SIFT算法详解及应用讲的很详细

合集下载

sift算法讲解 ppt课件

sift算法讲解 ppt课件

1 35 79
降采样
123 455 45 67 88
7 8 9 10 11 11
10 11 12 13 14 14 13 14 15 16 17 17 13 14 15 16 17 17
1 35 79
降采样
123 455 45 67 88 7 8 9 10 11 11 10 11 12 13 14 14 13 14 15 16 17 17 13 14 15 16 17 17
一个关键点可能会被指定具有多个方向(一个主 方向、一个以上辅方向),可以增强匹配的鲁棒 性。
每个关键点有三个信息:位置,所处尺度,方向。 由此可以确定一个SIFT特征区域。
SIFT 概述
关键点检测
1、检测尺度空间极值点
2、精确定位极值点
描述子生成
3、为每个关键点指定方向
4、关键点描述子的生成
1、首先将坐标轴旋转为关键点的方向,以确保旋转不 变性。
放大一倍
13 5 7 9 11 13 15 17
123 45
4
6
8
7 8 9 10 11
10
12
14
13 14 15 16 17
放大一倍
13 5 7 9 11 13 15 17
123 45 45 67 8 7 8 9 10 11 10 11 12 13 14 13 14 15 16 17
放大一倍
1 35 7 9 11 13 15 17
在3x3x3 邻域内选择所有的极值 中间的检测点和尺度空间共26个点比较
SIFT 概述
关键点检测
1、检测尺度空间极值点。
2、精确定位极值点。
描述子生成
3、为每个关键点指定方向。

SIFT算法详解

SIFT算法详解

SIFT算法详解Scale Invariant Feature Transform(SIFT)Just For Funzdd zddmail@对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。

1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由David Lowe在1999年所发表,2004年完善总结。

其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。

此算法有其专利,专利拥有者为英属哥伦比亚大学。

局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。

对于光线、噪声、些微视角改变的容忍度也相当高。

基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。

使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。

在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。

SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

SIFT算法的特点有:1. SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;2. 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;4. 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;5. 可扩展性,可以很方便的与其他形式的特征向量进行联合。

SIFT算法可以解决的问题:目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。

(完整word版)SIFT算法分析

(完整word版)SIFT算法分析

SIFT算法分析1 SIFT主要思想SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。

2 SIFT算法的主要特点:a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。

b)独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配.c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。

d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。

e) 可扩展性,可以很方便的与其他形式的特征向量进行联合.3 SIFT算法流程图:4 SIFT 算法详细1)尺度空间的生成尺度空间理论目的是模拟图像数据的多尺度特征。

高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: ),(),,(),,(y x I y x G y x L *=σσ 其中 ),,(σy x G 是尺度可变高斯函数,2)(22/21),,(22σπσσy xe y x G +-=(x,y )是空间坐标,σ是尺度坐标。

σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。

大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。

为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale —space )。

利用不同尺度的高斯差分核与图像卷积生成。

),,(),,(),()),,(),,((),,(σσσσσy x L k y x L y x I y x G k y x G y x D -=*-= DOG 算子计算简单,是尺度归一化的LoG 算子的近似。

图像金字塔的构建:图像金字塔共O 组,每组有S 层,下一组的图像由上一组图像降采样得到。

图1由两组高斯尺度空间图像示例金字塔的构建, 第二组的第一副图像由第一组的第一副到最后一副图像由一个因子2降采样得到.图2 DoG算子的构建:图1 Two octaves of a Gaussian scale-space image pyramid with s =2 intervals. The first image in the second octave is created by down sampling to last image in the previous图2 The difference of two adjacent intervals in the Gaussian scale—space pyramid create an interval in the difference—of—Gaussian pyramid (shown in green)。

SIFT算法实现理解及注释详解(基于RobHess源码)

SIFT算法实现理解及注释详解(基于RobHess源码)

Rob Hess的SIFT算法实现理解及注释SIFT算法不用我多解释了,这是一个很强大的算法,主要用于图像配准和物体识别等领域,但是其计算量相比也比较大,性价比比较高的算法包括PCA-SIFT 和SURF其中OpenCV提供了SURF算法,但是为了方便理解。

