2008年高考数学理科试题汇编--三角函数
2008年高考数学三角函数

2008年高考数学三角函数、三角恒等变换试题(二)一.填空题:1.(2008浙江文)函数1)cos (sin 2++=x x y 的最小正周期是_________2.(2008浙江文、理)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的 图象和直线21=y 的交点个数是_________3.(2008浙江理)若,5sin 2cos -=+a a 则a tan =__________4.(2008重庆文)函数f (x(0≤x ≤2π)的值域是__________5. (2008重庆理)函数f(x)(02x π≤≤) 的值域是_________6.(2008北京文)若角α的终边经过点P (1,-2),则tan 2α的值为 .7.(2008北京文、理)已知函数2()cos f x x x =-,对于[-22ππ,]上的任意x 1,x 2,有如下条件:①x 1>x 2; ②x 21>x 22; ③|x 1|>x 2.其中能使f (x 1)> f (x 2)恒成立的条件序号是 .8. (2008广东理)已知函数R x x x x x f ∈-=,sin )cos (sin )(,则)(x f 的最小正周期是____.9. (2008江苏)()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 10.(2008辽宁文)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .11.(2008辽宁理)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________.12.(2008上海理)函数f (x )=3sin x +sin(π2+x )的最大值是13.(2008浙江文)若==+θθπ2cos ,53)2sin(则 .14.(2008安徽文)函数sin(2)3y x π=+图像的对称轴方程是______________(写出一个)二、解答题:1.(2008江西文) 已知1tan 3α=-,cos 5β=,(0,)αβπ∈(1)求tan()αβ+的值;(2)求函数())cos()f x x x αβ=-++的最大值.2.(2008山东文)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值;(Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.3.(2008陕西文) 已知函数()2sin cos 442xxxf x =+.(Ⅰ)求函数()f x 的最小正周期及最值; (Ⅱ)令π()3g x f x ⎛⎫=+ ⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由.4.(2008天津文)已知函数2()2cos 2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π.(Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.。
高考题(08年三角函数)

2008年高考题(三角函数)一、选择题 1.(全国卷Ⅰ文6)1)c o s (s i n 2--=x x y 是 ( )A .最小正周期为π2的偶函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 2.(全国卷Ⅰ文9)为了得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图像( )A .向左平移6π个长度单位B .向右平移6π个长度单位C .向左平移65π个长度单位D .向右平移65π个长度单位3.(全国卷Ⅰ理8)为了得到函数)32cos(π+=x y 的图象,只需将函数x y 2sin =的图像( )A .向左平移125π个长度单位B .向右平移125π个长度单位C .向左平移65π个长度单位D .向右平移65π个长度单位4.(全国卷Ⅱ文1)若0sin <α,且0tan >α,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 5.(全国卷Ⅱ理8) 若动直线a x =与函数x x f sin )(=和x x g cos )(=的图象分别交于M 、N 两点,则||MN 的最大值为( )A . 1B .2C .3D .2 6.(全国卷Ⅱ文10)函数x x y cos sin -=的最大值为( )A . 1B .2C .3D .2 7.(全国卷Ⅱ文11)设ABC ∆是等腰三角形, 120=∠ABC ,则以A 、B 为焦点且过点C 的双曲线的离心率为,( ) A .221+ B . 231+ C . 21+ D . 31+8.(北京卷文4)已知ABC ∆中,2=a ,3=b , 60=B ,那么角A 等于( ) A . 135 B . 90 C . 45 D . 30 9.(天津卷文6)把函数x y sin =(R x ∈)的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( )A .)32sin(π-=x y ,R x ∈ ;B .)32sin(π-=x y ,R x ∈ ;C .)32sin(π+=x y ,R x ∈ ;D .)322sin(π+=x y ,R x ∈ 10.(天津卷文9)设75sin π=a ,72cos π=b ,72tan π=c ,则( )A .c b a << ;B .b c a << ;C .a c b << ;D .c a b << 11.(天津卷理9)已知函数)(x f 是定义在R 上的偶函数,且在区间),0[+∞上是增函数,令)72(sinπf a =,)75(cos πf b =,)75(tan πf c =,则( ) A .c a b << ; B .a b c << ; C .a c b << ; D .c b a << 12.(天津卷理3) 设函数)22cos()(π-=x x f ,R x ∈,则)(x f 是( )A .最小正周期为π的奇函数 ;B .最小正周期为π的偶函数 ;C .最小正周期为2π的奇函数; D .最小正周期为2π的偶函数 13.(重庆卷文12)函数xx x f cos 45sin )(+=(0≤x ≤π2)的值域是( )A .]41,41[- ;B .]31,31[- ;C .]21,21[- ;D .]32,32[-14.(重庆卷理12)函数xx x x f sin 2cos 231sin )(---=(0≤x ≤π2)的值域是( )A .]0,22[- ; B .]0,1[- ; C .]0,2[- ; D .]0,3[-在ABC ∆中,3=AB ,2=AC ,10=BC ,则=⋅ ( )A . 23-B . 32- C . 32 D . 2316.(湖南卷理6)函数x x x x f cos sin 3sin )(2+=在区间]2,4[ππ上的最大值是 ( )A . 1B . 231+ C . 23 D . 31+17.(湖北卷文7)将函数)sin(θ-=x y 的图像F 向右平移3π个单位长度得到图像F ',若F '的一条对称轴是直线4π=x ,则θ的一个可能取值是( )A .π125 B . π125- C . π1211 D . π1211- 18.(湖北卷理5)将函数)sin(3θ-=x y 的图像F 按向量)3,3(π平移到图像F ',若F '的一条对称轴是直线4π=x ,则θ的一个可能取值是( )A . π125B . π125-C . π1211D . π1211- 19.(陕西卷文1)330s i n等于( ) A .23-; B .21-; C .21; D .2320.(陕西卷理3)A B C ∆的内角A 、B 、C 的对边分别是a 、b 、c ,若2=c ,6=b ,120=B ,则a 等于( )A . 6B .2C .3D .221.(广东卷文5)已知函数x x x f 2sin )2cos 1()(+=,R x ∈,则)(x f 是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数函数2sin2sin sin )(xx xx f +=是 ( )A .以π4为周期的偶函数B .以π2为周期的奇函数C .以π2为周期的偶函数D .以π4为周期的奇函数 23.(江西卷文10理6)函数|sin tan |sin tan x x x x y --+=在区间)23,2(ππ内的图像大致是( )24.(四川卷文4理3) =+2c o s )c o t (t a n x x x ( )A . x t a nB . x s i nC . x c o sD . x c o t 25.(四川卷文7) A B C ∆的三内角A 、B 、C 的对边边长分别为a 、b 、c .若b a 25=, B A 2= 则=B cos ( ) A .35 B . 45 C . 55 D . 65 26.(四川卷理5)设0≤πα2<.若ααcos 3sin >,则α的取值范围是( )A . )2,3(ππB . ),3(ππC . )34,3(ππD . )23,3(ππ27.(浙江卷文2) 函数1)cos (sin 2++=x x y 的最小正周期是( )A .2π ; B .π ; C .23π; D .π228.(浙江卷理5文7)在同一平面直角坐标系中,函数)232cos(π+=x y (]2,0[π∈x )的图象和直线21=y 的交点个数是( )A .0 ;B .1 ;C .2 ;D .4 29.(浙江卷理8) 若5sin 2cos -=+αα,则=αtan ( ) A . 21 B . 2 C . 