基于扩散距离的SIFT特征匹配算法
基于sift特征的图像匹配算法

21 .特征点方向的确定
利用特征点邻域像素的的梯 度方 向分布特征 ,为每
一
个特征点指定方 向参数 ,使算子具有 尺度不变性 。
mx )√ + y L 一) + , 1 L , l ( = l) ( 1) ) (Y , , 一 x , , +一 x— 0x )o n OyO L , 1/ ( 1)三 一) ) 9 , = 2 , -(y )( x ,一 O 1) ( ) y t t a +  ̄ -)L + ,) ,
22 * 个种子 点 ,每个 种子 点8 方 向 ,共可生 产3 个数 个 2
二 、算 法 实现 和 实验 结果
实验算法采用V 2 0 开发 。结果如下 : C 08 第一 组实 验 ,上 图是 由下 图放大 而来 ,且 ±
光 照 强 度 。两 幅 图 中
的箭 头 方 向代 表 了该 像 素 点 的梯 度 方 向 ,
LxYo =G xY ) (,) ( ) (,, ) (, ,o Ix 2
SF 特征匹配算法是Dai L we 0 4 IT vdG.o 在2 0 年总结了
现有 的基于不变量特征检测技术的基 础上 ,提出的一种
基于尺度空 间的,对 图像缩放 、旋转甚至仿 射变换保持
不 变性 的 图像 局部特 征描述算 法 。SF 特征是 图像 局 IT
骤 :1 特征点 的检测 ;2特 征 向量 的生成 ;3特 征 向 . 是 . .
量的匹配。
尺度对应 于图像 的概貌特征 ,小尺度对应于图像 的细节
特征 。选择 合适 的尺度 因子平 滑是建 立 尺度空 间 的关 键 。在这里 ,主要是建立高斯金字塔和D G( i ee c O D f rn e
1 . .
sfit特征提取和匹配的具体步骤

sfit特征提取和匹配的具体步骤
SIFT(尺度不变特征变换)是一种用于图像处理和计算机视觉的特征提取和匹配算法。
它能够在不同尺度和旋转下提取出稳定的特征点,并且对光照变化和噪声有一定的鲁棒性。
SIFT特征提取的具体步骤包括:
1. 尺度空间极值检测,在不同尺度下使用高斯差分函数来检测图像中的极值点,用来确定关键点的位置和尺度。
2. 关键点定位,通过对尺度空间的极值点进行精确定位,使用Hessian矩阵来确定关键点的位置和尺度。
3. 方向分配,对关键点周围的梯度方向进行统计,确定关键点的主方向,使得特征具有旋转不变性。
4. 关键点描述,以关键点为中心,划分周围的区域为小区块,计算每个区块内的梯度方向直方图,构建特征向量。
SIFT特征匹配的具体步骤包括:
1. 特征点匹配,使用特征向量的距离来进行特征点的匹配,通常使用欧氏距离或者近邻算法进行匹配。
2. 鲁棒性检验,对匹配点进行鲁棒性检验,例如RANSAC算法可以剔除错误匹配点,提高匹配的准确性。
3. 匹配结果筛选,根据匹配点的特征向量距离或一致性进行筛选,得到最终的匹配结果。
总的来说,SIFT特征提取和匹配的具体步骤包括特征点检测、定位、描述以及匹配过程。
这些步骤能够帮助我们在图像处理和计算机视觉中提取出稳定的特征并进行准确的匹配,从而实现目标识别、图像配准等应用。
特征点匹配算法

特征点匹配算法特征点匹配算法是计算机视觉领域中一种重要的实现方法。
该算法主要通过比较不同图像中的特征点,从而实现对两张图片的匹配。
在实际应用中,特征点匹配算法被广泛应用于图像拼接、物体识别、人脸识别等领域。
特征点是指在图片中具有良好可辨别性的点,比如边缘交叉点、角点、区域中心等等。
在图像拼接中,常用的特征点包括SIFT(尺度不变特征变换)和SURF(加速稳定特征)等。
在人脸识别中,采用的特征点则具有更加专业化的特性,比如眼睛、嘴巴、鼻子等等。
下面我们来介绍一下特征点匹配算法的基本流程:第一步是输入图像的预处理,即将图像转换成计算机可识别的数字形式,比如RGB、灰度、二值图等。
这个步骤类似于图像的归一化处理,是后续特征提取的必要准备工作。
第二步是特征点的提取。
常用的特征点提取算法包括Harris角检测、FAST角检测、SIFT算法、SURF算法等。
这些算法的基本思路是通过对图像进行相关运算,找到具有显著特征的像素点,并对其进行描述。
第三步是特征点的描述。
