9.1.2三角形的内角和与外角和
9.1.2三角形的内角和与外角和(2)

三角形的外角和(2)【目标要求】1、复习巩固三角形的外角的性质、三角形的外角和定理;2、能熟练地运用三角形外角的性质、三角形的外角和进行计算和说理. 【重点】:三角形外角的性质、三角形外角和定理的应用;【难点】:灵活运用三角形的外角性质和外角和定理.【自主探究】自学教材第78页知识点一:三角形的外角和的推导1.如图示填空:(1)B∠____∠A+ACD∠(2)A∠_______ACD∠ACD∠∠______,B(3) =A∠BACB++∠∠2、想一想, △ABC的外角共有几个呢?二、探究合作、展示1、如图示:思考∠1+∠2+∠3= ?∵∠1+______________=180°,∠2+_______________=180°,∠3+_______________=180°.三式相加可以得到∴∠1+∠2+∠3+______+______+______=_______,(1 )又∵∠ACB+∠BAC+∠ABC=180°,(2)∴∠1+∠2+∠3=°结论:三角形的外角和是知识点二:三角形的外角和的应用例1、如图9.1.11,D是△ABC的BC边上一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.求:(1)∠B的度数;(2)∠C的度数.图9.1.11 解(1)∵∠ADC是△ABD的外角(已知),∴∠ADC =∠B +∠ =80°又 ∠B =∠BAD (已知),∴ ∠ =80°×21=40°(等量代换). (2)在△ABC 中,∵∠B +∠ +∠C =180°(三角形的内角和等于180°),∴ ∠C =180°-∠ -∠ (等式的性质)=180°-40°-70°=70°例2、如图所示,在△ABC 中,∠A=70°,BO,CO 分别平分∠ABC 和∠ACB,求∠BOC 的度数.【小试牛刀】1.三角形的三个外角中,最多有_______个锐角.2.已知等腰三角形的一个外角为150°,则它的底角为_____.3.如图1所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.图1【专题提升】如右图,AC ∥DE,BD 平分∠ABC 交AC 于F ,∠ABC=70°,∠E=50°,求∠D ,∠A 的度数【整理评价与反思】1 整理今天所学内容,展示 次,质疑 次,参与 次。
初中数学知识归纳三角形的内角和与外角性质

初中数学知识归纳三角形的内角和与外角性质三角形是初中数学中重要的概念之一,在三角形的学习中,了解三角形的内角和与外角性质十分重要。
本文将对初中数学中与三角形的内角和与外角性质相关的知识进行归纳总结。
一、内角和的性质1. 三角形内角和定理三角形的内角和为180°。
这是三角形的基本性质,对于任意一个三角形而言,它的三个内角之和恒定为180°。
2. 等腰三角形的内角性质等腰三角形的两个底角(底边上的两个角)相等,而顶角等于两个底角之和的一半。
3. 直角三角形的内角性质直角三角形的两个锐角之和为90°。
4. 锐角三角形的内角性质锐角三角形的三个内角都是锐角。
5. 钝角三角形的内角性质钝角三角形的其中一个内角是钝角。
二、外角的性质1. 外角和内角的关系三角形的外角等于其对应的两个内角的和。
即一个三角形的外角与其非相邻的两个内角形成一条直线。
2. 三角形外角和的性质一个三角形的所有外角和等于360°。
三、实例应用1. 设某三角形的一个内角为60°,则其余两个内角的度数分别为多少度?根据三角形的内角和定理,三角形的内角和为180°。
已知一个内角为60°,设其余两个内角分别为x和y,则x + y + 60 = 180,整理得到x + y = 120。
因此,另外两个内角的度数分别为120°。
2. 若三角形的两个内角分别为30°和60°,求第三个内角的度数。
根据三角形的内角和定理,三角形的内角和为180°。
已知两个内角分别为30°和60°,设第三个内角的度数为x,则30 + 60 + x = 180,整理得到x = 90。
因此,第三个内角的度数为90°。
3. 在一个三角形中,一个内角为120°,另外两个内角是什么?根据三角形的内角和定理,三角形的内角和为180°。
9.1.2 三角形的内角和与外角和

的度数?
