AOAC-ModernStandby

合集下载

丰泰尼亚斯联盟旧厂区改造,里斯本,葡萄牙

丰泰尼亚斯联盟旧厂区改造,里斯本,葡萄牙

丰泰尼亚斯联盟旧厂区改造,里斯本,葡萄牙
佚名
【期刊名称】《世界建筑》
【年(卷),期】2006(000)001
【总页数】3页(P102-104)
【正文语种】中文
【相关文献】
1.新里斯本大学校舍,里斯本,葡萄牙 [J], 曼努埃尔·艾利斯·马特乌斯;弗朗西斯科·艾利斯·马特乌斯;徐知兰(译)
2."倒置"——2005里斯本时装周展馆,里斯本,葡萄牙 [J],
3.里斯本NOVA大学医学院加建南楼多功能室,里斯本,葡萄牙 [J],
4.葡萄牙改造圣塔伦—里斯本近郊线 [J], 谭学斌
5.浅议旧工业厂区改造设计——以扬州电厂厂区规划为例 [J], 粟庆;刘斌;黄盈因版权原因,仅展示原文概要,查看原文内容请购买。

AOAC 2007 美国农药残留检测标准方法

AOAC 2007 美国农药残留检测标准方法

AOAC Official Method 2007.01Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium SulfateGas Chromatography/Mass Spectrometry and Liquid Chromatography/Tandem Mass SpectrometryFirst Action 2007[Applicable for the following pesticides in grapes, lettuces, and oranges: atrazine, azoxystrobin, bifenthrin, carbaryl, chlorothalonil, chlorpyrifos, chlorpyrifos-methyl, l -cyhalothrin (incurred in lettuces), cyprodinil, o,p ¢-DDD, dichlorv os, endosulfan sulfate,ethion (incurred in oranges), imazalil, imidacloprid,kresoxim-methyl (incurred in grapes), linuron, methamidophos,methomyl, permethrins (incurred in lettuces) procymidone,pymetrozine, tebuconazole, thiabendazole (incurred in oranges),tolylfluanid (degraded in lettuces), and trifluralin. These were representative pesticide analytes chosen in representative matrixes,and the method is expected to be applicable to many other similar pesticides and matrixes. Limits of quantitation were demonstrated to be <10 ng/g.]See Tables 2007.01A–E for the results of the interlaboratory study supporting acceptance of the method.A. PrincipleThe QuEChERS (quick, easy, cheap, effective, rugged, and safe)method uses a single-step buffered acetonitrile (MeCN) extraction and salting out liquid–liquid partitioning from the water in the sample with MgSO 4. Dispersiv e-solid-phase extraction (dispersive-SPE) cleanup is done to remove organic acids, excess water, and other components with a combination of primary secondary amine (PSA) sorbent and MgSO 4; then the extracts are analyzed by mass spectrometry (MS) techniques after a chromatographic analytical separation. Figure 2007.01 outlines the protocol in a box format. In brief, a well-chopped food sample alongwith 1 mL of 1% acetic acid (HOAc) in MeCN and 0.5 g anhydrous MgSO 4/NaOAc (4/1, w/w) per g sample are added to a centrifuge tube or bottle, which is shaken and centrifuged. A portion of the MeCN extract (upper layer) is added to anhydrous MgSO 4/PSA sorbent (3/1, w/w; 200 mg per 1 mL extract), mixed, and centrifuged. This final extract is transferred to autosampler vials for analysis by gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) to identify and determine a wide range of pesticide residues. To achieve <10 ng/g detection limits in modern GC/MS, large volume injection (LVI) of 8 m L is typically needed, or the final extract can be concentrated and solvent exchanged to toluene (4 g/mL), in which case 2 m L splitless injection is used.Both GC/MS and LC/MS/MS techniques are prone to matrix effects in pesticide residue analysis, albeit for different reasons [Erney, D.R., Gillespie, A.M., Gilvydis, D.M., & Poole, C.F. (1993)J. Chromatogr. 638, 57–63; Hajslova, J., & Zrostlikova, J. (2003) J.Chromatogr. A 1000, 181–197; Alder, L., Luderitz, S., Lindtner, K.,& Stan, H.J. (2004) J. Chromatogr. A 1058, 67–79]. To account for these effects, matrix-matched calibration was conducted (calibration standards in solvent solution may also be used if matrix effects are shown not to occur). Due to the situation that some laboratories had LVI capability and others did not, the necessary amounts of matrix blank(s) and final extract volume was different for some laboratories than others. Depending on the water content of the matrix, a 15 g sample typically yields 11–14 mL of initial MeCN extract after centrifugation. In dispersive-SPE, roughly half of the extract is lost to the powders, thus about 6–7 mL of final extract can be expected for a 15 g sample. Two options were provided in the protocol to account for the different situations among the laboratories.ã 2007 AOAC IN T ER N A T IONALTable 2007.01A. Interlaboratory study results for incurred pesticides (and chlorpyrifos-methyl)AnalyteMatrix Avg. concn s raRSD r b, %S R c, ng/g Rec., %RSD R d, %HorRat No. of labsOutlierlabs e Chlorpyrifos-methylGrapes 165 14 8.535 8321 1.00116-C, 4-C Lettuces 178 20 11 30 89170.811011-SGOranges174 25 14 36 87200.9812Kresoxim-methyl Grapes 9.2 1.921f3.2NA 35f1.0912Cyprodinil Grapes 112 NAgNA 18 NA 160.7313l -Cyhalothrin Lettuces 58 6.111 11 NA 200.80 911-C Permethrins Lettuces 112 9.88.741 NA 36f1.63 96-C, 1-C Imidacloprid Lettuces 12NA NA 1.6NA 140.4411Ethion Oranges 198 23 12 36 NA 180.891111-C Thiabendazole Oranges 53 3.87.27.6NA 140.5812ImazalilOranges13NANA4.7NA35f1.1587-SGa s r = Standard deviation for repeatability (within laboratory).b RSD r = Relative standard deviation for repeatability.c s R = Standard deviation for reproducibility (among laboratories).d RSD R = Relative standard deviation for reproducibility.e C = Cochran outlier; SG = single Grubbs outlier.f RSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; and fewer than 8 laboratories in an assessment.gNA = Not applicable.Analyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine9.30.6 6.9 2.093210.651345 3.27.1 5.790130.4913365 23 6.271 9119 1.0413Azoxystrobin9.40.6 6.6 2.094210.641392 8.79.411 92120.51128-SG182 17 9.226 91140.70128-SG Bifenthrin7.80.811 2.37830b0.89112-C, 10-C86 5.9 6.914 86170.73126-C923 71 7.7136 92150.9113Carbaryl12 1.211 2.8104 27b0.85125-SG50 6.413 11 100 220.87131003 70 7.0189 100 19 1.18125-C Chlorothalonil 6.30.914 2.163b33b0.97 