土壤吸湿水的测定
土壤含水量的测定实验报告三篇

⼟壤含⽔量的测定实验报告三篇⼟壤含⽔量的测定实验报告三篇篇⼀:⼟壤含⽔量的测定实验报告实验⼆⼟壤含⽔量的测定(烘⼲法与酒精燃烧法)⼀、⽬的意义进⾏⼟壤含⽔量的测定有两个⽬的:⼀是为了解⽥间⼟壤的实际含⽔情况,以便及时进⾏播种、灌排、保墒措施,以保证作物的正常⽣长;或联系作物长相长势及耕作栽培措施,总结丰产的⽔肥条件。
⼆是风⼲⼟样⽔分的测定,是各项分析结果计算的基础。
⼟壤含⽔量的测定⽅法很多,如烘⼲法、酒精燃烧法和中⼦测量法等,其中烘⼲法是⽬前国际上⼟壤⽔分测定的标准⽅法,虽然需要采集⼟样,并且⼲燥时间较长但是因为它⽐较准确,且便于⼤批测定,故为常⽤的⽅法。
⼆、⼟壤⾃然含⽔量的测定⼟壤⾃然含⽔量是指⽥间⼟壤中实际的含⽔量,它随时在变化之中,不是⼀个常数。
⼟壤⾃然含⽔量测定的⽅法,介绍烘⼲法和酒精燃烧法。
(⼀)烘⼲法1.⽅法原理将⼟壤样品放在105℃±2℃的烘箱中烘⾄恒重,求出⼟壤失⽔重量占烘⼲重量的百分数。
在此温度下,包括吸湿⽔(⼟粒表⾯从空⽓中吸取活动⼒强的⽔汽分⼦⽽成的⼀种⽔分)在内的所有⽔分烘掉,⽽⼀般⼟壤有机质不致分解。
2.操作步骤(1)将铝盒擦净,烘⼲冷却,在1/100天平上称重,并记下铝盒号码(A )。
(2)在⽥间取有代表性的⼟样(0~20cm)20g 左右,迅速装⼊铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品⾄少重复测3份。
(3)将打开盖⼦的铝盒(盖⼦放在铝盒旁侧或盖⼦平放在盒下),放⼈105℃±2℃的恒温箱中烘6~8⼩时。
(4)待烘箱温度下降⾄50℃左右时,盖好盖⼦,置铝盒于⼲燥器中30分钟左右,冷却⾄室温,称重(C ),如⽆⼲燥器,亦可将盖好的铝盒放在磁盘或⽊盘中,待⾄不烫⼿时称重。
(5)然后,启开盒盖,再烘4⼩时,冷却后称重,⼀直到前后两次称重相差不超过1%时为⽌(C )。
3.结果计算⼟壤含⽔量(%)=100ACC B ?--式中:A —铝盒重(g ) B —铝盒加湿⼟重(g ) C —铝盒加烘⼲⼟重(g ) 4.注意事项(1)烘箱温度以105℃±2℃为宜,温度过⾼,⼟壤有机质易碳化逸失。
土壤水分的测定方法

土壤水分的测定土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和作物的生长发育。
在栽培作物时,需经常了解田间含水量等土壤水分状况,以便适时灌排,利于耕作,保证作物生长对水分的需求,达到高产丰收。
土壤水分大致分为化学结合水、吸湿水和自由水三类。
自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自燃风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。
1、新鲜土样水分的测定土壤水分的测定方法很多,实验室一般采用酒精烘烤法、酒精烧失法和烘干法。
(一)烘干法实验原理:烘干法是测定土壤含水量的常用方法,测定本身的误差取决于天平的精确度和取样的代表性。
同时烘干过程中温度与烘干时间的控制也是影响测定结果准确度的重要因素,样品要求在105℃烘干6-8小时,以确保将土壤样品中的自由水和吸湿水驱走,而化学结合水不至于排出,有机质也只有微量的氧化分解挥发损失。
对于腐殖质含量较高的土壤(>8%)、泥炭土及盐土,温度不应超过105℃,含有石膏的土壤只能加热到80℃,以免造成样品中结晶水的损失。
操作步骤:准备工作:在室内将铝盒编号并称重,重量记为W 1取样:在田间用土钻钻取有代表性的土样,取土钻中段土壤样品约20克,迅速装入以编号的铝盒内,称量铝盒与新鲜土壤样品的重量,记为W 2,带回室内。
烘干:打开铝盒盖子(盖子放在铝盒旁边),放在105℃的恒温烘箱内烘干6小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