A
解:∵∠1= ∠A+ ∠D
B
12 C
(三角形的外角等于与它 E 不相邻的两内角的和)
又∵∠2= ∠B+ ∠E
(三角形的外角等于与它不 D 相邻的两内角的和)
∴ ∠A+∠B+∠C+∠D+∠E
=(∠A+ ∠D)+(∠B+ ∠E)+∠C =∠1+∠2+∠C =180°
三角形的外角和
对于三角形的每个内角,从与它 相邻的两个外角中取一个,这样取 得的三个外角相加所得的和,叫做 三角形的外角和。
你的结论。
A
已知:如图,Rt△ABC中, ∠C=90°。
求证:∠A+∠B =90° 。
C
证明:∵∠A+∠B+ ∠C=180°
且∠C=90° (已知)
B
(三角形三个内角 和等于180°)
∴∠A+∠B+ 90°=180° (等量代换)
∴∠A+∠B=90° (等式性质)
在一张白纸上画出如图所示的图形, 然后把∠1、 ∠ 2剪下拼在一起, 放到∠ 4上,看看会出现什么结果?
∴∠ C= 180 ˚ - ∠ B - ∠ BAC (等式的性质) = 180 ˚ -40 ˚ -70 ˚
=70 ˚
例2、三角形的三个外角之比为2:3:4,
则与它们相邻的内角分别为( C)
A. 80˚ 120˚ 160 ˚
B. 160 ˚ 120 ˚ 80 ˚
C. 100 ˚ 60 ˚ 20 ˚
D. 140 ˚ 120 ˚ 100 ˚
1
让我们一起去发现
如图,计算∠BOC
三角形的内角和与外角和的关系总结

三角形的内角和与外角和的关系总结三角形是几何学中一个重要的概念,它由三条线段组成,其中每两条线段的交点被称为顶点。
三角形的内角和与外角和是研究三角形性质时经常遇到的问题,本文将对其进行总结和探讨。
1. 三角形的内角和三角形的内角和是指三个内角的度数之和。
对于任意三角形,无论其大小和形状如何,三个内角的度数之和始终为180度。
这一性质被称为"三角形的内角和定理",是几何学中的基本定理之一。
数学的证明过程较为复杂,这里不做详述,但可以通过实际测量和计算来验证。
2. 三角形的外角和三角形的外角和是指三个外角的度数之和。
外角是指一个三角形内部的一条边延伸出去,与另外两条边的非共边构成的角。
对于任意三角形,无论其大小和形状如何,三个外角的度数之和始终为360度。
这一性质也是几何学中的基本定理之一。
3. 内角和与外角和的关系内角和与外角和有着重要的关系。
根据三角形的内角和定理和外角和的定义,可以得出如下结论:内角和 + 外角和 = 180度 + 360度 = 540度这意味着三角形内角和与外角和的和始终为固定值的540度。
这也被称为"三角形内外角和关系定理"。
通过数学的证明,可以得到这个结论。
4. 应用举例通过内角和与外角和的关系,我们可以解决一些与三角形性质相关的问题。
例如,已知一个三角形的一个内角和一个外角,可以通过计算得到其他两个内角的度数,或者已知两个内角,可以通过计算得到第三个内角的度数。
此外,可以利用内角和与外角和的关系来验证三角形的正确性。
如果测得一个三角形的内角和不等于180度或者外角和不等于360度,那么这个图形就不是一个三角形。
总之,三角形的内角和与外角和的关系是几何学中重要的定理之一。
它们揭示了三角形内外角度数之间的联系,对于解决三角形性质相关的问题具有重要作用。
在实际应用中,我们可以根据这些定理进行计算和验证,进一步深入理解和应用三角形的性质。
七年级数学下册第九章多边形9.1三角形2三角形的内角和与外角和作业课件新版华东师大版

10.(3分)若一个三角形外角的度数之比为2∶3∶4, 则与之对应的三个内角的度数之比为( ) B A.4∶3∶2 B.5∶3∶1 C.3∶2∶4 D.3∶1∶5
11.(3分)如图,∠1+∠2+∠3+∠4=____度5.40