810-C59 8.314 13 79230.9310140 19 13 38 7027b 1.27b10Chloropyrifos8.1 1.519b 3.08137b 1.121268 8.312 14 84200.8413396 25 6.450 79120.681211-SG Cyprodinil c123 13 10 26 101 210.9513240 20 8.363 9226b 1.32b13581 42 7.3110 9519 1.0913o,p¢-DDD8.9 1.416b 3.28936b 1.091242 3.17.37.084170.6512445 32 7.147 89100.58116-C Dichlorvos7.2 1.014 1.372180.53118-SG85 7.48.715 85180.77114-C294 25 8.562 9821 1.1012Endosulfan sulfate8.60.910 1.586170.52 7b10-C 115 14 12 21 77180.8111415 56 14 111 8327b 1.47b11Imazalil7.60.89.8 3.17641b 1.22b1150 2.5 4.915 67b30b 1.19108-C432 53 12 161 7837b 2.06b11Imidacloprid8.80.88.9 3.08834b 1.041345 3.57.78.999200.7813218 18 8.224 97110.56128-SG Linuron9.9 1.717b 2.99929b0.901199 7.47.415 99150.6712971 65 6.7191 9720 1.23b12Methamidophos10 2.929b 3.0101 30b0.95 95-SG80 8.010 14 80180.7712852 72 8.4119 85140.85118-SG Methomyl9.3 1.212 2.99332b0.981250 3.3 6.79.3100 190.7413204 10 4.926 102 130.6313Procymidone8.20.78.2 2.082240.74115-SG64 6.09.416 8524 1.0113428 16 3.870 86160.90129-C Pymetrozine 6.2 1.220b 1.662b27b0.771147 3.1 6.79.662b200.8111341 20 5.859 68b170.9211Tebuconazole9.2 1.112 1.292130.41123&4-DG63 5.58.78.884140.5813439 29 6.784 8819 1.0613Tolylfluanid7.9 1.012 3.17939b 1.191334 4.313 13 67b37b 1.41b13144 13 8.842 7229b 1.37b13Trifluralin7.80.78.5 1.878230.681210-C58 3.7 6.414 7725 1.0213379 19 5.148 76130.69106-C, 4-C, 11-SG aC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cCyprodinil was incurred in the grapes and affected quantitation.ã 2007 AOAC IN T ER N A T IONALAnalyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine9.9 1.515 1.899180.561170 7.9111593210.8812930 50 5.4166 9318 1.11115-C Azoxystrobin10 0.8 7.6 1.8102 180.561247 2.4 5.2 6.593140.5512531 32 6.188106 170.9412Bifenthrin9.10.8 9.1 1.491160.481166 8.012 9.488140.5911217 27 123387150.7711Carbaryl9.4 1.112 2.094220.671292 6.1 6.7 9.092 9.80.43118-SG589 38 6.4127 9822 1.24b12Chlorothalonil 6.20.814 2.062b32b0.93 6b28 10 37b147048b 1.77b 7b684 134 20b205 68b30b 1.77b 6bChloropyrifos9.0 2.124b 2.39026b0.79 912-SG, 10&11-DG86 9.411208623 1.011111-SG179 18 103090170.821111-SG Cyprodinil9.7 1.010 1.497140.441111-SG44 2.7 6.1 8.989200.791111-SG848 61 7.2117 85140.84108-SGo,p¢-DDD8.90.6 7.0 1.989210.66 881 4.8 5.91281150.63 911-C214 19 8.72786130.6210Dichlorvos 5.2 1.020b 2.452b45b 1.29b1258 6.6111277200.8112838 50 6.0224 8427 1.63b11Endosulfan sulfate 5.6 3.359b 2.556b45b 1.28b 2b38 9.625b157539b 1.48b 7b769 330 43b312 7740b 2.44b 7bImazalil7.60.3 3.5 3.57639b 1.18 82-C72 3.7 5.22457b33b 1.39b11589 47 7.9229 59b39b 2.25b11Imidacloprid c22 1.3 6.2 1.7100 7.90.28118-SG84 6.2 7.4 8.197 9.60.4112515 21 4.253101 100.58115-C Linuron8.6 1.112 1.586170.531146 2.2 4.9 7.491160.63102-C234 14 5.82594100.5311Methamidophos8.80.8 8.5 1.388150.46 86-C66 4.5 6.91282180.7211538 37 6.86384120.67 95-C, 8-SG Methomyl9.70.8 8.6 1.096100.321099 8.0 8.1 6.499 6.50.29102-SG997 24 2.4168 100 17 1.0511Procymidone10 0.6 6.2 2.2101 220.68 82-C92 8.5 9.21592170.7311967 118 12129 97130.8311Pymetrozine 6.90.4 6.1 1.469b200.591033 1.6 4.7 4.667b140.51 911-C127 8.5 6.71763b130.6110Tebuconazole9.70.7 6.9 1.297130.40114-C89 6.8 7.71189120.5212948 42 4.4226 9524 1.48b114-C Tolylfluanid 3.7 1.130b 2.237b59b 1.59b 4b9.3 3.740b 4.1 9.3b44b 1.37b 83-SG, 8-SG142 22 158614b61b 2.84b 812-C, 3&8-DG Trifluralin10 1.413 1.7103 170.541142 4.511 9.084220.8311169 25 153084180.8411aC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cImidacloprid was incurred in the lettuces unbeknownst to the SD.ã 2007 AOAC IN T ER N A T IONALAnalyte Avg. C, ng/g s r, ng/g RSD r, %s R, ng/g Rec., %RSD R, %HorRat No. of labs Outlier labs Atrazine 8.9 1.011 1.989210.65112-C 908.29.11290130.5712187 19 10 2793140.6912Azoxystrobin 8.4 1.316b 1.884210.651165 5.28.0 8.186120.5212853 35 4.18285 9.60.591111-C Bifenthrin 9.7 2.324b 2.397240.75109-SG45 2.5 5.6 6.891150.59102-C488 51 10 7698160.8712Carbaryl 8.40.67.3 2.184250.771066 5.07.51488210.8811172 8.8 5.13486200.9512Chlorothalonil 4.80.816b 2.748b56b 1.57b 3b7014 20b297042b 1.74b 6b330 137 42b131 66b40b 2.09b 7bChloropyrifos11 1.614 5.0111 45b 1.58b 92-C82 4.5 5.61282150.64109-C953 97 10 284 9530b 1.85b1211-C Cyprodinil 8.70.910 2.087230.721256 4.58.0 9.075160.6512199 12 6.23580180.8612o,p¢-DDD 9.10.67.2 1.891200.60 99-C74 5.1 6.9 9.899130.561010-C967 81 8.41919720 1.22b11Dichlorvos 9.30.88.1 1.093110.35 7b12-C43 2.2 5.2 8.085190.73 812-SG446 22 5.05489120.6810Endosulfan sulfate12 5.444b 5.4124b43b 1.40b 4b3-SG 8319 23b198323 1.0110240 35 15 618025 1.28b10Imazalil c22 1.77.7 6.29628b0.98 87-C58 4.37.41392220.91 9186 9.7 5.2418722 1.0610Imidacloprid10 1.110 2.8104 27b0.861193 6.57.01293130.5711989 64 6.5124 99130.7811Linuron 7.8 1.317b 2.77835b 1.041160 3.0 5.01386210.8611387 26 6.64279110.59 9111-DG Methamidophos 9.2 1.112 1.592160.49 89-C42 3.58.2 5.685130.52 84-C211 12 5.53185150.73 94&9-DG Methomyl 8.50.88.9 2.88533b0.99 97-C68 4.87.0 8.791130.5412492 19 3.96098120.6912Procymidone110.98.1 3.9108 36b 1.15 812-C43 3.58.0 5.886140.531010-C170 16 9.72585150.7111Pymetrozine 7.5 1.318b 2.17528b0.821077 5.97.71077140.5710789 38 4.8117 79150.89 912-C Tebuconazole 8.70.78.0 1.287140.421141 2.2 5.4 6.282150.5812177 14 7.92888160.7612Tolylfluanid 5.8 1.220b 1.458b240.69 911-SG 467.516b1461b31b 1.21b119-C356 54 15 134 7138b 2.02b12Trifluralin 8.60.4 4.5 2.48628b0.87 99-C 928.69.41192120.5412915 60 6.5194 9221 1.31b116-CaC = Cochran outlier; SG = single Grubbs outlier; DG = double Grubbs outliers.bRSD r >15%; 120% < Rec. < 70%; RSD R >25%; HorRat >1.2; or fewer than 8 laboratories in an assessment.cImazalil was incurred in the oranges unbeknownst to the SD.