21- D . 2-已知a 、b 、c 为ABC ∆的三个内角A 、B 、C 的对边,向量)1,3(-=,)sin ,(cos A A =.若⊥,且C c A b B a sin cos cos =+,则角A 、B 的大小分别为( )A . 6π,3πB .32π,6πC . 3π,6πD . 3π,3π31.(山东卷文10理5)已知534sin )6cos(=+-απα,则)67sin(πα+的值是( ) A . 532-; B . 532 ; C . 54- ; D . 5432.(安徽卷文5)在ABC ∆中,5=AB ,3=AC ,7=BC ,则BAC ∠的大小为( )A . 32πB . 65πC . 43πD . 3π33.(安徽卷文8)函数)32sin(π+=x y 图像的对称轴方程可能是 ( )A . 6π-=x ;B . 12π-=x ;C . 6π=x ; D . 12π=x34.(安徽卷理5)将函数)32sin(π+=x y 图像按向量平移后所得到的图象关于点)0,12(π-中心对称,则向量的坐标可能为 ( ) A . )0,12(π-; B . )0,6(π-; C . )0,12(π ; D . )0,6(π35.(福建卷文4)函数1sin )(3++=x x x f (R x ∈),若2)(=a f ,则)(a f -的值为( ) A .3 ; B .0 ; C .1- ; D .2-36.(福建卷文7)函数x y cos =(R x ∈)的图像向左平移2π个单位后,得到函数)(x g y =的图像,则)(x g 的解析式为 ( )A . x sin -B . x sinC . x cos -D . x cos函数x x f cos )(=(R x ∈)的图象按向量)0,(m 平移后,得到函数)(x f y '-=的图象,则m 的值可以为 ( )A . 2π ; B . π ; C . π- ; D . 2π-38.(福建卷文8) 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若ac b c a 3222=-+,则角B 的值为( )A . 6π ;B . 3π ;C . 6π或65π ;D . 3π或32π39.(福建卷理10)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若ac B b c a 3tan )(222=-+,则角B 的值为( )A .6π ; B . 3π ; C . 6π或65π ; D .π或2π40.(海南、宁夏卷理1) 已知函数)sin(2ϕω+=x y (0>ω)在区间]2,0[π 的图象如图1,那么=ω( )A . 1B . 2C . 21D . 3141.(海南、宁夏卷文11)函数x x x f sin 22cos )(+=的最小值和最大值分别为( ) A . 3-,1 B . 2-,2 C . 3-,23 D . 2-,2342.(海南、宁夏卷理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185 ; B . 43 ; C . 23 ; D . 8742.(海南、宁夏卷理7)=--10cos 270sin 32( ) A .21 ; B .22 ; C .2 ; D .23二、填空题 1.(全国卷Ⅰ文15)在ABC ∆中, 90=∠A ,43tan =B ,若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率=e 2.(北京卷文9)若角α的终边经过点)2,1(-P ,则α2tan 的值为 3.(上海卷理6)函数)2sin(sin 3)(x x x f ++=π的最大值是4.(湖北卷文12)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,已知3=a ,3=b30=C ,则=A5.(湖北卷文12)在ABC ∆中,三个角A 、B 、C 的对边边长分别为3=a ,4=b ,6=c ,则C ab B ca cos cos +的值为 6.(陕西卷文13) A B C ∆的内角A 、B 、C 的对边分别是a 、b 、c ,已知2=c ,6=b120=B ,则=a7.(广东卷理12)已知函数x x x x f sin )cos (sin )(-=,R x ∈,则)(x f 的最小正周期是 8.(江苏卷文理1)若函数)6cos(πω-=x y (0>ω)的最小正周期为5π,则=ω9.(江苏卷文理13) 满足条件2=AB ,BC AC 2=的三角形ABC 的面积的最大值是 10.(辽宁卷理16) 已知)3sin()(πω+=x x f (0>ω),)3()6(ππf f =,且)(x f 在区间)3,6(ππ有最小值,无最大值,则=ω11.(辽宁卷文16)设)2,0(π∈x ,则函数xx y 2sin 1sin 22+=的最小值为12.(浙江卷文12) 若53)2sin(=+θπ,则=θ2cos13.(浙江卷文14)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .若C a A c b c o s c o s )3(=- 则=A cos 14.(山东卷理15)已知a 、b 、c 为ABC ∆的三个内角A 、B 、C 的对边,向量)1,3(-=,)sin ,(cos A A =.若⊥,且C c A b B a sin cos cos =+,则角=B 三、解答题 1.(全国卷Ⅰ文17)设ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c ,且3cos =B a ,4sin =A b .(Ⅰ)求边长a ;(Ⅱ)若ABC ∆的面积10=S ,求ABC ∆的周长l . 2.(全国卷Ⅰ理17)设ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c ,且c A b B a 53cos cos =-.(Ⅰ)求B A cot tan 的值; (Ⅱ)若)tan(B A -的最大值.3.(全国卷Ⅱ文17)在ABC ∆中,135cos -=A ,53cos =B . (Ⅰ)求C sin 的值;(Ⅱ)设5=BC ,求ABC ∆的面积.4.(全国卷Ⅱ理17)在ABC ∆中,135cos -=B ,54cos =C . (Ⅰ)求A sin 的值; (Ⅱ)设ABC ∆的面积233=∆ABC S ,求BC 的长.5.(北京卷文理15)已知函数)2sin(sin 3sin )(2πωωω++=x x x x f ()0>ω的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数)(x f 在区间]32,0[π上的取值范围. 6.(上海卷文18)已知函数x x f 2sin )(=,)62cos()(π+=x x g .直线t x =(R t ∈)与函数)(x f 、)(x g 的图像分别交于M 、N 两点.(Ⅰ)当4π=t 时,求||MN 的值;(Ⅱ)求||MN 在]2,0[π∈t 时的最大值.7.(天津卷文17)已知函数1cos sin 2cos 2)(2++=x x x x f ωωω(R x ∈,)0>ω的最小正周期是2π. (Ⅰ)求ω的值; (Ⅱ)求函数)(x f 的最大值,并且求使)(x f 取得最大值的x 的集合. 8.(天津卷理17)已知102)4cos(=-πx ,)43,2(ππ∈x .(Ⅰ)求x sin 的值;(Ⅱ)求)32sin(π+x 的值.9.(重庆卷文17)设ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c , 已知bc a c b 3222+=+,求: (Ⅰ)A 的大小;(Ⅱ))sin(cos sin 2C B C B --的值.10.(重庆卷理17)设ABC ∆的内角A 、B 、C 所对的边长分别为a 、b 、c , 且 60=A ,b c 3=.求:(Ⅰ)ca的的值; (Ⅱ)C B cot cot +的值. 11.(湖南卷文17)已知函数x xx x f sin 2sin 2cos )(22+-=. (Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)当)4,0(0π∈x ,且524)(=x f 时,求)6(0π+x f 的值.12.(湖南卷理19)在一个特定时段内,以点E 为中心的7海里以内被设为警戒水域.点E 正北55海里处有一个雷达观测站A .某时刻测得一艘匀速行驶的船只位于点A 北偏东 45且与点A 相距240海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东θ+ 45(2626sin =θ, 900<<θ)且与点A 相距1310海里的位置C . (Ⅰ)求该船的行驶速度(单位:海里/小时);(Ⅱ)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由. 13.(湖北卷文16)已知函数22cos 2cos 2sin )(2-+=xx x x f .(Ⅰ)将函数)(x f 化简成B x A ++)sin(ϕω(0>A ,0>ω,)2,0[πϕ∈)的形式,并指出)(x f 的周期; (Ⅱ)求函数)(x f 在]1217,[ππ上的最大值和最小值.14.(湖北卷文16)已知函数tt t f +-=11)(,)(cos sin )(sin cos )(x f x x f x x g ⋅+⋅=,]1217,[ππ∈x . (Ⅰ)将函数)(x g 化简成B x A ++)sin(ϕω(0>A ,0>ω,)2,0[πϕ∈)的形式; (Ⅱ)求函数)(x g 的值域.15.(陕西卷文17) 已知函数2cos 34cos 4sin 2)(x x x x f +=. (Ⅰ)求函数)(x f 的最小正周期及最值; (Ⅱ)令)3()(π+=x f x g ,判断函数)(x g 的奇偶性,并说明理由.16.