这里给出了Rob Hess 所实现的SIFT算法的实现以及注释,结合我自己的理解,如果,您有关于SIFT算法不理解的地方咱们可以一起交流一下。

或者您认为不详细的地方提出来。

SIFT算法的主要实现在sift.c这个文件,其主要流程为:(1)首先创建初始图像,即通过将图像转换为32位的灰度图,然后将图像使用三次插值来方大,之后通过高斯模糊处理(2)在此基础上进行高斯金字塔的构建以及高斯差分金字塔的构建(3)对图像进行极值点检测(4)计算特征向量的尺度(5)调整图像大小(6)计算特征的方向(7)计算描述子,其中包括计算二维方向直方图并转换直方图为特征描述子首先给出sift算法的整体框架代码:输入参数:img为输入图像;feat为所要提取的特征指针;intvl指的是高斯金字塔和差分金字塔的层数;sigma指的是图像初始化过程中高斯模糊所使用的参数;contr_thr是归一化之后的去除不稳定特征的阈值;curv_thr指的是去除边缘的特征的主曲率阈值;img_dbl是是否将图像放大为之前的两倍;descr_with用来计算特征描述子的方向直方图的宽度;descr_hist_bi ns 是直方图中的条数⑴初始化图像输入参数:这里不需要解释了该函数主要用来初始化图像,转换图像为32位灰度图以及进行高斯模糊。

(2)构建高斯金字塔输入参数:octvs是高斯金字塔的组invls是高斯金字塔的层数sigma是初始的高斯模糊参数,后续也通过它计算每一层所使用的sigma7.gauss. _pyr = static_cast vlpllmage ***>( calloc( octvs, sizeof (lpllmage** )));8.9. for (i = 0; i < octvs; i++ )10. gauss_pyr[i] = static_cast vlpllmage **>( calloc( intvls + 3, sizeof ( lpllmage* )));11./*12.13. precompute Gaussian sigmas using the following formula:14. 预计算每次高斯模糊的sigma15.16. \sigma_{total}A2 = \sigma_{i}A2 + \sigma_{i-1}A217. */18. sig[0] =sigma;19. k = pow( 2.0, 1.0 / intvls );20. for (i = 1; i < intvls + 3; i++ )21. {22. sig_prev = pow( k, i - 1 ) * sigma;23. sig_ total = sig_prev * k;24. sig[i] = sqrt( sig_total * sig_total - sig_prev * sig_prev );25. }26.27.28. for (o = 0; o < octvs; o++ )29. for ( i = 0; i < intvls + 3; i++ )30. {31. //对每一层进行降采样,形成高斯金字塔的每一层32. if ( o == 0 && i == 0 )33. gauss_pyr[o][i] = cvClonelmage(base);34.35. /* base of new octvave is halved image from end of previous octave */36. //每一组的第一层都是通过对前面一组的最上面一层的降采样实现的37. else if ( i == 0 )38. gauss_pyr[o][i] = downsample( gauss_pyr[o-1][intvls]);39.40. /* blur the current octave's last image to create the next one */41. //每一组的其他层则使通过使用不同sigma的高斯模糊来进行处理42. else43. {44. gauss_pyr[o][i] = cvCreatelmage( cvGetSize(gauss_pyr[o][i-1]),45. IPL_DEPTH_32F, 1 );46. cvSmooth( gauss_pyr[o][i-1], gauss_pyr[o][i],47. CV_GAUSSIAN, 0, 0, sig[i], sig[i]);48. }降采样处理输入参数:不解释这就是降采样,其实就是将图像通过最近邻算法缩小为原来的一半(3)构建高斯差分金字塔输入参数:不解释了参见上面的说明即可实际上差分金字塔的构成是通过对相邻层的图像进行相减获得的(4)极值点检测输入参数:contr_thr是去除对比度低的点所采用的阈值curv_thr是去除边缘特征的阈值SIFT_IMG_BORDE是预定义的图像边缘;通过和对比度阈值比较去掉低对比度的点;而通过is_extremum来判断是否为极值点,如果是则通过极值点插值的方式获取亚像素的极值点的位置。