ã 2007 AOAC IN T ER N A T IONALIn Option A, if the laboratory had LVI capability, then 1 or 2 mL extracts were taken for dispersive-SPE (the volume depended on the analyst preference and the type of centrifuge and tubes available in the laboratory). The final extract volume was 0.5 mL if 1 mL was taken for dispersive-SPE, and 1 mL if 2 mL underwent the cleanup step. In either case, two 15 g blank samples were used for the matrix blank (0-standard) and 6 matrix-matched calibration standards (5, 10, 50, 100, 250, and 1000 ng/g equiv alent concentrations). For dispersive-SPE of the matrix blanks, either 7 separate tubes using the same 1–2 mL extract volumes as the test samples could have been used, or 1–2 dispersive-SPE tube(s) with 7-fold greater extract volume(s).In Option B, if LVI is not available for GC/MS, then »30 mL of matrix blank extract was needed after dispersive-SPE cleanup to prepare the matrix-matched calibration standards (or $60 mL initial extract). In this case, 6 matrix blanks of 15 g each were extracted along with the test samples to provide enough blank extract volume, which were combined, and seven 8 mL aliquots were distributed to 7 dispersive-SPE tubes containing 0.4 g PSA + 1.2 g anhydrous MgSO4.B. Apparatus and ConditionsNote: Tables 4 and 5 of the collaborative study [J. AOAC Int. 90, 485(2007)] list the analytical instrumentation and sources of sample preparation materials used by each laboratory in the study. Further information appears in the full report. Since the time of the collaborativ e study, at least 3 v endors, United Chemical Technologies (Bristol, PA, USA), Restek (Bellefonte, PA, USA) and Supelco (Bellefonte, PA, USA) hav e introduced commercial dispersive-SPE products for QuEChERS and other applications. See Table 4 [J. AOAC Int. 90, 485(2007)] for sources of analytical instruments.(a) Gas chromatograph/mass spectrometer.—An ion trap, quadrupole, time-of-flight (TOF), or other GC/MS instrument may be used with electron impact (EI) ionization, an autosampler (AS), and computerized instrument control/data collection. Either LVI of 8 m L for a 1 g/mL MeCN extract (e.g., 75°C ramped to 275°C at 200°C/min) or 2 m L splitless injection of 4 g/mL extracts in toluene a t250°C m a y b e u s e d.A3–5m,0.25m m i d, phenylmethyl-deactivated guard column must be used as a retention gap in either case. The analytical column is a 30 m, 0.25 mm id, 0.25 m m film thickness (5%phenyl)-methylpolysiloxane (low bleed) analytical column (DB-5ms or equiv alent). Set He head pressure on the column to be 10 psi or constant flow to be 1.0 mL/min with systems capable of electronic pressure/flow control. After an appropriate time for solv ent delay, use an appropriate ov en temperature program, for example, starting at 75°C for MeCN extracts or 100°C for toluene ramped to 150°C at 25°C/min, then to 280°C at 10°C/min, and hold for 10 min. All collaborators had much experience in pesticide residue analysis and were free to use their own analytical conditions provided that peak shapes were Gaussian, peak widths at half heights were <5 s, and signal-to-noise ratio (S/N) of the quantitative ion for the pesticides at 10 ng/g equivalent concentrations in the sample were >10. For qualitative purposes (which were not the focus of this study), at least 3 ions yielding relativ e abundances that reasonably match a contemporaneously analyzed reference standard are typically needed to make an analyte identification.(b) Liquid chromatograph/tandem mass spectrometer.— A triple quadrupole, ion trap, or other LC/MS/MS instrument may be used provided it is capable of electrospray ionization (ESI) in the positive mode with computerized instrument control/data collection and has an AS. An injection volume (5–100 m L) will be determined for each instrument to achieve S/N > 10 for the quantitation ion for a 10 ng/g equivalent sample concentration. As in GC/MS, the collaborators had much experience in the analysis of pesticides and were free to use their own conditions. Suggested LC conditions, howev er, include a 15 cm long, 3.0 mm id, 3 m m particle size C18 column, flow rate of 0.3 mL/min, and gradient elution with an initial condition of 25% MeOH in 5 mM formic acid solution taken linearly in 15 min to 90% MeOH in 5 mM formic acid solution and held for 15 min. A short C18 guard column must be used to protect the analytical column, and a bypass valve must be used before the MS instrument to av oid introduction of the early and late eluting nonanalyte components into the detector. The MS/MS conditions were optimized in each laboratory using direct infusion into the ESI source to prov ide highest S/N for the quantitation ion of each LC-type analyte from a single MS/MS transition. A second transition with reasonably matching relative abundance ratios vs a contemporaneously analyzed reference standard is typically needed for qualitative purposes.(c) Centrifuge(s).—Capable of holding the 50 mL centrifuge tubes or bottles used for extraction and 10–15 mL graduated centrifuge tubes or 2 mL mini-tubes used in dispersiv e-SPE. Determine the rpm settings that yield a given relative centrifugal force (RCF), and ensure that maximum ratings of the centrifuge, tube/bottles, and rotors for the instrument are not exceeded.(d) Balance(s).—Capable of accurately measuring weights from0.05 to 100 g within ±0.01 g.(e) Freezer.—Capable of continuous operation <–20°C.(f) Furnace/oven.—Capable of 500°C operation.