恒重:打开铝盒盖子,放在105℃的恒温烘箱内再次烘干3-5小时,盖好盖子,将铝盒置于干燥器内冷却30分钟,称重。
实验二 土壤吸湿水的测定

实验二土壤吸湿水的测定
吸湿水是风干土样水分的含量。
在计算土壤各种成分时不包括水分,即不用风干土作为计算的基础,而用烘干土作为计算的基础。
但分析时一般都用风干土,故计算时就必须根据水分含量换算成烘干土。
风干土样水分的测定,是各项分析结果计算的基础。
1、测定原理
把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,在此温度下,风干土样的吸湿水在的烘箱中可被烘干,而土壤有机质不能被分解,不致影响测定结果。
从而可求出土壤失水重量占烘干后土重的百分数。
2、操作步骤
①取干燥铝盒称重为W0 (克)。
②加土样约5克于铝盒中称重为W1(克)。
③将加了土样的铝盒放入烘箱,在105±2℃下烘烤6小时,一般可达恒重,取出放人干燥器内,冷却20分钟可称重。
必要时,如前法再烘1小时,取出冷却后称重,两次称重之差不得超过0.05克,取最低一次W2计算。
注:质地较轻的土壤,烘烤时间可以缩短,即5—6小时。
3、结果计算
该土样吸湿水的含量(%) = (W1- W2)/(W2- WW0)×100%
W0——铝盒质量;
W1——铝盒及风干土样质量;
W2——铝盒及烘干土样质量
注意事项
(1)要控制好烘箱内的温度,使其保持在105±2℃,过高过低都将影响测定结果的准确性。
(2)干燥器内所放的干燥剂要在充分干燥的情况下方可放入烘干土样。
否则干燥剂要重新烘干或更换后方可放入干燥器中。
主要仪器
铝盒、分析天平(0.0001g)、角匙、烘箱、干燥器、。
吸湿水实验报告

一、实验目的1. 了解土壤吸湿水的概念和测定方法。
2. 掌握土壤吸湿水测定的实验原理和步骤。
3. 通过实验,学会使用烘干法测定土壤吸湿水含量。
二、实验原理土壤吸湿水是指土壤在温度和大气压力一定的条件下,从大气中吸收的水分。
土壤吸湿水含量的高低直接影响土壤的保水性能、通气性能和微生物活动等。
本实验采用烘干法测定土壤吸湿水含量。
将土壤样品在恒温条件下烘干,烘干后的土壤质量与烘干前土壤质量的差值即为土壤吸湿水含量。
三、实验材料与仪器1. 实验材料:风干土样2. 实验仪器:烘箱、天平、温度计、称量纸、剪刀、镊子等四、实验步骤1. 准备工作:将风干土样研磨,过筛,使土样均匀。
2. 称量:用天平称取一定量的土样(如10g),记录土样质量。
3. 样品处理:将土样放入称量纸中,用剪刀剪成小块,使土样分布均匀。
4. 烘干:将土样放入烘箱中,设定温度(如100℃)和烘干时间(如6小时),待土样烘干后取出。
5. 称量:用天平称取烘干后的土样质量,记录土样质量。
6. 计算吸湿水含量:吸湿水含量 = (烘干前土样质量 - 烘干后土样质量) / 烘干前土样质量× 100%五、实验结果与分析1. 实验结果| 土样质量(g) | 烘干后土样质量(g) | 吸湿水含量(%) ||--------------|-------------------|----------------|| 10.0 | 9.5 | 5.0 |2. 结果分析本实验中,土壤吸湿水含量为5.0%,说明该土壤具有一定的吸湿能力。
吸湿水含量越高,土壤的保水性能越好,有利于植物生长。
六、实验结论通过本次实验,我们掌握了土壤吸湿水测定的原理和步骤,学会了使用烘干法测定土壤吸湿水含量。
实验结果表明,土壤吸湿水含量对土壤的保水性能、通气性能和微生物活动等具有重要影响。
七、实验注意事项1. 实验过程中要严格控制温度和烘干时间,确保实验结果的准确性。
2. 在称量土样时,要注意防止土样吸湿,影响实验结果。
土壤水分参数的测定.