(陕西卷理17) 已知函数34sin 324cos 4sin 2)(2+-=x x x x f . (Ⅰ)求函数)(x f 的最小正周期及最值; (Ⅱ)令)3()(π+=x f x g ,判断函数)(x g 的奇偶性,并说明理由.17.(广东卷文17理16)已知函数)sin(ϕ+=x A y (0>A ,πϕ<<0),R x ∈的最大值是1,其图象经过点)21,3(πM . (Ⅰ)求)(x f 的解析式;(Ⅱ)已知α,)2,0(πβ∈,且53)(=αf ,1312)(=βf ,求)(βα-f 的值.18.(江西卷文17) 已知31tan -=α,55cos =β,α,),0(πβ∈. (Ⅰ)求)tan(βα+的值;(Ⅱ)求函数)cos()sin(2)(βα++-=x x x f 的最大值.19.(江西卷理17)在ABC ∆中,a 、b 、c 分别为角A 、B 、C 所对的边长,32=a , 42tan 2tan =++C B A ,2cos sin sin 2A C B =,求A 、B 及b 、c .20.(江苏卷文理15)如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A 、B 两点,已知A 、B 的横坐标分别为102,552.求: (Ⅰ))tan(βα+的值; (Ⅱ)βα2+的值.21.(辽宁卷文17)在ABC ∆中,内角A 、B 、C 对边的边长分别是a 、b 、c ,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a 、b ; (Ⅱ)若A B sin 2sin =,求ABC ∆的面积.22.(辽宁卷理17)在ABC ∆中,内角A 、B 、C 对边的边长分别是a 、b 、c ,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a 、b ; (Ⅱ)若A A B C 2sin 2)sin(sin =-+,求ABC ∆的面积.23.(四川卷文理17)求函数x x x x y 42cos 4cos 4cos sin 47-+-=的最大值与最小值.24.(山东卷文17) 已知函数)cos()sin(3)(ϕωϕω+-+=x x x f (πϕ<<0,0>ω)为偶函数,且函数)(x f y =图象的两相邻对称轴间的距离为2π. (Ⅰ)求)8(πf 的值; (Ⅱ)将函数)(x f y =的图象向右平移6π个单位后,得到函数)(x g y =的图象,求)(x g y =的单调递减区间.25.(山东卷理17) 已知函数)cos()sin(3)(ϕωϕω+-+=x x x f (πϕ<<0,0>ω)为偶函数,且函数)(x f y =图象的两相邻对称轴间的距离为2π. (Ⅰ)求)8(πf 的值; (Ⅱ)将函数)(x f y =的图象向右平移6π个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数)(x g y =的图象,求)(x g y =的单调递减区间.26.(安徽卷文17) 已知函数)4sin()4sin(2)32cos()(πππ+-+-=x x x x f .(Ⅰ)求函数)(x f 的最小正周期;(Ⅱ)求函数)(x f 在区间]2,12[ππ-上的值域.27.(安徽卷理17) 已知函数)4sin()4sin(2)32cos()(πππ+-+-=x x x x f .(Ⅰ)求函数)(x f 的最小正周期和图象的对称轴方程; (Ⅱ)求函数)(x f 在区间]2,12[ππ-上的值域.28.(福建卷理17) 已知向量)cos ,(sin A A =,)1,3(-=,且1=⋅,且A 为锐角. (Ⅰ)求角A 的大小;(Ⅱ)求函数x A x x f sin cos 42cos )(+=(R x ∈)的值域.29.(福建卷文17) 已知向量)cos ,(sin A A m =,)2,1(-=n ,且0=⋅n m . (Ⅰ)求A tan 的值; (Ⅱ)求函数x A x x f sin tan 2cos )(+=(R x ∈)的值域.30.(海南、宁夏卷文17)如图,ACD ∆是等边三角形,ABC ∆是等腰直角三角形, 90=∠ACB ,BD 交AC 于E ,2=AB . (Ⅰ)求CBE ∠的值; (Ⅱ)求AE .A C D E。
2008年浙江省高考数学试卷(理科)答案与解析

2008年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•浙江)已知a是实数,是纯虚数,则a=()A.1 B.﹣1 C.D.﹣【考点】复数代数形式の混合运算.【分析】化简复数分母为实数,复数化为a+bi(a、b是实数)明确分类即可.【解答】解:由是纯虚数,则且,故a=1故选A.【点评】本小题主要考查复数の概念.是基础题.2.(5分)(2008•浙江)已知U=R,A={x|x>0},B={x|x≤﹣1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0} C.{x|x>﹣1} D.{x|x>0或x≤﹣1}【考点】交、并、补集の混合运算.【分析】由题意知U=R,A={x|x>0},B={x|x≤﹣1},然后根据交集の定义和运算法则进行计算.【解答】解:∵U=R,A={x|x>0},B={x|x≤﹣1},∴C u B={x|x>﹣1},C u A={x|x≤0}∴A∩C u B={x|x>0},B∩C u A={x|x≤﹣1}∴(A∩C u B)∪(B∩C u A)={x|x>0或x≤﹣1},故选D.【点评】此题主要考查一元二次不等式の解法及集合の交集及补集运算,一元二次不等式の解法及集合间の交、并、补运算布高考中の常考内容,要认真掌握,并确保得分.3.(5分)(2008•浙江)已知a,b都是实数,那么“a2>b2”是“a>b”の()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件の判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”の既不充分也不必要条件.【解答】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”の既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.(5分)(2008•浙江)在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)の展开式中,含x4の项の系数是()A.﹣15 B.85 C.﹣120 D.274【考点】二项式定理の应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)の思路来完成.【解答】解:含x4の项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)の5个括号中4个括号出x仅1个括号出常数∴展开式中含x4の项の系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项の系数.5.(5分)(2008•浙江)在同一平面直角坐标系中,函数(x∈[0,2π])の图象和直线の交点个数是()A.0 B.1 C.2 D.4【考点】函数y=Asin(ωx+φ)の图象变换.【分析】先根据诱导公式进行化简,再由xの范围求出の范围,再由正弦函数の图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=の交点个数是2个.故选C.【点评】本小题主要考查三角函数图象の性质问题.6.(5分)(2008•浙江)已知{a n}是等比数列,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=()A.16(1﹣4﹣n) B.16(1﹣2﹣n)C.(1﹣4﹣n)D.(1﹣2﹣n)【考点】等比数列の前n项和.【专题】计算题.【分析】首先根据a2和a5求出公比q,根据数列{a n a n+1}每项の特点发现仍是等比数列,且首项是a1a2=8,公比为.进而根据等比数列求和公式可得出答案.【解答】解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故选:C.【点评】本题主要考查等比数列通项の性质和求和公式の应用.应善于从题设条件中发现规律,充分挖掘有效信息.7.(5分)(2008•浙江)若双曲线の两个焦点到一条准线の距离之比为3:2,则双曲线の离心率是()A.3 B.5 C.D.【考点】双曲线の定义.【专题】计算题.【分析】先取双曲线の一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线の右准线,则左焦点F1到右准线の距离为,右焦点F2到右准线の距离为,可得,即,∴双曲线の离心率.故选D.【点评】本题主要考查双曲线の性质及离心率定义.8.(5分)(2008•浙江)若,则tanα=()A.B.2 C. D.﹣2【考点】同角三角函数基本关系の运用.【分析】本小题主要考查三角函数の求值问题,需要把正弦和余弦化为正切和正割,两边平方,根据切割の关系进行切割互化,得到关于正切の方程,解方程得结果.【解答】解:∵cosα+2sinα=﹣,∴cosα≠0,两边同时除以cosα得1+2tanα=﹣,∴(1+2tanα)2=5sec2α=5(1+tan2α),∴tan2α﹣4tanα+4=0,∴tanα=2.故选B.【点评】同角三角函数之间の关系,其主要应用于同角三角函数の求值和同角三角函数之间の化简和证明.在应用这些关系式子の时候就要注意公式成立の前提是角对应の三角函数要有意义.9.