ã 2007 AOAC IN T ER N A T IONALTable 2007.01E. Averaged interlaboratory study results for the fortified and incurred pesticides aMatrix Recovery, %RSD r, %RSD R, %HorRat No. of labs (n) Grapes86 ± 1110 ± 422 ± 80.90 ± 0.2912 ± 1 Lettuces87 ± 1210 ± 720 ± 90.83 ± 0.4510 ± 1 Oranges87 ± 1510 ± 620 ± 80.84 ± 0.3710 ± 2 Overall87 ± 1110 ± 621 ± 80.86 ± 0.3711 ± 2Incurred NA b12 ± 422 ± 80.92 ± 0.3011 ± 2aData from fewer than 7 laboratories in an assessment were excluded.bNA = Not applicable.(g ) Food chopper and/or bl ender.—Preferably an s-blade vertical cutter (e.g. Stephan, Robotcoupe) and and probe blender (e.g. Ultra-Turrax, Propsep).(h ) Sol vent evaporator (optional ).—For the ev aporation of MeCN extracts, if LVI is not used in GC/MS.C. Reagents[See Table 5 [J. AOAC Int. 90, 485(2007)] for sources of chemicals.](a ) Anhydrous magnesium sul fate (MgSO 4).—Powder form;purity >98%; heated in bulk to 500°C for >5 h to remove phthalates and residual water.(b ) Acetonitril e (MeCN).—Quality of sufficient purity that is free of interfering compounds.(c ) Acetic acid (HOAc).—Glacial; quality of sufficient purity that is free of interfering compounds.(d ) 1% HOAc in MeCN.—Prepared on a v/v basis (e.g., 10 mL glacial HOAc in a 1 L MeCN solution).(e ) Anhydrous sodium acetate (NaOAc).—Powder form (NaOAc·3H 2O may be substituted, but 0.17 g per g sample must be used rather than 0.1 g anhydrous NaOAc per g sample).(f ) Primary secondary amine (PSA) sorbent.—40 m m particle size (Varian Part No. 12213024 or equiv alent). (Note : Premade dispersive-SPE tubes are now available from at least 3 vendors.)(g ) C 18 sorbent (optional ).—40 m m particle size, if samples contain >1% fat.(h ) G r a p h i t i z e d c a r b o n b l a c k (G C B ) s o r b e n t (optional ).—120/400 mesh size, if no structurally planar pesticides are included among the analytes.(i ) Helium.—Purity that has been demonstrated to be free of interfering compounds in GC/MS.(j ) Toluene (optional ).—Quality of sufficient purity that is free of interfering compounds; only needed if LVI is not used in GC/MS.(k ) Methanol (MeOH).—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS prepared in mobile phase solution.(l ) Water.—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS.(m ) Formic acid.—Quality of sufficient purity that is free of interfering compounds in LC/MS/MS prepared in mobile phase solution.(n ) Pesticide standards .—High purity reference standards of the pesticide analytes, and quality control (QC) and internal standards (ISs) prepared at highly concentrated stock solutions (e.g.,2000 ng/m L) in MeCN with 0.1% HOAc. Stored in dark vials in the freezer. Check annually for stability.(o ) Standard sol utions.—Prepared in MeCN for all collaborators: IS solution = 40 ng/m L of both d 10-parathion and d 6-a -HCH in MeCN; triphenylphosphate (TPP) solution = 2 ng/m L TPP in 1% HOAc in MeCN solution; QC-spike solution = 40 ng/m L of the 27 pesticide analytes in 0.1% HOAc in MeCN; and individual test solutions = 10 ng/m L of each of the 30 compounds to be detected (except 40 ng/m L TPP) in 0.1% HOAc in MeCN solution.Collaborators prepared a test mix and calibration standard spike solutions from those provided as described in E .(p ) Bl ank sampl e .—Verified to be free of analytes abov e the detection limit.(q ) Other reagents.—Certain instruments may require nitrogen or other materials/devices for their operation.D. Materials(a ) Fl uorinated ethyl ene propyl ene (FEP) centrifugetubes.—50 mL; e.g., Nalgene Part No. 3114-0050 or equivalent for <16 g sample (or 250 mL FEP centrifuge bottles for 16–75 g sample size).(b ) Spatul a/spoon and funnel .—For transferring sample into centrifuge tubes.(c ) Solvent dispenser and 1–4 L solvent bottle.—For transferring 15 mL 1% HOAc in MeCN per 15 g sample in FEP centrifuge tubes or bottles.(d ) Centrifuge tubes (optional ).—10–15 mL graduated. For evaporation and/or dispersive-SPE.(e ) Mini-centrifuge tubes (optional).—2 mL. For dispersive-SPE (use tubes with o-ring-sealed caps to avoid leaks).(f ) Syringes/pipets.—Capable of accurate sample introduction of 2 or 8 m L volume into GC/MS and appropriate volumes of matrix spike, IS, and calibration standard solutions (12.5–300 m L).(g ) Repeating or vol umetric pipets.—Capable of accurately transferring 0.5–8 mL solvent.(h ) Containers .—Graduated cylinders, volumetric flasks, weigh boats, v ials, and/or other general containers in which to contain samples, extracts, solutions, standards, and reagents.E. Preparation of Reagent Materials and Comminuted Sample(1) Prepare the necessary number of sealable vials/cups containing 6.0 ± 0.3 g anhydrous MgSO 4 + 1.5 ± 0.1 g anhydrous NaOAc (or 2.5ã 2007 AOAC IN T ER N A TIONALFigure 2007.01. Outline of the QuEChERS protocol used in the collaborative study.± 0.2 g NaOAc·3H2O) per 15 g sample. Scoops of appropriate volume can be used to speed the process, but weighing should still be done to check consistency. The containers should be sealed during storage and can be refilled and re-used without cleaning in between usages.(2) Prepare the necessary number of appropriate centrifuge tubes (2 mL mini-centrifuge tubes or 10–15 mL centrifuge tubes) containing 0.05 ± 0.01 g PSA sorbent + 0.15 ± 0.03 g anhydrous MgSO4 per 1 mL extract taken for dispersive-SPE cleanup. (Note: At least United Chemical Technologies, Restek, and Supelco now provide dispersive-SPE products commercially to replace this step.) If LVI is not available for GC/MS, then evaporation of the extracts will be needed, and 8 mL extract will be transferred to 10–15 mL sealable centrifuge tubes containing 0.40 ± 0.08 g PSA sorbent + 1.20 ± 0.24 g anhydrous MgSO4. For matrixes that contain >1% fat, add an additional 0.05 ± 0.01 g C18 sorbent per mL extract to the container. If no planar pesticides are among the analytes (e.g., thiabendazole, terbufos, quintozene, and hexachlorobenzene), then 0.05 ± 0.01 g GCB sorbent per mL extract can also be added to the tube. (Note: Final extract volume may have to be reduced to 0.4 mL per 1 mL aliquot in dispersive-SPE if all 4 powders are used.) (3) Prepare 1% HOAc in MeCN in dispenser bottle by adding 10 mL HOAc to 990 mL v olume of MeCN or different desired amount in the same ratio.