sift算法详解

sift算法详解

2、高斯模糊
SIFT 算法是在不同的尺度空间上查找关键点,而尺度空间的获取需要使用高斯模糊来 实现,Lindeberg 等人已证明高斯卷积核是实现尺度变换的唯一变换核,并且是唯一的线性 核。本节先介绍高斯模糊算法。
2.1 二维高斯函数
高斯模糊是一种图像滤波器,它使用正态分布(高斯函数)计算模糊模板,并使用该模板 与原图像做卷积运算,达到模糊图像的目的。 N 维空间正态分布方程为:
G (r ) =
1 2πσ
2
N
e −r
2
/(2 σ 2 )
(1-1)
其中, σ 是正态分布的标准差, σ 值越大,图像越模糊(平滑)。r 为模糊半径,模糊半 径是指模板元素到模板中心的距离。如二维模板大小为 m*n,则模板上的元素(x,y)对应的高 斯计算公式为:
G ( x, y ) =
1
2πσ 2
3.1 尺度空间理论
尺度空间(scale space)思想最早是由 Iijima 于 1962 年提出的,后经 witkin 和 Koenderink 等人的推广逐渐得到关注,在计算机视觉领域使用广泛。 尺度空间理论的基本思想是: 在图像信息处理模型中引入一个被视为尺度的参数, 通过 连续变化尺度参数获得多尺度下的尺度空间表示序列, 对这些序列进行尺度空间主轮廓的提 取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。 尺度空间方法将传统的单尺度图像信息处理技术纳入尺度不断变化的动态分析框架中, 更容易获取图像的本质特征。 尺度空间中各尺度图像的模糊程度逐渐变大, 能够模拟人在距 离目标由近到远时目标在视网膜上的形成过程。 尺度空间满足视觉不变性。该不变性的视觉解释如下:当我们用眼睛观察物体时,一方 面当物体所处背景的光照条件变化时, 视网膜感知图像的亮度水平和对比度是不同的, 因此 要求尺度空间算子对图像的分析不受图像的灰度水平和对比度变化的影响, 即满足灰度不变 性和对比度不变性。另一方面,相对于某一固定坐标系,当观察者和物体之间的相对位置变 化时,视网膜所感知的图像的位置、大小、角度和形状是不同的,因此要求尺度空间算子对 图像的分析和图像的位置、 大小、 角度以及仿射变换无关, 即满足平移不变性、 尺度不变性、 欧几里德不变性以及仿射不变性。

SIFT特征提取及其在人脸识别中的应用

SIFT特征提取及其在人脸识别中的应用

为每个关键点分配一个或多个方 向,以增强对图像旋转的鲁棒性。
4. 生成特征描述符
在关键点周围选取一定范围的邻 域,计算梯度方向直方图,生成 特征描述符。
1. 尺度空间极值检测
5. 特征匹配
在多个尺度空间上检测关键点位 置和尺度。
使用特征描述符进行相似度匹配, 找到图像之间的相似特征点。
02 人脸识别技术概述
通过改进特征描述符的设计,使其能够更好地适应尺度缩放和旋转变化,提高特征提取的 准确性。
提高对光照变化和遮挡问题的处理能力
通过引入更多的图像特征信息,或者采用其他算法来处理光照变化和遮挡问题,以增强 SIFT算法的性能。
降低计算复杂度
通过优化算法实现更高效的计算,例如采用并行计算、优化数据结构等方法,提高算法的 实时性和效率。
ORB算法是一种结合了SIFT和FAST特征检测器的算法, 通过使用旋转不变性、边缘信息和尺度空间来提高特征提 取的准确性和鲁棒性。
05 未来展望
SIFT算法的发展趋势
01
02
03
实时性提升
随着计算能力的增强, SIFT算法将进一步优化, 实现更快速的特征提取, 满足实时处理的需求。
多模态融合
结合深度学习技术,SIFT 算法将进一步发展多模态 特征融合,提升对复杂场 景的适应性。
sift特征提取及其在人脸识别中的 应用
目录
• SIFT特征提取算法简介 • 人脸识别技术概述 • SIFT在人脸识别中的应用 • SIFT算法的改进和优化 • 未来展望
01 SIFT特征提取算法简介
SIFT算法的起源和原理
01
02
03
SIFT(Scale-Invariant Feature Transform)算 法由David Lowe于1999 年提出,旨在解决图像尺 度、旋转和光照变化下的

sift特征提取与匹配原理

sift特征提取与匹配原理

SIFT特征提取与匹配原理的深入解析一、引言在图像处理和计算机视觉领域,尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种被广泛应用的算法。