海南大学环境与植物保护学院
唐文浩
1土壤最大吸湿水量的测定
在空气湿度接近饱和的条件下,干燥士壤所能吸收的气态 水分称为土壤最大吸湿水。其含量决定于空气的相对湿度、 土壤质地以及土壤中有机质含量。 测定土样为风干土。 测定仪器及试剂:天平(感量0.01及0.001)、称量瓶 (Φ5cm、高3cm)、干燥器、烘箱、饱和硫酸钾(或10 %硫酸)构成相对湿度接近饱和的空气。 最大吸湿水含量=(M湿-M干)/ M干×100% M干——为干土重量g, M湿——为空气湿度接近饱和时的湿土重量g
海南大学环境与植物保护学院
唐文浩
测定步骤:
①称取通过lmm筛孔的风干土样5~20g(粘士和有机质含量多的土壤 为5~10g,壤士和有机质含量较少的土壤为10~15g,砂土和有机质 含量极少的土壤15~20g),放人已知质量的称量瓶中,平铺在称量 瓶底。 ②将称量瓶放人干燥器中有孔瓷板上。打开瓶盖,勿使贴近器壁。干 燥器下部盛有饱和硫酸钾溶液(每lg土样约放入3ml饱和硫酸钾溶 液)。将干燥器盖好后,放置在温度较稳定的地方或保持恒温20℃。 ③在土壤开始吸湿后一星期左右,将称量瓶加盖从干燥器中取出,立 即在天平上称量,然后重新放入干燥器中,使其继续吸水,以后每隔 2~3天按前法称量一次,直至达到恒重或前后两次称量之差不超过 0.005g为止,计算时可取其最大数。 ④将最大吸湿水达到恒重的土样,置于105C的烘箱中烘干至恒重, 按一般计算土壤含水量的方法,计算土壤最大吸湿水。
海南大学环境与植物保护学院 唐文浩
4土壤孔隙度的测定
仪器设备:200cm3环刀(高5.2cm,半径3.5cm)或其他规格的环刀、 天平(感量0.0lg及0.lg)、小刀、铁锹、烘箱、铝盒、瓷盘、滤纸 等。 测定步骤:取样方法与容重测定相同,在室内将环刀的上、下盖取下, 一端换上带网孔并垫有滤纸的底盖,并将该环刀放入盛薄层水的瓷盘 中,盘内水深保持在 2 ~ 3mm 之间,浸人时间,砂土 4 ~ 6h ,粘土 8 ~ 12h 或更长时间。然后擦干环刀外的水分并立即称重 W1 。称重后将此 环刀连同湿土放水中浸泡,水面高度至环刀上沿,浸泡时间以环刀上 面的滤纸充分湿润为止,此时重新擦干环刀外面的水分称重 W2, 然后 将环刀连同土样一起放在105℃的烘箱中烘至恒重W3 结果计算:毛管孔隙度%=(W1-W3)/V×100 总孔隙度%=(W2-W3)/V×100 非毛管孔隙度=总孔隙度-毛管孔隙度 式中V——环刀容积cm3 土壤通气度(容积%)=总孔隙度(容积%)一体积含水量%
土壤最大吸湿量、田间持水量和毛管持

土壤最大吸湿量、田间持水量和毛管持水量的测定本实验测定的三种土壤水分含量均是重要的土壤水分性质,是反映土壤水分状况的重要指标,与土壤保水供水有密切的关系。
一、土壤最大吸湿量的测定风干土样所吸附的水气,称为吸湿水。
土壤吸湿水的多少与空气相对湿度有关,当空气湿度接近饱和时,土壤吸湿水达到最大量,称为最大吸湿量或吸湿系数。
最大吸湿量的1.25—2.00倍,大约相当于凋萎系数。
凋萎系数的测定较难,故可由最大吸湿量间接计算而得土壤最大吸湿量也可以用来估计土壤比表面的大小。
(一)方法原理饱和KS0在密闭条件下可使空气相对湿度达98—99%,风干土样在此相对湿度下达最24大吸湿量。
(二)操作步骤1、称取通过1mm筛孔的风干土样5—20克(粘土和有机质多的土壤5—10克,壤土10—15克,砂土15—20克),平铺于已称重的称量皿底部。
2、将称量皿放人干燥器中的有孔磁板上,另用小烧杯盛饱和KSO溶液,按每克土大约242毫升计算,同样放入干燥器内。
3、将干燥器放在温度保持在20r的地方,让土壤吸湿。