(4) Label all vials and tubes appropriately that will be used in the method.(5) Note: Step 5 was conducted by the Study Director (SD) when preparing the test samples. An appropriate chopper must be used to comminute large, representative sample portions. An uncommon or deuterated pesticide standard may be spiked into the sample during homogenization to determine the effectiv eness of the procedure. Blend the sample until it gives a consistent texture. Transfer .200 g to a sealable container for freezer storage after further homogenization with a probe blender. Blend this subsample with the mixer until it is homogeneous. The test portion (e.g., 15 g) is taken for extraction immediately, and the container is then sealed and stored in the freezer in case re-analysis is necessary. The advantages of this approach are that the 15 g portion is highly representative of the original sample, the sample is well-comminuted to improv e extraction by shaking, less time is spent on the ov erall homogenization process than trying to prov ide equiv alent homogenization of the large initial sample with the chopper, and a frozen subsample is available for re-analysis if needed.To provide the most homogeneous comminuted samples, frozen conditions, sufficient chopping time, and appropriate sample size to chopper volume ratio should be used. Use of frozen samples also minimizes degradative and volatilization losses of certain pesticides. In this case, cut the sample into 2–5 cm3 portions with a knife and store the sample in the freezer prior to processing. Cryogenic blending devices, liquid nitrogen, or dry ice may also be used (but make sure all dry ice has sublimed before weighing samples and ensure that water condensation is minimal, especially in a humid environment). (6) For laboratories with LVI in GC/MS, prepare a test mix of the pesticides in MeCN + 0.1% HOAc to determine the retention times (t R) and MS quantitation/diagnostic ions at the particular GC/MS conditions to be used in the analysis [see Table 2 of the collaborative study (J. AOAC Int. 90, 485(2007)].The preparation of the test mix and calibration spiking standards are described as follows:(1) Test mix in MeCN + 0.1% HOAc.—4 ng/m L in 10 mL of all 30 compounds to be analyzed. Add 1 mL each of QC-spike solution + IS solution + TPP test solution + 1% HOAc in MeCN and fill to 10 mL with MeCN. Calibration spike standards in MeCN for 27 pesticide analytes (make 10 mL each in volumetric flasks, then transfer to 15 mL dark glass vials and store in freezer).(2) Cal-standard-1000.—20 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 5 mL QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(3) Cal-standard-250.—5 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 1.25 mL QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(4) Cal-standard-100.—2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 500 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(5) Cal-standard-50.—1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 250 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(6) Cal-standard-10.—0.2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN.(7) Cal-standard-5.—0.1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 25 m L QC-spike solution + 1 mL IS solution + 1 mL 1% HOAc in MeCN and fill to the mark with MeCN. For laboratories without LVI in GC/MS, the preparation of the test mix and the calibration spiking standards are described below: (1a) Test mix for GC in tol uene.—4 ng/m L in 10 mL of all 30 compounds to be analyzed. Add 1 mL QC-spike solution + 1 mL IS solution + 1 mL TPP test solution and fill to 10 mL with toluene. Calibration spike standards in MeCN for LC/MS/MS (in dark glass AS vials stored in freezer).(2a) Cal-standard-1000.—20 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 500 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 320 m L MeCN.(3a) Cal-standard-250.—5 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 125 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 695 m L MeCN.(4a) Cal-standard-100.—2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc in MeCN + 770 m L MeCN.Dilute QC-spike solution.—4 ng/m L. Transfer 100 m L QC-spike solution to AS vial and add 900 m L MeCN.(5a) Cal-standard-50.—1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 250 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc + 570 m L MeCN.(6a) Cal-standard-10.—0.2 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 50 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc and 770 m L MeCN.(7a) Cal-standard-5.—0.1 ng/m L of each pesticide + 4 ng/m L IS in MeCN + 0.1% HOAc. Add 25 m L dilute QC-spike solution + 100 m L IS solution + 100 m L 1% HOAc + 795 m L MeCN.Calibration spike standards in toluene.—Make 10 mL each in volumetric flasks, then transfer to 15 mL dark glass vials and store in freezer.(8a) Cal-standard-1000-tol.—20 ng/m L of each pesticide + 4 ng/m L IS in toluene. Add 5 mL QC-spike solution + 1 mL IS solution and fill to the mark with toluene.ã 2007 AOAC IN T ER N A T IONAL。