一旦找到了特征点,我们需要通过某种方式将它们中包含的信息转换成容易比较的数字形式。
比如,可以采用直方图描述、局部邻域像素点差分等方式来描述特征点,以便于后续的匹配。
第四步是特征点的匹配。
特征点匹配算法的核心在于如何通过对两张不同的图片中的特征点进行比较,找到它们之间的对应关系。
常见的匹配算法包括基于欧式距离、汉明距离、SIFT算法等。
匹配结果通常是对两张图片中的特征点进行一一配对,以便于后续的拼接、识别等操作。
最后一步是特征点匹配算法的评估。
在实际应用中,我们需要评估算法的性能,并对其改进算法进行测试和优化。
评估算法的主要指标包括匹配准确率、匹配时间、算法鲁棒性等等。
总之,特征点匹配算法是计算机视觉领域中一种非常重要的算法。
它通过对不同图片中的特征点进行比较,实现了对两张图片之间的匹配,具有广泛的应用价值。
在实际应用中,我们需要根据具体的场景选择不同的特征点提取算法和匹配算法,以达到最佳的匹配效果。
SIFT特征点提取与匹配算法

SIFT 特征点匹配算法基于SIFT 方法的图像特征匹配可分为特征提取和特征匹配两个部分,可细化分为五个部分: ① 尺度空间极值检测(Scale-space extrema detection );② 精确关键点定位(Keypoint localization )③ 关键点主方向分配(Orientation assignment )④ 关键点描述子生成(Keypoint descriptor generation )⑤ 比较描述子间欧氏距离进行匹配(Comparing the Euclidean distance of the descriptors for matching )1.1 尺度空间极值检测特征关键点的性质之一就是对于尺度的变化保持不变性。
因此我们所要寻找的特征点必须具备的性质之一,就是在不同尺度下都能被检测出来。
要达到这个目的,我们可以在尺度空间内寻找某种稳定不变的特性。
Koenderink 和Lindeberg 已经证明,变换到尺度空间唯一的核函数是高斯函数。
因此一个图像的尺度空间定义为:(,,)L x y σ,是由可变尺度的高斯函数(,,)G x y σ与输入图像(,)I x y 卷积得到,即:),(),,(),,(y x I y x G y x L *=σσ (1.1) 其中:2222/)(221),,(σπσσy x e y x G +-=在实际应用中,为了能相对高效地计算出关键点的位置,建议使用的是差分高斯函数(difference of Gaussian )(,,)D x y σ。
其定义如下:),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= (1.2)如上式,D 即是两个相邻的尺度的差(两个相邻的尺度在尺度上相差一个相乘系数k )。
图 1.1图1.1所展示的是建立DOG 的一种实用的方法。
sift算法的原理和步骤

sift算法的原理和步骤SIFT算法的原理和步骤SIFT算法是一种用于图像特征提取的算法,它能够从图像中提取出具有独特性、稳定性和可重复性的关键点,用于图像匹配、目标跟踪等任务。
本文将介绍SIFT算法的原理和步骤。
一、原理1. 尺度空间尺度空间是指同一物体在不同尺度下的表现形式。
SIFT算法采用高斯金字塔来实现尺度空间的构建,即将原始图像不断缩小并平滑处理,得到一系列模糊程度不同的图像。
2. 关键点检测在尺度空间中,SIFT算法采用DoG(Difference of Gaussian)来检测关键点。
DoG是指两个不同尺寸的高斯滤波器之间的差值,可以有效地提取出具有高斯拉普拉斯变换极值点(LoG)特征的区域。
3. 方向确定对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。
最终确定该关键点最显著的梯度方向作为其主方向。
4. 描述子生成以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。
对于每个小块,计算其内部像素的梯度方向直方图,并将其串联成一个128维的向量,作为该关键点的描述子。