4、土样吸湿一周左右,取出称重,再将其放人干燥器内使之继续吸水,以后每隔2—3 天称一次,直至土样达恒重(前后二次重量之差不超过0.005克),计算时取其大者。
5、达恒重的土样置于105—110°C烘箱内烘至恒重,按一般计算土壤含水量方法计算出土壤最大吸湿量。
二、田间持水量测定土壤田间持水量是指地下水位较深时,土壤所能保持的最大含水量。
因此是表征田间土壤保持水分能力的指标,也是计算土壤灌溉量的指标。
(一)土壤田间持水量的野外测定方法1、方法原理:通过灌水、渗漏,使土壤在一定时间内达到毛管悬着水的最大量时,取土测定水分含量,此时的土壤水分含量即为土壤田间持水量。
2、操作步骤(1) 选地:在田间地块选一具有代表性的测试地段;先将地面平整,使灌水时水不致积聚于低洼处而影响水分均匀下渗。
(2) 筑埂:测试地段面积一般为4平方米,四周筑起一道土埂(从埂外取土筑埂),埂高30厘米,底宽30厘米。
土壤水吸力的测定

土壤水吸力的测定土壤水吸力是反映土壤水分能态的指标,它是在水分随一定土壤吸力状况下的水分能量状态,以土壤对水的吸力来表示。
植物从土壤中吸水,必须以更大的吸力来克服土壤对水的吸力,因此土壤水吸力可以直接反映土壤的供水能力以及土壤水分的运动,较之单纯用土壤含水量反映土壤水分状况更有实际意义。
测定土壤水吸力是控制土壤水分状况,调节植物吸收水分和养分的一种重要手段。
(一)测定原理本实验采用土壤湿度计(又名张力计或负压计)测定土壤水吸力。
当充满水、密封的土壤湿度计插入水分不饱和的土壤后,由于土壤具有吸力,便通过湿度计的陶土管壁“吸”水。
陶土管是不透气的,故此时仪器内部便产生一定的真空,使负压表指示出负压力。
当仪器与土壤吸力达平衡时,此负压力即为土壤水吸力。
(二)土壤湿度计构造土壤湿度计由下列部件所组成:l、陶土管:是土壤湿度计的感应部件,它有许多细小而均匀的孔隙。
当陶土管完全被水浸润后,其孔隙间的水膜能让水或溶液通过而不让空气通过。
2、负压表:是土壤湿度计的指示部件,一般为汞柱负压表或弹簧管负压表。
3、集气管:为收集仪器里的空气之用。
(三)测定方法1、仪器的准备:在使用土壤湿度计之前,为使仪器达到最大灵敏度,必须把仪器内部的空气除尽,方法是:除去集气管的盖和橡皮塞,将仪器倾斜,注入经煮沸后冷却的无气水,注满后将仪器直立,让水将陶土管湿润。
并见有水从表面滴出。
在注水口塞入一个插有注射针的橡皮塞,进行抽气,此时可见真空表指针移至400毫来汞柱左右,并有气泡从真空表中逸出,逐渐聚集在集气管中。
拨出塞子则真空表指针返回原位。
继续将仪器注满无气水,同上抽气,重复3—4次,仪器系统中的空气便可除尽,盖好橡皮塞和集气管盖,仪器即可使用。
2、安装:在需测量的田块上选择好有代表性的地方,以钻孔器开孔到待测深度,将湿度计插入。
为了使陶土管与土壤接触紧密,开孔后可撤入少量碎土于孔底,然后插入仪器,再填入少量碎土,将仪器上下移动,使陶土管与周围土壤紧接。
土壤水吸力的测定实验(张力计法)

土壤水吸力的测定实验(张力计法)一、目的、意义:土壤水吸力简称吸力,是土壤水能量状态的一种表示方法。
土壤是一种非均质的多孔体,当其孔隙未充满水时,都有吸水的能力,并将水保持在土中,这一性质,来自土壤固——液界面上的界面张力和固体颗粒的吸附力,两者统称为土壤吸力或称基质(基模)吸力,土壤中的溶质也对水产生吸力,称为溶质吸力,基质吸力与溶质吸力之和称为土壤总吸力,它决定着植物对土壤水的吸收利用。
溶质吸力一般以测定土壤可溶性盐的溶液的渗透压来估计,土壤水吸力的测定有张力计法,压力膜法,离心机法,冰点下降法等。
张力计法虽然只能测定<0.85 bar的吸力值,但因它能直接在田间定点测量土壤水分的能量状况,并可用来指示作物的丰产灌溉,所以得到相当广泛的应用。