循因渐进摩弗西斯事务所设计的纽约库珀广场41号

循因渐进摩弗西斯事务所设计的纽约库珀广场41号


20
周新 佳 Z O a j H UJ ni i a
循因渐进
摩弗西斯事务所设计 的纽约库珀广场 4 号 1
lf m aton,n F m a i n or i I or ton, or a i F m ton
41 o p r qu r, w o kb r h s o e c S a e Ne Y r y Mo p o i s

间时 . 通过建筑 面上的切口一发次捕获纽约城市的 片断 . 与城市形成呼应 从主立面的切 口 向外看 , 恰 好与库珀学院基金会大接~ 一拣风格迎然的古典建 筑对角相望 ( 1 ) 由此 , 目 2。 建筑从城 市中获得对自 身的定义 .条件激发 的 特形态x 反过来定义 7城 独 市 在从城市环 到建筑内部又目到城市的一番游历 境
翦一
文章通过评述摩弗西斯事务所 ( h s r i c s Mo p o i A c t t 在纽约完成 的 r s he ) 库珀联盟学院新大楼—
庠珀r场
4 号 .简 介 7设计师是如何将建筑功能 所在环境 的 1 要 绍 特殊条件 什八设计过程,通过对几何形体的操作来 推动建筑的生戚 . 并且获得 后的形态 。 关■诩 城市 环境 . 直 目 . 垂 校 切割 . 几何 生成

1 信息 ( n r t n是一十有趣的过程.建 庭里穿摧的天桥把这些空问串联起来 在走进这些空
筑的±成总在经历草图、实物模型与电脑模型±间的 往复 汤蛳 梅恩最早 的草图 ( 2 隐约地表 达7 图 ) 建筑外女 面与其建筑 内部的*系 一
这样的 观感很容
易让人联 想到以切割画布闻名的艺术家鲁 奥 封塔 使主与观者所处的真实环境融为一体 无独有偶 . 库 纳 f u i F n a a 的作 Lc oth} o —— 空间 念 S a l 珀广场 4 号的切 口 概 ( p t I a 1 不免让^产生同样的 期望 想 , 3 之后的世界 。 C n et系列 ( 5)对画布不 厌其烦的切割使封 像这切 1 oc p) 目 c