5. 匹配通过计算不同图像之间的关键点描述子之间的距离来进行匹配。
采用最近邻法(Nearest Neighbor)和次近邻法(Second Nearest Neighbor)来进行筛选,从而得到最终的匹配结果。
二、步骤1. 构建高斯金字塔对于原始图像,采用高斯滤波器进行平滑处理,并将其缩小一定比例后再次平滑处理,得到一系列不同尺度下的图像。
这些图像构成了高斯金字塔。
2. 构建DoG金字塔在高斯金字塔中,相邻两层之间做差得到一组DoG金字塔。
通过在DoG金字塔上寻找局部极值点来检测关键点。
3. 确定关键点主方向对于每个关键点,在其周围区域内计算梯度幅值和方向,并统计梯度直方图。
最终确定该关键点最显著的梯度方向作为其主方向。
4. 生成描述子以关键点为中心,生成一个16x16的方形区域,并将其分为4x4的小块。
sift拼接算法流程

sift拼接算法流程sift拼接算法流程概述本文将介绍SIFT(尺度不变特征转换)拼接算法流程,这是一种常用于图像拼接的算法。
SIFT算法是一种基于局部特征描述的图像处理算法,具有很好的尺度不变性和旋转不变性。
算法流程概览1.图像预处理–调整图像的大小以适应拼接要求–将图像转换为灰度图像,去除颜色信息2.特征点检测–使用SIFT算法检测图像的关键点–对每个关键点计算其尺度和方向3.特征描述–对每个关键点周围的区域计算特征描述子–描述子是一种用于描述关键点特征的向量4.特征匹配–针对两幅图像的特征描述子进行匹配–使用基于距离的匹配算法,如最近邻法5.配准–根据匹配结果进行图像配准–通过计算变换矩阵,将待拼接图像转换到参考图像坐标系下6.拼接–根据配准结果,将待拼接图像与参考图像进行融合–采用图像叠加或图像融合的方式7.优化–对拼接后的图像进行优化–去除拼接缝隙或伪影等不完美的部分8.输出–将拼接后的图像保存为文件或进行其他处理–可以生成全景图像或其他形式的图像算法流程详解图像预处理在图像预处理阶段,首先需要对待拼接的图像进行预处理。
这包括调整图像的大小以适应拼接要求,一般要求图像具有相同的尺寸。
其次,将图像转换为灰度图像,去除颜色信息。
这是为了降低计算的复杂度,并使得SIFT算法更加稳定。
特征点检测特征点检测是SIFT算法的核心部分。
在这一步骤中,使用SIFT 算法检测图像的关键点。
SIFT算法会在图像的不同位置和尺度上检测出一些关键点,这些关键点具有显著的图像特征,如角点、边缘等。
同时,对于每个关键点,还会计算其尺度和方向信息。
特征描述特征描述是针对每个关键点周围的区域计算其特征描述子。
描述子是一种向量表示,用于描述关键点的局部特征。
在计算描述子时,会考虑关键点的尺度和方向信息,以及其周围区域的图像信息。
特征描述子是SIFT算法的另一个关键输出,它能够很好地保持特征的不变性。
特征匹配在特征匹配阶段,使用一种基于距离的匹配算法来对两幅图像的特征描述子进行匹配。
图像处理中的特征提取和匹配算法

图像处理中的特征提取和匹配算法图像处理在日益热门的人工智能技术中扮演着一种重要的角色。
在图像处理中,特征提取和匹配算法是两个至关重要的步骤。
特征提取是通过分析图像的局部特点来创建描述图像内容的向量,而匹配是将不同图像的特征或特征向量进行比较,以确定它们是否相似。
本文将介绍几种常用的特征提取和匹配算法。
一、特征提取算法1.尺度不变特征变换(SIFT)SIFT是一种特征提取算法,它能够从不同的尺度和方向上提取图像的局部特征。
这种算法在检索和匹配图像中特别有用。
SIFT算法的基本思想是通过高斯差分算子得到一组尺度空间图像,通过高斯图像之间的差异来确定关键点,然后计算每个关键点的局部梯度的幅值和方向,最后形成一个基于梯度方向的特征描述符。
2.速度增强型稀疏编码(SLEEC)SLEEC是一种新型的高效特征提取算法。
与其他算法不同的是,SLEEC只需扫描一次训练数据即可获得最具代表性的特征。
该算法通过运用具有多个分辨率的降采样、随机稀疏和加速度分析三种技术提取特征,从而实现了比其他算法更高的准确性和速度。
二、特征匹配算法1.暴力匹配算法暴力匹配算法是一种基本的匹配算法,它实现了图像特征之间的精确匹配。
该算法通过比较两个图像之间的每个可能的匹配,来确定匹配的好坏。