本实验,主要是学习在实验室条件下,张力计的安装与观测的基本方法,并了解土壤吸力的变化规律。
二、原理:土壤张力计由陶土管、真空表(负压表)和集气管三部分组成,在仪器完全充满水,密封,插入土壤后,仪器内处于气压下的自由水通过陶土管壁与土壤水有了水力接触,土壤的水势与仪器的水势必然要逐渐达到平衡。
设仪器的水势为ψWD,土壤的水势为ψWS,则ψWS =ψWD (1)当忽略了重力势ψg,温度势ψt溶质势ψs后,土壤的水势仪器的水势分别为:ψWS =ψPS+ψMS (2)ψWD =ψPD+ψMD (3)式中:ψ和ψMS——土壤水的压力势和基质势ψPD和ψMD——仪器水的压力势和基质势将(2)和(3)代入(1)式,则ψPS+ψMS =ψPD+ψMD(4)因为土壤水的压力势(以大气压为参比)为零,而仪器内无基质(土壤),故基质势为零,则ψMS =ψPD (5)或ψMS = V WΔP D (6)(6)式中的V W为水的比容——1cm3/g,ΔP D为仪器所示的压力。
故(6)式表示土壤水的基质势可由仪器所表示的压力(差)来量度。
当土壤被降雨或灌溉重新湿润时,土壤吸力减小,与仪器原来的负压力不平衡,土壤水便会重新经陶土管壁而压入仪器中,使仪器的负压下降,直至与土壤吸力达到新的平衡为止,当土壤饱和时吸力(负压力)为零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六土壤样品的采集和处理
目的要求
土壤分析的目的是为了进一步了解土壤的组成和性质,为适地适树,改土,施肥等提供科学的一句。
因此土壤分析必须能够正确反映所分析土壤的特性。
最基本重要的就是土壤样品的采集和处理。
基本原理
使分析用的土样必须能正确反映土壤实际情况。
因此它应该符合下列要求:
土壤是经过选择而具有代表性的,在处理和保存过程中,必须防止发霉和污染。
每个土样必须是拌合均匀的。
方法步骤
实习七土壤吸湿水的测定
目的要求
风干的土壤,都含有吸湿水,其含量视大气的湿度及土壤性质而异。
为了使各个土样能在一致的基础上比较其理化性质。
使整个分析得到合理的相对性数值,所以在计算各物质含量的百分比时,都以“烘干土”作为基数。
因此在土壤分析之前。
必须测定土壤吸湿水的含量然后根据吸湿水的含量,由风干土重换算成烘干土的重量。
基本原理
土壤可以先从大气吸附气态的水分。
用这种方式被吸收的水分被称为吸湿水。
土壤在吸湿水时,会放出吸湿热。
腰排除土壤吸湿水,必须对土壤加热,在温度105度到110度时,吸湿水能重新成为气态而与土壤分离,而一般有机质不致分解。
方法步骤
(一)烘干法:
取烘干洁净的铝盒,编号,称重(W1)(精确至0.01g),从过1毫米筛孔的土样中平均取土样的20g左右放入盒内,称重(W2)将盒盖在盒底上,送入电烘箱中加热。
从105度到110度算起烘烤6小时后,加盖后,移入干燥器中冷却至室温。
一般冷却20分钟即可称重,再次放入烘箱中烘烤2到4小时,冷却,称重。
以验证是否到达“恒重”。
设“恒重”为W3.(二)红外线法
1.称样品5g(精确到0.01g),置入已知重量的铝盒中,(请记住自己的铝盒号码),摊成薄层,放在红外线灯照射的中心,每个红外线灯下一次可以放4到6个土壤样品。
2.红外线照射的时间,一般含有机质少的样品照射7到15分钟后称至恒重,计算含水量。
对于有机质量多的样品,一般照射3到7分钟。
时间太长,则易引起有机质碳化,造成误差。
计算方法
土壤吸湿水含量(g/kg)=1000(W2—W3)/(W3—W1)
1 / 2
x (换算系数)(W3—W1)(烘干土质量)/(W2—W1)(风干土质量)
作业
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。