引领世界的英国智能型服装

引领世界的英国智能型服装

引领世界的英国智能型服装
牟汝佳
【期刊名称】《中国纤检》
【年(卷),期】2008(000)004
【摘要】目前,有数个英国公司都成功地把智能纺织技术运用于服装和其他软的消费品,也包括手提包和背包。

在这个领域最卓越的英国公司有奥希迪西(Auxetix)公司、伊莱克森公司(Eleksen)、英国工程纤维构造公司(EngineeredFibreStructures)、
【总页数】1页(P75)
【作者】牟汝佳
【作者单位】无
【正文语种】中文
【中图分类】TS941.1
【相关文献】
1.英国研制成功世界首款净化空气功能服装 [J],
2.引领纺织染化创新潮流——亨斯迈召开"深入创新-智能型功效引领创新趋势"研讨会 [J], 黄莉
3.英国服装市场立足本土,放眼世界 [J], 姜蕾
4.让世界服装进入中国让中国服装走向世界—’94中国国际服装服饰博览会综述[J], 任小强
5.波司登:引领中国服装品牌走向世界 [J], 梁莉萍
因版权原因,仅展示原文概要,查看原文内容请购买。

第51届多恩比恩国际人造纤维大会全新亮相

第51届多恩比恩国际人造纤维大会全新亮相

第51届多恩比恩国际人造纤维大会全新亮相作者:白琼来源:《纺织报告》 2012年第10期最近,第51届多恩比恩国际人造纤维大会在奥地利多恩比恩举行。

会议启用了新的视觉形象标识,以展示持久创新的活力。

本届会议应行业未来发展之需,扩大专业交流研讨的范围,包括工业、研发、市场、环境等多个环节及领域。

新视觉设计传达活力新的视觉形象已经被参加多恩比恩国际人造纤维大会(Dornbirn-MFC)的所有观众、讲演者以及会员和赞助商所接受,它表达了全球纤维市场的活力。

大会板块的调整在第50届多恩比恩国际人造纤维大会(Dornbirn-MFC)举办时,纤维世界的变化已经显现。

未来的挑战已经摆在面前,促使2012年的大会在选题方面更加注重创新和切合实际。

“适应未来”板块讲座内容增加上届大会的50周年庆典活动为下一个50年奠定了基础。

因此,今年的大会重点关注可持续性、创新和与后代交流基础上的未来生存能力。

今年的议题重点围绕“汽车用纤维和纺织品”展开。

其他话题包括:“非传统纤维应用”、“用于环境保护的人造纤维”、“医疗用品”、“技术非织造布”和“欧盟项目”等。

这些选题将Dornbi rn-MFC发展成欧洲讨论人造纤维业未来发展重要议题的中央交流平台的目标又向前推进了一步。

来自学术界、研究领域、业界及整个加工链的演讲者和听众将通过这一活动分享有价值的思路、发现和知识。

年轻参与者增多欧洲拥有密集的研究院所和大学网络。

今年多恩比恩人造纤维大会首次邀请6 名学生在全体大会上阐述他们的研究成果,并在门厅的展览区域以海报形式发表这些研究成果的详细内容。

通过集群效应增强了大会的影响力与德国汽车协会(VDA)的合作得到多恩比恩汽车用纺织品工作小组的肯定,这使参会者能够获得关于人造纤维在这一重要行业的应用情况及其供应商的最新信息。

主办方还与世界绿色屋顶组织的代表计划未来几年在会前和会议期间举办相关活动。

今年有来自30多个国家和地区的700余名代表参会。

AOAC 试验方法 Method AOAC method 985.22

AOAC 试验方法 Method AOAC method 985.22
(i) Standard solutions.—Prepare all stock solutions and dilutions in glass-distilled acetone. Prepare GC standard solutions so 4 µL injection causes 30–70% full scale deflection in properly functioning system. Suggested concentrations are given in Table 985.22. Check responses before beginning analysis. Store all standard solutions in tightly stoppered containers in refrigerator. Let equilibrate 1 h at room temperature before using.
ganic
layer
in
first
separatory
funnel
by
passing
through
ca
14 supported on washed glass wool in 4 in(10 cm)
funnel, collecting in 500 mL K–D concentrator fitted with volumet-
Instrument used
B(g)(2)
E
0.5
0.4
0.1
0.1
0.5
0.5
0.2
0.2
0.5
0.5
0.2
0.4
2.0
0.4

“包装”OL绝对现场

“包装”OL绝对现场

“包装”OL绝对现场
林格
【期刊名称】《中国化妆品:专业版》
【年(卷),期】2003(000)005
【总页数】7页(P57-63)
【作者】林格
【作者单位】无
【正文语种】中文
【中图分类】TS974.1
【相关文献】
1.绝对创意:论绝对伏特加的包装设计 [J], 曹艳
2.绝对现场、绝对精彩——摄影棚拍摄全接触 [J], 小滔
3.绝对现场、绝对精彩——浙大中控重拳出击第15届多国仪器仪表展 [J],
4.从Pro Tools到Live——提升现场演出,只需将Pro Tools音轨导出到Ableton Live [J], 半瓶醋
5.量身定做符合客户需要的包装系统解决方案——访美德维实伟克(中国)投资有限公司亚洲市场经理Richard Olsen先生和饮料包装系统大中华区总经理宋勝强先生 [J], 李培珍;牛牧
因版权原因,仅展示原文概要,查看原文内容请购买。