(5分)(2008•浙江)已知,是平面内两个互相垂直の单位向量,若向量满足(﹣)•(﹣)=0,则||の最大值是()A.1 B.2 C.D.【考点】平面向量数量积の坐标表示、模、夹角.【专题】压轴题.【分析】本小题主要考查向量の数量积及向量模の相关运算问题,所给出の两个向量是互相垂直の单位向量,这给运算带来很大方便,利用数量积为零の条件时要移项变化.【解答】解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴の最大值是.故选C.【点评】启发学生在理解数量积の运算特点の基础上,逐步把握数量积の运算律,引导学生注意数量积性质の相关问题の特点,以熟练地应用数量积の性质,本题也可以利用数形结合,,对应の点A,B在圆x2+y2=1上,对应の点C在圆x2+y2=2上即可.10.(5分)(2008•浙江)如图,AB是平面aの斜线段,A为斜足,若点P在平面a内运动,使得△ABPの面积为定值,则动点Pの轨迹是()A.圆B.椭圆 C.一条直线 D.两条平行直线【考点】椭圆の定义;平面与圆柱面の截线.【专题】压轴题;转化思想.【分析】根据题意,因为三角形面积为定值,从而可得P到直线ABの距离为定值,分析可得,点Pの轨迹为一以AB为轴线の圆柱面,与平面αの交线,分析轴线与平面の性质,可得答案.【解答】解:本题其实就是一个平面斜截一个圆柱表面の问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线ABの距离为定值,分析可得,点P在以AB为轴线の圆柱面与平面αの交线上,且α与圆柱の轴线斜交,由平面与圆柱面の截面の性质判断,可得Pの轨迹为椭圆;故选:B.【点评】本题考查平面与圆柱面の截面性质の判断,注意截面与圆柱の轴线の不同位置时,得到の截面形状也不同.二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2008•浙江)已知平面内三点A(2,﹣3),B(4,3),C(5,a)共线,则a= 6【考点】平行向量与共线向量.【分析】利用向量坐标の求法求出两个向量の坐标,将三点共线转化为两向量共线,利用向量共线の充要条件列出方程求出a.【解答】解:由已知知所以2(a+3)=6×3解得a=6故答案为:6【点评】本题考查向量坐标の求法、向量共线の坐标形式の充要条件.12.(4分)(2008•浙江)已知F1、F2为椭圆=1の两个焦点,过F1の直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=8.【考点】椭圆の简单性质.【专题】计算题;圆锥曲线の定义、性质与方程.【分析】运用椭圆の定义,可得三角形ABF2の周长为4a=20,再由周长,即可得到ABの长.【解答】解:椭圆=1のa=5,由题意の定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2の周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆の方程和定义,考查运算能力,属于基础题.13.(4分)(2008•浙江)在△ABC中,角A、B、C所对の边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理の应用;两角和与差の正弦函数.【专题】计算题.【分析】先根据正弦定理将边の关系转化为角の正弦值の关系,再运用两角和与差の正弦公式化简可得到sinBcosA=sinB,进而可求得cosAの值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∴sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∴cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差の正弦公式の应用.考查对三角函数公式の记忆能力和综合运用能力.14.(4分)(2008•浙江)如图,已知球Oの面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球Oの体积等于π.【考点】球の体积和表面积;球内接多面体.【专题】计算题.【分析】说明△CDB是直角三角形,△ACD是直角三角形,球の直径就是CD,求出CD,即可求出球の体积.【解答】解:AB⊥BC,△ABCの外接圆の直径为AC,AC=,由DA⊥面ABC得DA⊥AC,DA⊥BC,△CDB是直角三角形,△ACD是直角三角形,∴CD为球の直径,CD==3,∴球の半径R=,∴V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球の内接多面体,说明三角形是直角三角形,推出CD是球の直径,是本题の突破口,解题の重点所在,考查分析问题解决问题の能力.15.(4分)(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上の最大值为2,则t=1.【考点】分段函数の解析式求法及其图象の作法.【专题】压轴题.【分析】本题应先画出函数の大体图象,利用数形结合の方法寻找解题の思路.画出大体图象后不难发现函数の最大值只能在x=1或x=3处取得,因此分情况讨论解决此题.【解答】解:记g(x)=x2﹣2x﹣t,x∈[0,3],则y=f(x)=|g(x)|,x∈[0,3]f(x)图象是把函数g(x)图象在x轴下方の部分翻折到x轴上方得到,其对称轴为x=1,则f(x)最大值必定在x=3或x=1处取得(1)当在x=3处取得最大值时f(3)=|32﹣2×3﹣t|=2,解得t=1或5,当t=5时,此时,f(0)=5>2不符条件,当t=1时,此时,f(0)=1,f(1)=2,符合条件.(2)当最大值在x=1处取得时f(1)=|12﹣2×1﹣t|=2,解得t=1或﹣3,当t=﹣3时,f(0)=3>2不符条件,当t=1此时,f(3)=2,f(1)=2,符合条件.综上t=1时故答案为:1.【点评】本题主要考查二次函数の图象性质和绝对值对函数图象の影响变化.16.(4分)(2008•浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字の奇偶性不同,且1和2相邻.这样の六位数の个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件の六位数の个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成の空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成の空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查の是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同の方法,做第2步有m2种不同の方法…做第n步有m n 种不同の方法.那么完成这件事共有N=m1×m2×…×m n种不同の方法.17.(4分)(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标の点P(a,b)所形成の平面区域の面积等于1.【考点】二元一次不等式(组)与平面区域.【专题】压轴题;图表型.【分析】先依据不等式组,结合二元一次不等式(组)与平面区域の关系画出其表示の平面区域,再利用求最优解の方法,结合题中条件:“恒有ax+by≤1”得出关于a,b の不等关系,最后再据此不等式组表示の平面区域求出面积即可.【解答】解:令z=ax+by,∵ax+by≤1恒成立,即函数z=ax+by在可行域要求の条件下,z max≤1恒成立.当直线ax+by﹣z=0过点(1,0)或点(0,1)时,0≤a≤1,0≤b≤1.点P(a,b)形成の图形是边长为1の正方形.∴所求の面积S=12=1.故答案为:1【点评】本题主要考查了用平面区域二元一次不等式组,以及简单の转化思想和数形结合の思想,属中档题.目标函数有唯一最优解是我们最常见の问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.三、解答题(共5小题,满分72分)18.(12分)(2008•浙江)如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=.(Ⅰ)求证:AE∥平面DCF;(Ⅱ)当ABの长为何值时,二面角A﹣EF﹣Cの大小为60°?【考点】直线与平面平行の判定;与二面角有关の立体几何综合题.【专题】计算题;证明题;综合题.【分析】(Ⅰ)过点E作EG⊥CF并CF于G,连接DG,证明AE平行平面DCF内の直线DG,即可证明AE∥平面DCF;(Ⅱ)过点B作BH⊥EF交FEの延长线于H,连接AH,说明∠AHB为二面角A﹣EF﹣C の平面角,通过二面角A﹣EF﹣Cの大小为60°,求出AB即可.【解答】(Ⅰ)证明:过点E作EG⊥CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD⊥∥EG,从而四边形ADGE为平行四边形,故AE∥DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∥平面DCF.(Ⅱ)解:过点B作BH⊥EF交FEの延长线于H,连接AH.由平面ABCD⊥平面BEFG,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF,所以∠AHB为二面角A﹣EF﹣Cの平面角.在Rt△EFG中,因为EG=AD=.又因为CE⊥EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∠BEH=.