22-考生用卷(A型)

合集下载

中考数学临考题号押广东卷22题(方程运用与最大利润)(解析版)

中考数学临考题号押广东卷22题(方程运用与最大利润)(解析版)
(2)由题意得,当 时,每天可售100盒.
当猪肉粽每盒售x元时,每天可售 盒.每盒的利润为( )
∴ ,
配方得:
当 时,y取最大值为1750元.
∴ ,最大利润为1750元.
答:y关于x的函数解析式为 ,且最大利润为1750元.
2.(2020广东)某社区拟建A、B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的 .
(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.
【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,
根据题意得: = ,
解得:x=35,
经检验,x=35是原方程的解,
∴x﹣9=26.
答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.
(2)设可以购买m瓶乙品牌洗手液,则可以购买(100-m)瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.
【详解】解:(1)设甲品牌洗衣液进价为 元/瓶,则乙品牌洗衣液进价为 元/瓶,
由题意可得, ,
(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?
(2)该公司通过增加模具的方式提高日产量,本来只有两套模具,每套模具每天平均生产500个冰墩墩硅胶外壳,为达到扩大生产规模后的日产量,至少需要增加多少套模具?
【分析】(1)根据题设条件,表示出原计划用的时间,和扩大规模后用的时间,根据前后时间差为464天,可列分式方程,解方程即可得到答案;

最新普通话测试(全音标)1-考生用卷(A型)

最新普通话测试(全音标)1-考生用卷(A型)

国家普通话水平测试试卷编号:I-20071201一、 读单音节字词(100个音节,共10分,限时3.5分钟)哲z h ã 洽q i à 许x ǔ 滕tãng 缓huǎn 昂án g翻fün 容rïng 选xuǎn 闻w ãn 悦y u â 围w ãi 波b ō 信x ìn 铭míng 欧ōu测c â 敷f ū 闰r ùn 巢cháo 字 披p ÿ 翁 辆 申 按捐 旗 黑 咬 瞥piý 贺 失 广guǎng 晒shài 兵卦g u à 拔b á 君jūn 仍rãng 胸xiōng 撞zhuàng 非 眸m ïu 葬 昭zhüo览lǎn 脱 嫩 所 德 柳 砚y àn 甩 豹 壤凑 坑 绞jiǎo 崔cuÿ 我 初 蔽b ì 匀 铝l ǚ 枪柴 搭 穷 董 池 款 杂 此 艘 粉阔 您 镁mþi 帘 械 搞 堤d ÿ 捡jiǎn 魂h ún 躺tǎng瘸q u ã 蛀 游y o u 蠢chǔn 固 浓nïng 钾jiǎ 酸suün 莫m î 捧pþng队d u ì 耍shuǎ 踹chuài 儿ãr二、 读多音节词语(100个音节,共20分,限时2.5分钟)国g u ï王wáng 今jÿn 日r ì 虐n ûâ待d ài 花huü瓶píng 儿ãr难n án 怪guài 产chǎn 品 掉diào 头t ïu 遭züo 受shîu 露l îu 馅xiàn 儿e r 人r ãn 群q ún 压y ü力l ì材c ái 料liào 窘jiǒng 迫p î 亏kuÿ损sǔn 翱áo 翔xiáng 永远 一y í辈b âi 子z i 佛f ï典di ǎn沙shü尘chãn 存c ún 在z ài 请qǐng 求q i ú 累l ãi 赘zhuì 发愣 外w ài 面miàn 酒jiǔ盅zhōng 儿ãr似s ì乎h ū 怎zþn 么m e 赔p ãi 偿cháng 勘kün 察c h á 妨fáng 碍ài 辨biàn 别b i ã 调整少shào 女n ǚ 做活儿 完w án 全quán 霓n í虹hïng 灯dýng 疯fýng 狂kuáng 从而 入r ù学x u ã夸kuü奖jiǎng 回h u í去q ù 篡cuàn 夺d u ï 秧yüng 歌g ý 夏x i à季j ì 钢güng 铁tiþ 通tōng 讯x ùn敏mǐn 感gǎn 不b ù速s ù之zhÿ客k â编号:I-20071201三、朗读短文(400个音节,共30分,限时4分钟)在浩h ào 瀚h àn 无w ú垠y ín 的d e 沙sh ü漠m î里l ǐ,有y ǒu 一y ÿ片pi àn 美m þi 丽l ì的d e 绿l ǜ洲zh ōu ,绿l ǜ洲zh ōu 里l ǐ藏c áng 着z h e 一y ÿ颗k ý闪sh ǎn 光gu üng 的d e 珍zh ýn 珠zh ū。