虽然该算法的准确性很高,但是它非常耗时,因此只适用于小图像匹配。
2.基于Flann树的匹配算法基于Flann树的匹配算法通过对特征向量进行一系列分割和聚类,以快速找到大量数据中的相似匹配。
该算法不仅适用于大规模数据集,而且具有高效和稳定性。
3.随机抽样一致性算法(RANSAC)随机抽样一致性算法是一种常见的特征匹配算法。
该算法通过随机采样一对点来确定匹配,在这个过程中,通过迭代重复采样和检测结果,不断提高匹配模型的准确度。
结论:在图像处理和计算机视觉中,特征提取和匹配是核心算法。
不同的特征提取和匹配算法适用于不同的应用场合。
在实际应用中,为了达到对图像的快速识别和匹配,我们需要根据具体的需求,选择合适的特征提取和匹配算法。
找特征点的算法SIFT和SURF算法

找特征点的算法SIFT和SURF算法SIFT算法和SURF算法是用于图像特征点的检测与描述的两种经典算法。
它们在图像处理、计算机视觉和模式识别等领域得到广泛应用。
下面将分别介绍SIFT算法和SURF算法,并对其原理和应用进行详细阐述。
一、SIFT算法(Scale-Invariant Feature Transform)SIFT算法是由Lowe于1999年提出的一种用于图像特征点检测与描述的算法。
它通过分析图像的局部特征来提取与尺度无关的特征点,具有尺度不变性、旋转不变性和仿射不变性等优点。
1.特征点检测SIFT算法首先通过高斯差分金字塔来检测图像中的特征点。
高斯差分金字塔是由一系列模糊后再进行差分操作得到的,通过不同尺度的高斯核函数对图像进行卷积,然后对结果进行差分运算,得到图像的拉普拉斯金字塔。
在拉普拉斯金字塔上,通过寻找局部最大值和最小值来确定特征点的位置。
2.特征点描述在确定特征点的位置后,SIFT算法使用梯度直方图表示特征点的局部特征。
首先,计算特征点周围邻域内每个像素点的梯度幅值和方向,然后将邻域分为若干个子区域,并统计每个子区域内的梯度幅值和方向的分布,最后将这些统计结果组合成一个向量作为特征点的描述子。
3.特征点匹配SIFT算法通过计算特征点描述子之间的欧式距离来进行特征点的匹配。
欧式距离越小表示两个特征点越相似,因此选择距离最近的两个特征点作为匹配对。
二、SURF算法(Speeded Up Robust Features)SURF算法是由Bay等人于2024年提出的一种在SIFT算法的基础上进行改进的图像特征点检测与描述算法。
它通过加速特征点的计算速度和增强特征点的稳定性来提高算法的实时性和鲁棒性。
1.特征点检测SURF算法使用Hessian矩阵来检测图像中的特征点。
Hessian矩阵是图像的二阶导数矩阵,通过计算Hessian矩阵的行列式和迹来确定图像的局部最大值和最小值,从而找到特征点的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键 词: 计算机视觉; IT特征描述符;扩散距离;图像匹配 SF
S FT a c i g Al o ihm s d n fuso s a e I M t h n g rt Ba e o Di i n Dit nc HU n , I S i n , Ga g L U h- g WU n - a g WANG n Ga QigLin , Ga g
(co l f o ue c n e S an i r l nv ri, ’l 10 2 C ia S h o o C mp tr i c, ha x ma U iesy Xi l7 0 6, h ) Se No t a n
A s a tT eSF (cl Iv r n etr r s r ) g rh o g dda e etoa fa r xr t n b t c: h IT Sa ai t a e a f m a oi m i n w r a e S h s lclet e t ci r e n a F u Tn o l t s er t b u e a o
摘
要: IT(cl Ivr n etr Ta s r 是 目前最流行 的局部特征提取及匹配算法. SF Sae n a at a e rnf m) i F u o 但传统 SF IT算法采用