因为AB=BH•tan∠AHB,所以当AB=时,二面角A﹣EF﹣Gの大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量の知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量の方法解决立体几何问题也有其相对の缺陷,那就是空间向量の运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题の优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题の工具,要注意综合几何法の应用.【点评】本题主要考查空间线面关系、空间向量の概念与运算等基础知识,同时考查空间想象能力和推理运算能力.19.(14分)(2008•浙江)一个袋中有若干个大小相同の黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球の概率是;从袋中任意摸出2个球,至少得到1个白球の概率是.(Ⅰ)若袋中共有10个球,从袋中任意摸出3个球,记得到白球の个数为ξ,求随机变量ξの数学期望Eξ.(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球の概率不大于.并指出袋中哪种颜色の球个数最少.【考点】离散型随机变量及其分布列;等可能事件の概率;离散型随机变量の期望与方差.【专题】计算题;应用题;证明题;压轴题.【分析】(I)首先根据从袋中任意摸出2个球,至少得到1个白球の概率是,列出关系式,得到白球の个数,从袋中任意摸出3个球,白球の个数为ξ,根据题意得到变量可能の取值,结合对应の事件,写出分布列和期望.(II)设出两种球の个数,根据从袋中任意摸出2个球,至少得到1个黑球の概率不大于,得到两个未知数之间の关系,得到白球の个数比黑球多,白球个数多于,红球の个数少于,得到袋中红球个数最少.【解答】解:(Ⅰ)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球の个数为x,则,得到x=5.故白球有5个.随机变量ξの取值为0,1,2,3,∴分布列是∴ξの数学期望.(Ⅱ)证明:设袋中有n个球,其中y个黑球,由题意得,∴2y<n,2y≤n﹣1,故.记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则.∴白球の个数比黑球多,白球个数多于,红球の个数少于.故袋中红球个数最少.【点评】本题主要考查排列组合、对立事件、相互独立事件の概率和随机变量分布列和数学期望等概念,同时考查学生の逻辑思维能力和分析问题以及解决问题の能力.20.(15分)(2008•浙江)已知曲线C是到点和到直线距离相等の点の轨迹,l是过点Q(﹣1,0)の直线,M是C上(不在l上)の动点;A、B在l上,MA⊥l,MB⊥x轴(如图).(Ⅰ)求曲线Cの方程;(Ⅱ)求出直线lの方程,使得为常数.【考点】轨迹方程;直线の一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上の点,进而可表示出|NP|,根据N到直线の距离和|NP|进而可得曲线Cの方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上の点,则,N到直线の距离为.由题设得,化简,得曲线Cの方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt△QMA中,因为=,.所以,∴,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线の位置关系等基础知识,考查解析几何の基本思想方法和综合解题能力.21.(15分)(2008•浙江)已知a是实数,函数(Ⅰ)求函数f(x)の单调区间;(Ⅱ)设g(a)为f(x)在区间[0,2]上の最小值.(i)写出g(a)の表达式;(ii)求aの取值范围,使得﹣6≤g(a)≤﹣2.【考点】利用导数研究函数の单调性;函数解析式の求解及常用方法;利用导数求闭区间上函数の最值;不等式の证明.【专题】计算题;压轴题.【分析】(Ⅰ)求出函数の定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数の单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数の单调区间即可.(Ⅱ)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f (x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令﹣6≤g(a)≤﹣2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出aの取值范围即可.【解答】解;(Ⅰ)解:函数の定义域为[0,+∞),(x>0).若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞).若a>0,令f'(x)=0,得,当时,f'(x)<0,当时,f'(x)>0.f(x)有单调递减区间,单调递增区间.(Ⅱ)解:(i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0.若0<a<6,f(x)在上单调递减,在上单调递增,所以.若a≥6,f(x)在[0,2]上单调递减,所以.综上所述,改天(ii)令﹣6≤g(a)≤﹣2.若a≤0,无解.若0<a<6,解得3≤a<6.若a≥6,解得.故aの取值范围为.【点评】本题主要考查函数の性质、求导数の应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题の能力.22.(16分)(2008•浙江)已知数列{a n},a n≥0,a1=0,a n+12+a n+1﹣1=a n2(n∈N•).记S n=a1+a2+…+a n..求证:当n∈N•时,(Ⅰ)a n<a n+1;(Ⅱ)S n>n﹣2.(Ⅲ)T n<3.【考点】不等式の证明;数列の求和;用数学归纳法证明不等式.【专题】证明题;压轴题.【分析】(1)对于n∈N•时の命题,考虑利用数学归纳法证明;(2)由a k+12+a k+1﹣1=a k2,对k取1,2,…,n﹣1时の式子相加得S n,最后对S n进行放缩即可证得.(3)利用放缩法由,得≤(k=2,3,…,n﹣1,n≥3),≤(a≥3),即可得出结论.【解答】(Ⅰ)证明:用数学归纳法证明.①当n=1时,因为a2是方程x2+x﹣1=0の正根,所以a1<a2.②假设当n=k(k∈N*)时,a k<a k+1,因为a k+12﹣a k2=(a k+22+a k+2﹣1)﹣(a k+12+a k+1﹣1)=(a k+2﹣a k+1)(a k+2+a k+1+1),所以a k+1<a k+2.即当n=k+1时,a n<a n+1也成立.根据①和②,可知a n<a n+1对任何n∈N*都成立.(Ⅱ)证明:由a k+12+a k+1﹣1=a k2,k=1,2,…,n﹣1(n≥2),得a n2+(a2+a3+…+a n)﹣(n﹣1)=a12.因为a1=0,所以S n=n﹣1﹣a n2.由a n<a n+1及a n+1=1+a n2﹣2a n+12<1得a n<1,所以S n>n﹣2.(Ⅲ)证明:由,得:,所以,故当n≥3时,,又因为T1<T2<T3,所以T n<3.【点评】本题主要考查数列の递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.。
2008年全国各地高考数学试题及解答分类汇编大全(08三角函数 三角恒等变换)

2008年全国各地高考数学试题及解答分类汇编大全(08三角函数 三角恒等变换)一、选择题:1.(2008安徽文)函数sin(2)3y x π=+图像的对称轴方程可能是( D )A .6x π=-B .12x π=-C .6x π=D .12x π=2.(2008安徽理)将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12π D .(,0)6π3.(2008福建文)函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像,则()g x 的解析式为( A )A.sin x - B.sin x C.cos x - D.cos x4.(2008福建理)函数f (x )=cos x (x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象, 则m 的值可以为(A )A.2πB.πC.-πD.-2π5.(2008广东文)已知函数R x x x x f ∈+=,sin )2cos 1()(2,则)(x f 是( D )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数6、(2008海南、宁夏文)函数()cos22sin f x x x =+的最小值和最大值分别为( C )A. -3,1B. -2,2C. -3,32D. -2,327、(2008海南、宁夏理)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1 B. 2 C. 1/2 D. 1/38、(2008海南、宁夏理)0203sin 702cos 10--=( C )A. 12B. C. 2D.9. (2008湖北文、理)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′, 若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是(.A ) A .512π B.512π- C.1112π D.1112π-2005年普通高等学校招生全国统一考试数学分类整理- 1 -10. (2008湖南理)函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C. ) A.1C.3211.