一、选择题(每小题4分,共16分) 12.(2018·宿迁)如图,点D在△ABC边AB的延长线上,DE∥BC. 若∠A=35°,∠C=24°,则∠D的度数是( )B A.24° B.59° C.60° D.69°
13.如图,在△ABC中,∠ABC=50°,∠ACB=60°, 点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD 相交于点D,连结AD,下列结论中不正确的是( )B A.∠BAC=70° B.∠DOC=90° C.∠BDC=35° D.∠DAC=55°
解:∠ACB>∠B.∵∠ACB>∠1,AD平分∠CAE, ∴∠1=∠2,∴∠ACB>∠2,又∵∠2>∠B,∴∠ACB>∠B
19.(12 分)(上蔡期末)如图,在△ABC 中,AD 是 BC 边上的高, AE 是∠BAC 的平分线. (1)若∠B=75°,∠C=45°,求∠DAE 的度数;
(2)请说明:∠DAE=12(∠B-∠C). 解:(1)∠DAE=15° (2)∠DAE=12∠BAC-∠BAD, ∵∠BAC=180°-(∠B+∠C),∠BAD=90°-∠B,
解:(1)∠P=180°-(∠PBC+∠PCB)=180°-12(∠ABC+∠ACB)= 180°-12(180°-∠A)=90°+12∠A (2)∠P=∠PCE-∠PBE=12(∠ACE-∠ABC)=12∠A
华师大版七年级下册(新)第9章《9

(3)利用三角形的内角和与外角和的性质,解决以下问题:已知一个三角形的两个内角,求第三个内角的度数;已知一个三角形的一个外角,求相邻内角的度数。
2.选做题:
(1)思考并证明:三角形的内角和总是180°。
(2)探索并证明:三角形的外角和总是360°。
4.学生在学习过程中,可能会遇到一定的困难,需要教师关注学生的情感态度,鼓励他们克服困难,保持学习兴趣。
5.学生在小组合作、讨论交流方面具备一定的基础,但仍有待提高,教师应充分利用课堂活动,培养学生的合作能力和团队精神。
三、教学重难点和教学设想
(一)教学重难点
1.重点:三角形的内角和与外角和的概念及其计算方法。
1.教学活动设计:设计不同难度的练习题,让学生运用所学知识解决问题。
教师布置练习:“下面,请同学们完成这些练习题。请注意,这些题目涵盖了三角形的内角和与外角和的知识点,希望大家能够运用所学知识解决问题。”
2.练习题解答:学生独立完成练习题,教师巡回指导,解答学生的疑问。
教师解答疑问:“如果大家在解题过程中遇到困难,可以相互讨论,也可以向我提问。我会尽力帮助大家解决问题。”
(3)拓展阅读:查找相关资料,了解三角形的内角和与外角和在其他数学领域中的应用。
3.创新实践:
(1)设计一道与三角形的内角和与外角和相关的几何题目,并与同学们分享。
(2)结合生活实例,运用三角形的内角和与外角和知识,解决实际问题,并撰写解题报告。
作业要求:
1.认真完成作业,书写工整,保持卷面整洁。
2.对于必做题,要求每个学生都必须完成;选做题可根据自己的兴趣和实际情况选择完成;创新实践题目可自愿参与。
原七年级数学下册9.1.2三角形的内角和与外角和第2课时三角形的外角和习题课件(新版)华东师大版

第四页,共22页。
4.(2017·资阳模拟(mónǐ))如图,AB∥CD,∠C=70°,∠F=30°,则∠A 的度数为( ) C
A.30° B.35° C.40° D.45°
5.(2015·宜宾)如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D= 45°,则∠AEC=_______.
80°
第二十二页,共22页。
第五页,共22页。
6.如图,∠B=65°,∠ACB=76°,∠AED=46°,则∠BDF= ____8_5_°_____.