SIFT特征提取与匹配原理是图像处理中的重要一环,对于图像识别、图像配准、3D建模、物体跟踪等应用具有重要意义。

本文将深入解析SIFT特征提取与匹配原理,包括其基本概念、算法流程、优缺点以及应用场景。

二、SIFT特征提取原理1. 尺度空间极值检测SIFT算法首先通过构建尺度空间,在不同尺度下搜索所有可能的特征点。

这个过程是通过高斯差分(Difference of Gaussians,DoG)来实现的,它可以有效地检测出图像中的局部极值点,这些点具有尺度不变性,即无论图像被放大或缩小,这些点都能被检测到。

2. 特征点定位在检测到局部极值点后,SIFT算法会进行精确的定位。

这个过程包括去除低对比度的点和边缘点,因为这些点不稳定且对噪声敏感。

通过拟合三维二次函数来精确确定特征点的位置和尺度。

3. 方向分配为了使描述符具有旋转不变性,SIFT算法会为每个特征点分配一个主方向。

这是通过计算特征点周围像素的梯度方向和大小来实现的。

主方向是通过直方图统计梯度方向并找到最大的峰值来确定的。

4. 描述符生成最后,SIFT算法会生成一个描述符,用于描述特征点周围的图像信息。

描述符是通过将特征点周围的区域划分为4x4的子区域,并计算每个子区域的梯度方向和大小直方图来生成的。

描述符是一个128维的向量,具有对尺度、旋转和光照变化的不变性。

三、SIFT特征匹配原理在生成了SIFT描述符后,就可以进行特征匹配了。

这个过程是通过计算两个描述符之间的欧氏距离来实现的。

距离越小,表示两个特征点越相似。

为了提高效率,通常会使用K-D树等数据结构来加速匹配过程。

此外,还可以使用RANSAC等算法来消除误匹配,提高匹配的准确性。

四、优缺点分析SIFT算法的优点主要体现在以下几个方面:1. 尺度、旋转和光照不变性:SIFT描述符具有对尺度、旋转和光照变化的不变性,这使得它在各种场景下都能取得较好的效果。

SIFT特征提取

SIFT特征提取
SIFT特征提取
一、SIFT简介

尺度不变特征转换(Scale-invariant feature transform, SIFT) 是一种用来检测与描述图像局部特征的算法,它通过在尺度空 间中寻找极值点作为特征点,具有旋转不变性以及尺度不变性。

此算法由 David Lowe在1999年所发表,2004年完善总结。其 应用范围包含物体辨识、机器人地图感知与导航、3D模型建立、 手势辨识、影像追踪和动作比对等。
四、特征描述子的生成
在检测到的特征点邻域像素集合上计算梯度幅值和梯度方向:
首先将坐标轴旋转为关键点的方向,以确保旋转不变 性。以关键点为中心取8×8的窗口。
计算关键点周围的16*16的窗口中每一个像素的梯度,而且使 用高斯下降函数降低远离中心的权重。
五、关键点匹配
在得到图像的特征向量之后,依次找出两幅图中相似度最高
的两个特征向量,完成对特征点的连线匹配。
谢谢观看
尺度空间 极值检测
特征点定 位
特征点方 向赋值
特征点描 述
特征点匹 配
二、尺度空间理论

基本思想:在图像信息处理模型中引入一个被视为尺度的参数, 通过连续变化尺度参数获得多尺度下的尺度空间表示序列,对 这些序列进行尺度空间主轮廓的提取,并以该主轮廓作为一种 特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。
尺度空间的表示

LoG算子与DoG算子的区点检测
关键点的定位

低对比度的点(对噪声敏感) 去除不稳定的边界点

可以将上式写成矢量的形式如下:
令上式的一阶导数等于0,可以求得:
去除边缘响应


图1 未经筛选的特征图 图2 去除低对比度后的特征图 图3 消除边缘相应后的特征图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档