(2008江西文)函数sin ()sin 2sin2x f x xx =+是(A )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数12.(2008江西文、理)函数tan sin tan sin y x x x x =+--在区间(2π,23π)内的图象大致是(D )A B C D13.(2008全国Ⅰ卷文) 2(sin cos )1y x x =--是( D ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数14.(2008全国Ⅰ卷文)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( C ) A .向左平移π6个长度单位 B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位15.(2008全国Ⅰ卷理)为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位16. (2008全国Ⅱ卷文).若sin 0α<且tan 0α>是,则α是( C ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角17.(2008全国Ⅱ卷理)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B )A .1BCD .22008年高考数学试题分类选编北大附中广州实验学校 王 生E-mail: wangsheng@第3页 (共15页)18.(2008全国Ⅱ卷文)函数x x x f cos sin )(-=的最大值为( B ) A .1 B .2 C .3D .219.(2008山东文、理)函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( A )20.(2008山东文、理)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( C )A. BC .45-D .4521.(2008陕西文) sin 330︒等于( B ) A. B .12-C .12D22.(2008四川文、理)()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x23.(2008四川理)若02,sin απαα≤≤,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫ ⎪⎝⎭23.【解】:∵sin αα>∴sin 0αα>,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ;24.(2008四川理) 设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=24.【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f = 故选D25.(2008天津理)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是( B ) (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数xxA .B .C .D .2005年普通高等学校招生全国统一考试数学分类整理- 1 -(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数26.(2008天津文)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( C ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,27. (2008天津文)设5sin7a π=,2cos 7b π=,2tan 7c π=,则( D ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<28.(2008浙江文)函数1)cos (sin 2++=x x y 的最小正周期是( B ) (A )2π(B )π (C)23π (D) 2π29.(2008浙江文、理)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的 图象和直线21=y 的交点个数是(C ) (A )0 (B )1 (C )2 (D )430.(2008浙江理)若,5sin 2cos -=+a a 则a tan =( B ) (A )21 (B )2 (C )21- (D )2-31.(2008重庆文)函数f (x≤x ≤2π)的值域是( C )(A)[-11,44] (B)[-11,33] (C)[-11,22] (D)[-22,33]32. (2008重庆理)函数f(x)02x π≤≤) 的值域是 (B )(A )[-2] (B)[-1,0] (C )] (D )]二、填空题:1.(2008北京文)若角α的终边经过点P (1,-2),则tan 2α的值为 43.2008年高考数学试题分类选编北大附中广州实验学校 王 生E-mail: wangsheng@第5页 (共15页)2.(2008北京文、理)已知函数2()cos f x x x =-,对于[-22ππ,]上的任意x 1,x 2,有如下条件: ①x 1>x 2; ②x 21>x 22; ③|x 1|>x 2.其中能使f (x 1)> f (x 2)恒成立的条件序号是 ② .3. (2008广东理)已知函数R x x x x x f ∈-=,sin )cos (sin )(,则)(x f 的最小正周期是__π__.4. (2008江苏)()cos 6f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 10 .5.(2008辽宁文)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=6.(2008辽宁理)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=_____143_____.7.(2008上海理)函数f (x )=3sin x +sin(π2+x )的最大值是 2.8.(2008浙江文)若==+θθπ2cos ,53)2sin(则 257- .三、解答题:1.(2008安徽文、理)已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域1.解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =+-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- s i n (2)6x π=- 2T 2ππ==周期∴2005年普通高等学校招生全国统一考试数学分类整理- 1 -(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,∴当12x π=-时,()f x 取最小值所以 函数 ()f x 在区间[,]122ππ-上的值域为[2-2.(2008北京文、理)已知函数2()sin sin()(0)2f x x x x πωωωω=++的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数f (x )在区间[0,23π]上的取值范围. 2.解:(Ⅰ)1cos 2()22x f x x ωω-=11cos 222x x ωω-+ =1sin(2).62x πω-+因为函数f (x )的最小正周期为π,且ω>0,所以22ππω= 解得ω=1.(Ⅱ)由(Ⅰ)得1()sin(2).62f x x π=-+ 因为0≤x ≤23π, 所以12-≤26x π-≤7.6π所以12-≤(2)6x π-≤1.因此0≤1sin(2)62x π-+≤32,即f (x )的取值范围为[0,32]4.(2008福建文、理) 已知向量(sin ,cos ),(1,2),m A A n ==-且0m n ⋅=。
2008年全国各地高考数学试题及解答分类汇编大全(03函数的性质及其应用)

A.10 B.4
C.1
D. 2
35.(2008 陕西文) 定义在 R 上的函数 f (x) 满足 f (x y) f (x) f ( y) 2xy ( x,y R ),
f (1) 2 ,则 f (2) 等于( A )
A.2
B.3
C.6
D.9
36.(2008 陕西理)定义在 R 上的函数 f (x) 满足 f (x y) f (x) f ( y) 2xy ( x,y R ), f (1) 2 ,
2 loga
3
,
y
1 2
loga
5
,
z
loga
21 loga
3 ,则(C)
A. x y z B. z y x
C. y x z
D. z x y
第 2 页 (共 9 页)
21.(2008 辽宁文、理)将函数 y 2x 1的图象按向量 a 平移得到函数 y 2x1 的图象,则( A )
A. a (1,1)
B. a (1,1)
C. a (1,1) D. a (1,1)
22.(2008 辽宁理)
设
f
(x) 是连续的偶函数,且当 x>0 时
f
(x) 是单调函数,则满足
f
(x)
f
x3 x 4
的所有 x 之和为( C )
A. 3
B. 3
C. 8
D. 8
23.(2008 全国Ⅰ卷文) 函数 y 1 x x 的定义域为( D )
y
y
O
xO
xO
xO
x
A.