知识点❷ 三角形的外角(wài jiǎo)和
7.若一个三角形的三个外角(wài jiǎo)的度数之比为2∶3∶4,则与之
对应的三个内角的度数之比B为(
)
A.4∶3∶2 B.5∶3∶1
解 : 延 长 CD 交 AB 于 E , 所 以 ∠ DEB = ∠ A + ∠ C = 122° , 因 为 ∠ CDB = ∠DEB+∠B=143°,而∠CDB=148°,所以断定这个零件(línɡ jiàn)不合格
第十四页,共22页。
16.(复习(fùxí)14变式)如图,点P是△ABC内的任意一点,试说明∠BPC>∠A. 解:延长BP交AC于点D.因为∠BPC>∠PDC.又因为∠PDC>∠A,所以∠BPC >∠A
数是( )
A
A.15° B.25° C.30° D.10°
10.如果(rúguǒ)三角形的一个外角与和它不相邻的两个内角的和为180°,
那么这个外角的度数为(
)
C A.30° B.60° C.90° D.120°
第九页,共22页。
11.(1)如图①所示,则∠α=______9_5;°
(2)如图②所示,则∠A+∠B+∠C+∠D+∠E+∠F的度数(dù shu)为
三角形的内角和与外角和关系

三角形的内角和与外角和关系三角形是几何学中的重要概念,它由三条边和三个内角组成。
研究三角形的性质时,内角和与外角和关系是一个重要的问题。
本文将就三角形的内角和与外角和关系展开论述。
一、三角形内角和的定义与性质在了解三角形内角和与外角和的关系之前,我们首先需要了解三角形内角和的定义与性质。
1. 三角形内角和定义:三角形是由三条边所围成的图形,其中每个角都位于两条边之间。
三角形的内角和定义为三个内角的度数之和,通常表示为180度。
2. 三角形内角和的性质:(1)所有三角形的内角和都等于180度。
(2)对于任意三角形ABC,我们可以用角A、角B和角C来表示他们的内角和关系,即A + B + C = 180度。
二、三角形外角和的定义与性质了解了三角形内角和的定义与性质之后,我们再来了解一下三角形外角和的定义与性质。
1. 三角形外角和定义:三角形的每个内角都对应一个外角,位于与之相邻的两条边的延长线上,而外角和定义为三个外角的度数之和。
2. 三角形外角和的性质:(1)对于任意三角形ABC,它的外角和等于360度。
(2)对于任意三角形ABC,三个内角与其相应的外角满足以下关系:角A + 外角A = 180度;角B + 外角B = 180度;角C + 外角C = 180度。
三、三角形内角和与外角和的关系在前面的阐述中,我们已经分别了解了三角形内角和和外角和的定义与性质,那么他们之间究竟是否存在一定的关系呢?通过观察三角形内角和与外角和的定义,我们可以得出以下结论:(1)三角形的内角和与外角和的关系:内角和与外角和的和为360度。
(2)三角形的内角和与外角和的关系式:角A + 角B + 角C + 外角A + 外角B + 外角C = 360度。
通过以上结论,可以发现三角形的内角和与外角和之间存在一定的数学关系。
内角和与外角和的和总是等于360度,这是由三角形内角和和外角和的定义所决定的。
结论:三角形的内角和与外角和的关系是内角和与外角和的和为360度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动一:
撕一撕 拼一拼
3 3 平角:1800
0 三角形的内角和是180 。
1
2
0 三角形的内角和等于180 .
证法1:过A作EF∥BA,
∴∠B=∠2 ∠C=∠1
E
2
B
A
1
(两直线平行,内错角相等) 又∵∠2+∠1+∠BAC=180° ∴∠B+∠C+∠BAC=180°
F
C
0 三角形的内角和等于180 .
内角三兄弟之争
在一个直角三角形里住着三个内角,平时,它 们三兄弟非常团结。可是有一天,老二突然不高兴, 发起脾气来,它指着老大说:“你凭什么度数最大, 我也要和你一样大!”“不行啊!”老大说:“这 是不可能的,否则,我们这个家就再也围不起来 了……”“为什么?” 老二很纳闷。
同学们,你们知道其中的道理吗?
结论
直角三角形的两个锐角互余。
三角形的一个外角对应一个相邻的内角和两个不相邻的内角 :三角形的一个外角 和相 邻内角有什么数量关系? :三角形的一个外 角和与它不相邻的两个内 角有什么数量关系? :三角形的一个 外角和与它不相邻的两 个内角有什么大小关系?
相邻的内角 外角
(图1)
不相邻的内角
∠ABC ∠BAC ∠ACB 540 所以∠1+ ∠2+∠3+______+______+______=___ °
又因为∠ACB+ ∠BAC+ ∠ABC =180° 归纳结论: 360 ° 三角形的外角和等于 360 所以∠1+ ∠2+ ∠3 =______ °
1.三角形的内角和等于多少度? 2.直角三角形的两个锐角是什么关系? 3.、三角形的外角性质:
A
E B
H
D C
如图:∠1=25°,∠2=95°,∠3 30 ° =30°,则∠4= _______
D
C 1 A 4 2 3
E
B
判断∠1与∠3的大小,并说明理由。
C
∠3
> ∠1
E 1 B A 2
3
∵∠3 >∠2 ,∠2 >∠1 ∴∠3 >∠1
D
如图,D是△ABC的边BC上一点, ∠B=∠BAD, A ∠ADC=80 ˚ , ∠BAC=70˚. 求: (1) ∠ B的度数;(2) ∠ C的度数。 解 :(1) ∵ ∠ADC是⊿ABD的外角 (已知) B 80 ˚ C D ∴∠ADC=∠B+∠BAD=80˚ (三角形的一 个外角等于与它不相邻的两个内角的和) 又∵ ∠B=∠BAD(已知) ∴∠B=40 ˚(等量代换) (2) ∵在⊿ABC中 ∠ B+ ∠ BAC+ ∠ C= 180 ˚ (三角形的内角和为180 ˚ ) ∴∠ C= 180 ˚ - ∠ B - ∠ BAC = 180 ˚ -40 ˚ -70 ˚ =70 ˚
证法2:延长BC到D,过C作CE∥BA,
∴ ∠A=∠1 (两直线平行,内错角相等) ∠B=∠2 (两直线平行,同位角相等) 又∵∠1+∠2+∠ACB=180° ∴∠A+∠B+∠ACB=180°
B
A
E
1
2
C
D
0 三角形的内角和等于180 .