欧氏距离来度量特征之 间的 S D S m f q ae i eecs S (u o ur f rne) S D 并进行匹配,而传统 的欧 氏距离不能使高维特征 向量 恢复 到具有 低维的几何结构,导致错误匹配.为 了克服这缺 点,利用扩散距离代替欧 氏距离进行 匹配, 后使 用 然 随机抽样一致从候选 匹配 中排除错误的匹配.实验表 明: 该方法在图像形变 、光照变化和图像噪声方面优于原方
计 算 机 系 统 应 用
ht:w . s . g n t / wwc - o . p/ -a r c
21 0 匹配算法①
胡 刚, 刘侍刚, 吴清亮, 王 刚
( 陕西师范大学 计算机科学学 院,西安 7 0 6 ) 10 2
df s no eAt e a eR NS ( a d m Smpe o snu)s rsne c d e s t igp i . iu i n . me i , A AC R o a l C ness ipeetd oe l e ma hn n o h t s t m n t x u t mi c h ot s
c a g di g o s a et d t n l n . h ea n n ma en ie h nt a i o a e t h r i o
Ke r : o u e iin; I f au ed s rp o ; i uso itn e i g t h g y wo ds c mp trv so S FT e t r e ci t r df in d sa c ;ma emac i n
Ex rme tlr s l h w t a hepr p s d a g rt m ha mo ee ce yt e l t m a ed f r ai n ilmi ai n pe i n a e ut s o h tt s o o e loi h S r f inc o d a wi i hi g eo m to , l u n o t
l 引 言
图像 的特 征提取和匹配是计算机视觉 的一个 重要 部分,已经大量地 应用于机器人导航 、图像检索 和 目
种 近 似 于 尺 度 归 一 化 的拉 普 拉斯 高斯 核 (a l i L pa a cn
o a si e e 的 高 斯 差 分 D G D f r c f f G us kr 1 n a n ) o ( iee e o n
hg -i ninl etr vc r n w dmes n e me ys utr iu e aue eS D(u o u e ihdmes a fa e et t a o -i ni a g o t rc e s sdt me r S S m f q a o u o io l ol r t u o S h t S r Dieecsb t e o mae etrsoma ha d eutit mi t ig T vro e h r o ig a IT f rn e e ) wen w g a e t n sl o s c n . oo ecme ot m n ,nSF t i f u t c r s ma h n h t s c
mac ig ag r h b s d o i u in d s n ei p o o e i a e ih rp a e eE c ie i a c t e t hn lo i m a e n d f so i a c r p s d i t s p r t t s n h p wh c lc s h u l a d s n e wi t e t dn t h h
a d mac i g ag rt m. we e i h r dto a I T lo t m, h ci e n ditn ewh c o l o h g h n t hn lo i h Ho v  ̄ n t eta i n lS F ag r h t eEu ld a sa c ih c u dn tc a et e i i n
Gasi ) us 探测符, SF n a 使 IT特征具有尺度不变性.由于 SF IT算法在尺度 、旋转 、亮度和视 角的变化上有很好 的鲁棒性并具有 独特 的 图像特 征,该算法被用作 特征