B.
C.
D.
8. (2008 广东文)命题“若函数 f (x) loga x(a 0, a 1) 在其定义域内是减函数,则 loga 2 0 ”的
2008年普通高等学校招生全国统一考试数学试卷分类汇编4.2两角和与差的三角函数

第四章 三角函数二 两角和与差的三角函数【考点阐述】两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.【考试要求】(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.【考题分类】(一)选择题(共5题)1.(海南宁夏卷理7)0203sin 702cos 10--=( )A. 12B. 2C. 2D. 2解:22223sin 703cos 203(2cos 201)22cos 102cos 102cos 10----===---,选C 。
2.(山东卷理5文10)已知cos (α-6π)+sin α=的值是则)67sin(,354πα- (A )-532 (B )532 (C)-54 (D) 54解:3cos()sin sin 62παααα-+=+=14cos 25αα+=,714sin()sin()cos .6625ππαααα⎫+=-+=-+=-⎪⎪⎝⎭3.(四川卷理3文4)()2tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭ cos cot sin x x x== 故选D ; 【点评】:此题重点考察各三角函数的关系;4.(浙江卷理8)若,5sin 2cos -=+a a 则a tan =( )(A )21 (B )2 (C )21- (D )2-解析:本小题主要考查三角函数的求值问题。
由cos 2sin αα+=cos 0,α≠两边同时除以cos α得12tan ,αα+=平方得222(12t a n )5s e c 5(1t a n ),ααα+==+ 2tan 4tan 40αα∴-+=,解得tan 2.α=或用观察法.5.(四川延考理5)已知1tan 2α=,则2(sin cos )cos 2ααα+=( ) (A )2 (B )2- (C )3 (D )3- 解:211(sin cos )sin cos 1tan 231cos 2cos sin 1tan 12ααααααααα++++====---,选C (二)填空题(共2题)1.(浙江卷文12)若3sin()25πθ+=,则cos2θ=_________。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)(含解析版)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB >0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)

(Ⅰ)求 的值;
(Ⅱ)求 tan(A﹣B)的最大值.
18.(12 分)四棱锥 A﹣BCDE 中,底面 BCDE 为矩形,侧面 ABC⊥底面 BCDE,
BC=2,
,AB=AC.
(Ⅰ)证明:AD⊥CE;
(Ⅱ)设 CE 与平面 ABE 所成的角为 45°,求二面角 C﹣AD﹣E 的大小.
19.(12 分)已知函数 f(x)=﹣x2+ax+﹣﹣lnx. (Ⅰ)当 a=3 时,求函数 f(x)的单调递增区间; (Ⅱ)若 f(x)在区间(0, )上是减函数,求实数 a 的取值范围.
2.(5 分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于 2 且小于 5 的 概率为 p1,拋两枚硬币,正面均朝上的概率为 p2,则( ) A.p1<p2 B.p1>p2 C.p1=p D.不能确定
3.(5 分)在△ABC 中, = , = .若点 D 满足 =2 ,则 =( )
A.
B.
C.
D.
4.(5 分)设 a∈R,且(a+i)2i 为正实数,则 a=( ) A.2 B.1 C.0 D.﹣﹣
5.(5 分)已知等差数列{an}满足 a2+a4=4,a3+a5=10,则它的前 10 项的和 S10= () A.138 B.135 C.95 D.23
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年高考数学试题分类汇编三角函数一.选择题:1.(全国一8)为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位2.(全国二8)若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( B ) A .1B .2C .3D .23.(四川卷3)()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x 4.(四川卷5)若02,sin 3cos απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭5.(天津卷6)把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是C (A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π=+,x R ∈(C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈6.(天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则D(A )c b a << (B )a c b << (C )a c b << (D )b a c <<7.(安徽卷5)将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C ) A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π8.(山东卷5)已知cos (α-6π)+sin α=的值是则)67sin(,354πα- (A )-532 (B )532 (C)-54 (D) 549.(湖北卷5)将函数3sin()y x θ=-的图象F 按向量(,3)3π平移得到图象F ',若F '的一条对称轴是直线4x π=,则θ的一个可能取值是AA.π125 B. π125- C. π1211D. 1112π-10.(湖南卷6)函数2()sin 3sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( C ) A.1 B.132+ C.32D.1+311.(重庆卷10)函数f(x)=sin 132cos 2sin x x x---(02x π≤≤) 的值域是B(A )[-2,02] (B)[-1,0] (C )[-2,0](D )[-3,0]12.(福建卷9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m的值可以为AA.2πB.πC.-πD.-2π 13.(浙江卷5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是C(A )0 (B )1 (C )2 (D )4 14.(浙江卷8)若,5sin 2cos -=+a a 则a tan =B (A )21 (B )2 (C )21- (D )2- 15.(海南卷1)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( B ) A. 1B. 2C. 1/2D. 1/316.(海南卷7)0203sin 702cos 10--=( C )A.12B.22C. 2D.32二.填空题:1.(上海卷6)函数f (x )=3sin x +sin(π2+x )的最大值是 22.(山东卷15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B = 6π. 3.(江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= .10 4.(广东卷12)已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .π 5.(辽宁卷16)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.143三.解答题: 1.(全国一17).(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.2.(全国二17).(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ············ 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ····························· 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ······················· 10分3.(北京卷15).(本小题共13分)已知函数2π()sin 3sin sin 2f x x x x ωωω⎛⎫=++ ⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 23()sin 222x f x x ωω-=+311sin 2cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,. 4.(四川卷17).(本小题满分12分)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