证法3:过A作AE∥BC, E
∴∠B=∠BAE
(两直线平行,内错角相等)
三角形的外角和
对于三角形的每个内角,从与它相邻的 两个外角中取一个,这样取得的三个外角相 加所得的和,叫做三角形的外角和。
思考:三角形的内角和等于180°, 那么三角形的外角和等于多少度?
探索2
如图,因为 ∠ABC ∠1+_______=180 °
∠BAC ∠2+_______=180 ° ∠ ACB ∠3+_______=180°
挑战!!!
如图所示:求∠A+∠B+∠C+∠D+∠E 的度数? A 解:∵∠1= ∠A+ ∠D
B 12
C D E (三角形的外角等于与它不 相邻的两内角的和)
又∵∠2= ∠B+ ∠E
(三角形的外角等于与它不 相邻的两内角的和)
∴ ∠A+∠B+∠C+∠D+∠E
=(∠A+ ∠D)+(∠B+ ∠E)+∠C =∠1+∠2+∠C =180°
发现: ∠1+∠2=∠4
为什么?
思考:如何说明∠ACD= ∠B+ ∠ A
A
B
C
D
三角形的一个外角等于与它不相邻的两个内角的和。
A
B 解:
C
D
∠ACD+ ∠ACB=180° ∠A+ ∠B+ ∠ACB=180°
所以, ∠A+ ∠B= ∠ACD
三角形的一个外角和与它不相邻的 两个内角有什么大小关系?
A
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
B
C
∴∠B+∠C+∠BAC=180°
三角形的内角和定理 三角形的内角和等于180度。 做一做
27 1、n=___
81 72 n
x
29 x=____
59 y=____
y
122
x
31
2、在直角三角形中,∠C是直角, 则∠A与∠B的和是多少?
解: ∵ ∠ACB + ∠ACD= 180 °
又∵ ∠ACB+ ∠A+ ∠B= 180 ° ∴ ∠ACD= ∠A+ ∠B ∴∠ACD>∠A
B A
∠ACD>∠B
C
三角形的一个外角大于任何一个与它不相邻的内角
A
∠ ACD+ ∠ ACB=180°
∠ACD= ∠ A+ ∠ B
B
C
D
∠ACD> ∠ A ∠ACD> ∠ B
外角+相邻的内角=180 ˚ 三角形的一个外角等于与它不相邻的两个内角的和。
三角形的外角大于任何一个与它不相邻的内角。
求下列各图中∠1的度数 (并说明理由)
90°
120° 1 30° 60° 35° 1 1
85°
45°
50°
如图所示, △ABC的高BD、CE交于H点, ∠A=50°,求∠BHC的度数?
A
(图2)
B
C
D
三角形的一个外角和相 邻内角有什么 数量关系?
A
D C 发现: ∠ACB+∠ACD=180°
B
∴外角+相邻的内角=180 ˚ 三角形的外角角于相邻内角和为180度
三角形的一个外角和与它不相邻的两个 内角有什么数量关系?
在一张白纸上画出如图所示的图形,然后把∠1、 ∠ 2剪下拼在一起,放到∠ 4上,看看会出现什么 结果?
向 效 率 要 质 量
①外角+相邻的内角=180
˚
②三角形的一个外角等于与它
不相邻的两个内角的和。
不相邻的内角。
③三角形的外角大于任何一个与它
4.三角形的外角和等于多少度? 5 、在求角的度数时,常可利用三角形的内角和及外角 的性质来找数量关系;涉及图形时,可先把已知条件尽 可能的在图中标出来,有助于直观分析题意。
凭 勤 奋 出 成 果