最新普通话测试(全音标)16-考生用卷(A型)

最新普通话测试(全音标)16-考生用卷(A型)

国家普通话水平测试试卷编号:I-20071216一、 读单音节字词(100个音节,共10分,限时3.5分钟)踹chu ài 碗w ǎn 根g ēn 户h ù 期q ī 犯f àn 缰ji āng 垒l ěi 绢ju àn 灰hu ī盆p én 碧b ì 猪zh ū 垮ku ǎ 练li àn 蕊ru ǐ 肾sh èn 膺y īng 娶q ǔ 另l ìng雄xi óng 判p àn 眉m éi 自z ì 码m ǎ 赛s ài 皇hu áng 卧w ò 嘘x ū 耐n ài瞥pi ē 既j ì 耍shu ǎ 用y òng 群q ún 尚sh àng 柔r óu 耕g ēng 蚕c án 眨zh ǎ帛b ó 枪qi āng 鳞l ín 松s ōng 膜m ó 袄ǎo 瘸qu é 稿g ǎo 凝n íng 蔗zh è此c ǐ 滩t ān 虫ch óng 土t ǔ 瓢pi áo 瑟s è 托tu ō 耳ěr 堆du ī 挡d ǎng柴ch ái 有y ǒu 悦yu è 家ji ā 控k òng 贼z éi 川chu ān 恒h éng 尊z ūn 拔b á负f ù 槽c áo 刁di āo 软ru ǎn 赵zh ào 翁w ēng 驯x ùn 亏ku ī 某m ǒu 桩zhu āng捷ji é 胎t āi 撤ch è 拈ni ān 癖p ǐ 原yu án 朵du ǒ 放f àng 滚g ǔn 歪w āi绺li ǔ 恩ēn 射sh è 皿m ǐn 池ch í 香xi āng 指zh ǐ 绳sh éng 捆k ǔn 夏xi à二、 读多音节词语(100个音节,共20分,限时2.5分钟)仍然r éngr án 爪子zhu ǎzi 电压di àny ā 存在c únz ài 均匀j ūny ún 后面h òumian 编写bi ānxi ě健全ji ànqu án 花瓶儿hu āp íng ér 恰巧qi àqi ǎo 风格f ēngg é 半导体b ànd ǎot ǐ 报废b àof èi 红娘h óngni áng快乐ku àil è 西欧x īōu 意思y ìsi 发狂f āku áng 掌管zh ǎnggu ǎn 小说儿xi ǎoshu ōér 血液xu èy è从而c óng ér 卤水l ǔshu ǐ 佛教f óji ào 未遂w èisu ì 牛犊ni úd ú 似的sh ìde 旋转xu ánzhu ǎn谬误mi ùw ù 国王gu ów áng 悲哀b ēi āi 吵嘴ch ǎozu ǐ 诚恳ch éngk ěn 火苗儿hu ǒmi áo ér 侵略q īnl üè授予sh òuy ǔ 难怪n ángu ài 力量l ìliang 责任感z ér èng ǎn 今日j īnr ì 少女sh àon ǚ 苍穹c āngqi óng名m íng 牌儿p áier 窘迫ji ǒngp ò 疼痛t éngt òng 换算hu ànsu àn 温带w ēnd ài 部分b ùfen 侦察zh ēnch á编号:I-20071216 三、朗读短文(400个音节,共30分,限时4分钟)那n à是sh ì力争上游l ìzh ēngsh àngy ïu 的de 一y ī种树zh ǒngsh ù,笔直b ǐzh í的de 干g àn ,笔直b ǐzh í的de 枝zh ī。