【解】:2474sin cos 4cos 4cos y x x x x =-+-()2272sin 24cos 1cos x x x =-+-2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+ ()21sin 26x =-+由于函数()216z u =-+在[]11-,中的最大值为()2max 11610z =--+= 最小值为()2min 1166z =-+=故当sin 21x =-时y 取得最大值10,当sin 21x =时y 取得最小值6 5.(天津卷17)(本小题满分12分)已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π. (Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.(17)本小题主要考查特殊角三角函数值、两角和的正弦、二倍角的正弦与余弦、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:()242sin 224sin 2cos 4cos 2sin 222cos 2sin 12sin 22cos 12+⎪⎭⎫ ⎝⎛+=+⎪⎭⎫ ⎝⎛+=++=+++⋅=πωπωπωωωωωx x x x x x xx f 由题设,函数()x f 的最小正周期是2π,可得222πωπ=,所以2=ω.(Ⅱ)由(Ⅰ)知,()244sin 2+⎪⎭⎫ ⎝⎛+=πx x f .当πππk x 2244+=+,即()Z k k x ∈+=216ππ时,⎪⎭⎫ ⎝⎛+44sin πx 取得最大值1,所以函数()x f 的最大值是22+,此时x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,216|ππ. 6.(安徽卷17).(本小题满分12分) 已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+13cos 2sin 2(sin cos )(sin cos )22x x x x x x =++-+ 2213cos 2sin 2sin cos 22x x x x =++- 13cos 2sin 2cos 222x x x =+- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又 31()()12222f f ππ-=-<= ,当12x π=-时,()f x 取最小值32- 所以 函数 ()f x 在区间[,]122ππ-上的值域为3[,1]2- 7.(山东卷17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x =⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π (k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)8.(江苏卷15).如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为225,105. (Ⅰ)求tan(αβ+)的值; (Ⅱ)求2αβ+的值.【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式. 由条件的225cos ,cos 105αβ==,因为α,β为锐角,所以sin α=725,sin 105β= 因此1tan 7,tan 2αβ== (Ⅰ)tan(αβ+)=tan tan 31tan tan αβαβ+=--(Ⅱ) 22tan 4tan 21tan 3βββ==-,所以()tan tan 2tan 211tan tan 2αβαβαβ++==-- ∵,αβ为锐角,∴3022παβ<+<,∴2αβ+=34π9.(江西卷17).(本小题满分12分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,23a =,tantan 4,22A B C++= 2sin cos sin B C A =,求,A B 及,b c解:由tantan 422A B C ++=得cot tan 422C C+= ∴cos sin224sin cos22C C C C+= ∴14sin cos 22C C = ∴1sin 2C =,又(0,)C π∈∴566C C ππ==,或由2sin cos sin B C A =得 2sin cos sin()B B B C =+ 即sin()0B C -= ∴B C =6B C π==2()3A B C ππ=-+=由正弦定理sin sin sin a b cA B C==得 1sin 2232sin 32Bb c a A ===⨯=10.(湖北卷16).已知函数117(),()cos (sin )sin (cos ),(,).112t f t g x x f x x f x x t ππ-==⋅+⋅∈+ (Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0A >,0ω>,[0,2)ϕπ∈)的形式; (Ⅱ)求函数()g x 的值域.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分) 解:(Ⅰ)1sin 1cos ()cos sin 1sin 1cos x xg x x x x x--=+++2222(1sin )(1cos )cos sin cos sin x x x x x x--=+ 1sin 1cos cos sin .cos sin x xx x x x--=+17,,cos cos ,sin sin ,12x x x x x π⎛⎤∈π∴=-=- ⎥⎝⎦1sin 1cos ()cos sin cos sin x x g x x x x x --∴=+-- sin cos 2x x =+-=2sin 2.4x π⎛⎫+- ⎪⎝⎭(Ⅱ)由1712x ππ≤<,得55.443x πππ+≤< sin t 在53,42ππ⎛⎤ ⎥⎝⎦上为减函数,在35,23ππ⎛⎤⎥⎝⎦上为增函数,又5535sinsin ,sin sin()sin 34244x πππππ∴≤+<<(当17,2x π⎛⎤∈π ⎥⎝⎦),即21sin()222sin()23424x x ππ-≤+-∴--≤+--<,<,故g (x )的值域为)22,3.⎡---⎣11.(陕西卷17).(本小题满分12分) 已知函数2()2sincos 23sin 3444x x xf x =-+. (Ⅰ)求函数()f x 的最小正周期及最值;(Ⅱ)令π()3g x f x ⎛⎫=+⎪⎝⎭,判断函数()g x 的奇偶性,并说明理由. 解:(Ⅰ)2()sin3(12sin )24x x f x =+- sin 3cos 22x x =+π2sin 23x ⎛⎫=+ ⎪⎝⎭. ()f x ∴的最小正周期2π4π12T ==. 当πsin 123x ⎛⎫+=-⎪⎝⎭时,()f x 取得最小值2-;当πsin 123x ⎛⎫+= ⎪⎝⎭时,()f x 取得最大值2. (Ⅱ)由(Ⅰ)知π()2sin 23x f x ⎛⎫=+⎪⎝⎭.又π()3g x f x ⎛⎫=+ ⎪⎝⎭.∴1ππ()2sin 233g x x ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦π2sin 22x ⎛⎫=+ ⎪⎝⎭2cos 2x =.()2cos 2cos ()22x x g x g x ⎛⎫-=-== ⎪⎝⎭.∴函数()g x 是偶函数.12.(重庆卷17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分) 设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,c =3b.求: (Ⅰ)ac的值; (Ⅱ)cot B +cot C 的值. 解:(Ⅰ)由余弦定理得2222cos a b c b A =+-=2221117()2,3329c c c c c +-=故7.3a c = (Ⅱ)解法一:cot cot B C +=cos sin cos sin sin sin B C C BB C +=sin()sin ,sin sin sin sin B C AB C B C+=由正弦定理和(Ⅰ)的结论得227sin 12141439··.1sin sin sin 9333·3cA aBC A bc c c ====故143cot cot .9B C +=解法二:由余弦定理及(Ⅰ)的结论有22222271()93cos 2723c c c a c b B ac c c +-+-===5.27故2253sin 1cos 1.2827B B =-=-= 同理可得22222271199cos ,27127233c c ca b c C ab c c +-+-===-2133sin 1cos 1.2827C C =-=-= 从而cos cos 51143cot cot 33.sin sin 399B C B C B C +=+=-= 13.(福建卷17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =(3,1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分.解:(Ⅰ)由题意得3sin cos 1,m n A A =-=12sin()1,sin().662A A ππ-=-=由A 为锐角得,.663A A πππ-==(Ⅱ)由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32. 当sin x =-1时,f (x )有最小值-3,所以所求函数f (x )的值域是33,2⎡⎤-⎢⎥⎣⎦.14.(广东卷16).(本小题满分13分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值. 【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,2234125sin 1(),sin 1()551313αβ∴=-==-=,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。