C&A 2012摩登艺术绽放冬季

C&A 2012摩登艺术绽放冬季

C&A 2012摩登艺术绽放冬季
佚名
【期刊名称】《中国服装》
【年(卷),期】2012(000)019
【摘要】C&A本季冬季款将在艺术绘画中才能寻找到的巧妙色泽搭配运用NTN 饰用色灵感中。

配合新颖的剪裁和潮流的设计元素,这个冬季,都市中的熟男熟女们的衣柜里不再只有单调的灰白,穿上C&A,让冬季的空气也跟着鲜活起来。

成熟女装YESSICA系列本季在色彩与色彩的碰撞中展现女性的千姿百媚。

不论你是青睐冷色,黑白色调塑造沉稳干练形象.还是偏爱亮丽颜色让这个冬日也掩盖不住你的光彩.你都会在C&A找到属于你的那一抹炫色。

【总页数】1页(P152-152)
【正文语种】中文
【中图分类】TS933.23
【相关文献】
1.“浅色变奏”演绎摩登活力明快色调描摹都会时尚MANGO2012春夏新装绚烂绽放 [J],
2.天然传统纤维现代艺术演绎摩登羊毛艺术展十月上海拉开帷幕 [J],
3.摩登上海的一次先锋艺术探索——20世纪30年代先锋艺术团体决澜社的酝酿与成立 [J], 胡荣
4.焕彩摩登品味优雅——法式优雅女装LEVU‘SU(艺元素)和快速时尚女装SIUSIU 2011秋冬季时装联合发布会 [J],
5.“冬季最摩登之运动” 现代冰雪运动在我国的开展 [J], 黄金生
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
Part selection
Recommended low power support USB 2.0- LPM support for L2/U2 PCIe (WLAN and storage) – support for L1.substate For SATA SSD devices use of Slumber and Device Sleep
D3 device power state support NIC selection
Connected MS requires at least one network devices to be NDIS 6.3 compliant, or the system is placed in disconnected MS
3. Simplified wake story A system stays in the S0 state and waking simply requires a hardware interrupt. Thus, it may
eliminate any need for firmware interaction (Device wake, even in the S3 model, requires functionality
Storage selection If the storage device/solution reports a seek penalty/rotational delay, indicating rotating media, then disconnected will be the default standby mode. If the storage device/solution indicates that it has no rotational delay or seek penalty (for example, is an SSD), then connected will be the default standby mode. Do not recommend enabling connectivity on rotational-only (HDD) systems.
integrated into the BIOS, This makes wake times slower and more cumbersome to develop. )
6
Comparison Summary
7
Benefits
8

Modern standby user experiences
Battery selection Battery life targets vary by form factor and price (get the table)
14
Storage Optimization
New adaptive idle timeout algorithm be introduced in windows 10: Host attempt to average no more than one power state transition per 5-minute interval by default
A miniport driver can opt-in to this behavior: Register a STOR_POFX_DEVICE_V3 with StorPortInitializePoFxPower in the ScsiUnitPoFxPowerInfo unit control callback. Set the STOR_POFX_DEVICE_FLAG_ADAPTIVE_D3_IDLE_TIMEOUT flag in the Flags member of the STOR_POFX_DEVICE_V3 structure. Set the MinimumPowerCyclePeriodInMS member in the STOR_POFX_DEVICE_V3 structure to the value that indicates, in the worst case, how often the device can be power cycled. Units are in milliseconds. We recommend this be at least 5 minutes (i.e. the device should not be power cycled more than once every 5 minutes).
CS and MS Wake patterns while in DRIPS: CS: wake up at least once every 30 seconds from DRIPS to process work MS: postponing non-critical work and removing unnecessary wakeups, particularly on battery power. Some timers are postponed until system is wake or plugged into AC.
5
Advantages of using MS
1. Instant on Resume time from the low power idle model is at least twice as fast as from S3 resume
2. Background activity while the system is “Off” ✓System is still in S0 (a fully running state, ready and able to do work) ✓Desktop apps are stopped by the DAM (Desktop Activity Moderator) ✓Background tasks from Windows Store apps are permitted to do work ✓On a connected modern standby, network is still active and users can receive events ✓On a disconnected modern standby, VoIP calls wouldn’t be available, real-time events can still happen
2
Introduction
Windows8 Connected Standby (CS) : ✓ Enables the smartphone power model on the PC ✓ Provides an instant on/instant off(立即开关机) UE as their phones ✓ S0 low power idle model enables the system to stay up-to-date whenever a suitable network is available ✓ Expect instantly available power model instead of the traditional S3/S4 power model
Windows 10 Modern Standby (MS) ✓ Expands the Windows 8.1 CS power model to be more inclusive and allows system based on rotational media and hybrid media (SSD + HDD or SSHD) ✓ Expands a NIC that doesn’t support all of the prior requirements for CS to still take advantage of the low power idle. MS have the flexibility to configure the default behavior to limit network activity ✓ Only wakes from the lowest power state when absolutely necessary, real time action required (OS maintenance or a user wakes the system) ✓ The low power idle state is accomplished through tight integration between the firmware, chipset, low power components, devices and drivers. ✓ DRIPS – Deepest Runtime Idle Platform State, corresponds to the lowest power state for the SOC during CS or MS
(v=vs.85).aspx
9
Power/Performance Targets
(v=vs.85).aspx
10
System Power State
Link: (v=vs.85).aspx If system support MS, but networking or storage can’t meet MS requirements, system will automatically be placed in a disconnected state
4
Behavior differences
Connected and disconnected MS: Whether maintaining network connection
相关文档
最新文档