−OA ,−→−OB 不共线,点P 在O 、A 、B 所在的平面内,且−→−−→−−→−+-=OB t OA t OP )1()(R t ∈.求证:A 、B 、P 三点共线.2.巩固:教材P71练习. 五、小结f-fWθθ P1.熟练掌握平面向量基本定理,平面向量基本定理的理解及注意的问题;2.会应用平面向量基本定理.充分利用向量的加法、减法及实数与向量的积的几何表示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基本定理
(答题时间:40分钟)
1. 下列关于基底的说法正确的是________。
(填序号)
①平面内不共线的任意两个向量都可以作为一组基底;
②基底中的向量可以是零向量;
③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的。
**2. 设e 1,e 2是不共线向量,e 1+2e 2与m e 1+ne 2共线,则m
n =________。
3. 设一直线上三点
A ,
B ,P 满足PB m AP (m ≠-1),O 是直线所在平面内一点,则OP
用OA ,OB 表示为________。
**4. 如图,在△ABC 中,D 是BC 的中点,E 是AD 的中点,若CE =r AB +s AC ,则r +s =________。
**5. 已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且DC BD ,EC AE 2,
FB AF 2,则CE BF AD 332=________。
**6. 在平行四边形
ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC =λAE +μAF ,
其中λ,μ∈R ,则λ+μ=________。
*7.(保定高一检测)设
e 1,e 2为两个不共线的向量,
a =-e 1+3e 2,
b =4e 1+2e 2,
c =-
3e 1+12e 2,试用b ,c 为基底表示向量
a 。
8. 平行四边形ABCD 中,M 为DC 的中点,N 为BC 的中点,设AB =b ,AD =d ,AM =m
,AN =n 。
(1)以b ,d 为基底,表示MN ;(2)以m ,n 为基底,表示AB 。
**9. 如图所示,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,AN =2NC ,AM 与BN
相交于点P ,求证:PM AP
4。
1. ①③解析:作为基底的两个向量不共线,故基底中的向量不能是零向量,②不正确,①③正确。
2. 2 解析:由e 1+2e 2=λ(m e 1+ne 2),得m λ=1且n λ=2,
∴
m
n =2。
3. m OB m OA OP 1
解析:由AP =m PB 得OP -OA =m (OP OB )
,∴OB m OA
OP
m OP ,∴m
OB
m OA OP
1。
4.
21解析:由
E 是AD 的中点,则
)(21CD CA
CE =-
CB AC
4
12
1=-
AC AB
AC AB AC 4
34
1)
(4
12
1,则r +s =-
2
1。
5. 0 解析:由DC BD ,易知)(21AC AB
AD
,所以AC AB AD
2,再由AE
=2EC ,FB AF
2,可知3BF =BA ,3CE =CA ,所以2AD +3BF +3CE =0。
6. 34解析:设BC =b ,BA =a ,则2
1AF b -a ,
AE =b -2
1
a ,AC =
b -a ,代入AC =AF AE
,得b -a =(λ+
2
)b -(
2
+μ)a ,
即
,
2
1,
2
1
解得λ=μ=
3
2,∴λ+μ=
3
4。
7. 解:设a =λ1b +λ2c ,λ1,λ2∈R 则,
-e 1+3e 2=λ1(4e 1+2e 2)+λ2(-3e 1+12e 2),即-e 1+3e 2=(4λ1-3λ2)e 1+(2λ1+12λ2)e 2,
∴
,
312
2
,1342
1
21∴
,27
7,
18
1
2
1
∴a =-
18
1b +
27
7c 。
8. 解:如图所示,
(1))(BN AB AM AN MN -)(DM AD =(b +
2
1d )-(d +
2
1b )=
2
1b。