山东青岛胶州市2025届高考压轴卷数学试卷含解析

山东青岛胶州市2025届高考压轴卷数学试卷含解析

山东青岛胶州市2025届高考压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数2()sincos 444f x x x x πππ=,则(1)(2)...(2020)f f f +++的值等于( ) A .2018 B .1009 C .1010D .2020 2.已知01a b <<<,则( )A .()()111b b a a ->- B .()()211b b a a ->- C .()()11a b a b +>+ D .()()11a ba b ->- 3.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40 B .-20 C .20 D .40 4.已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ).A .[0,)+∞B .(1,)+∞C .(0,)+∞D .[,1)-∞5.将函数()2sin(3)(0)f x x ϕϕπ=+<<图象向右平移8π个单位长度后,得到函数的图象关于直线3x π=对称,则函数()f x 在,88ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A .[1,2]-B .[2]C .,12⎡⎤⎢⎥⎣⎦D .[2]6.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .3407.在三角形ABC 中,1a =,sin sin sin sin b c a b A A B C++=+-,求sin b A =( ) A 3B .23 C .12 D .628.已知函数()()1x e a ax f x e ⎛⎫=-+ ⎪⎝⎭,若()()0f x x R ≥∈恒成立,则满足条件的a 的个数为( ) A .0 B .1 C .2 D .39.设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =,且1OQ AB ⋅=,则点P 的轨迹方程是( )A .()223310,02x y x y +=>> B .()223310,02x y x y -=>> C .()223310,02x y x y -=>> D .()223310,02x y x y +=>> 10.下列不等式成立的是( )A .11sin cos 22>B .11231122⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ C .112311log log 32< D .11331123⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭11.已知定义在R 上的偶函数()f x 满足()()11f x f x +=-,当[]0,1x ∈时,()1f x x =-+,函数()1x g x e--=(13x -≤≤),则函数()f x 与函数()g x 的图象的所有交点的横坐标之和为( )A .2B .4C .5D .612.若不等式210x ax ++≥对于一切10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则a 的最小值是 ( ) A .0 B .2- C .52- D .3-二、填空题:本题共4小题,每小题5分,共20分。

考试试卷统一设置标准规格要求

考试试卷统一设置标准规格要求

考试试卷统一标准规格要求常用纸张按尺寸可分为A和B两类:A类就是我们通常说的大度纸,整张纸的尺寸是889*1194mm,可裁切A1(大对开,570*840mm)、A2(大四开,420*570mm)、A3(大八开,285*420mm)、A4(大十六开,210*285mm)、A5(大三十二开,142.5*210mm)……;B类就是我们通常说的正度纸,整张纸的尺寸是787*1092mm,可裁切B1(正对开,520*740mm)、B2(正四开,370*520mm)、B3(正八开,260*370mm)、B4(正十六开,185*260mm)、B5(正三十二开,130*185mm)……。

纸张按种类可分为新闻纸、凸版印刷纸、胶版纸、有光铜版纸、哑粉纸、字典纸、地图纸、凹版印刷纸、周报纸、画报纸、白板纸、书面纸、特种纸等。

普通纸张按克重可分为60gsm、80gsm、100gsm、105gsm、120gsm、157gsm、200gsm、250gsm、300gsm、350gsm、400gsm。

各种纸型:A1尺寸、A2尺寸、A3尺寸、A4尺寸、A5尺寸、B1尺寸、B2尺寸、B3尺寸、B4尺寸、B5尺寸:A1:594mm×840mmA2:420×594mmA3:297×420mmA4:210×297mmA5:148×210mmA6:105*148mmB1:706×1000mmB2:500×706mmB3:353×500mmB4:250×353mmB5:176×250mm依照长度和宽度不同分类,A4规格:21*29.7厘米 B4的规格:25*35.4,B5的规格:18.2*25.7纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸。

过去是以多少"开"(例如8开或16开等)来表示纸张的大小,现在我采用国际标准,规定以A0、A1、A2、B1、B2......等标记来表示纸张的幅面规格。

2022年重庆中考数学试题(A卷)(解析版)

2022年重庆中考数学试题(A卷)(解析版)

重庆市2022年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1试题的答案书写在答题卡上,不得在试题卷上直接作答;2作答前认真阅读答题卡上的注意事项;3作图(包括作辅助线)请一律用黑色2B 铅笔完成;4考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:拋物线y =ax 2+bx +c (a ≠0)的顶点坐标为-b 2a ,4ac -b 24a,对称轴为x =-b2a .一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是(A )A.-5B.5C.-15D.152.下列图形是轴对称图形的是(D )A.B.C.D.3.如图,直线AB ,CD 被直线CE 所截,AB ⎳CD ,∠C =50°,则∠1的度数为(C )A.40°B.50°C.130°D.150°1ABCD E 4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m )随飞行时间t (s )的变化情况,则这只蝴蝶飞行的最高高度约为(D )A.5mB.7mC.10mD.13m1235571013Ot/sh/m5.如图,△ABC 与△DEF 位似,点O 为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF 的周长是(B )A.4B.6C.9D.16AB CDEFO6.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图穼中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为(C )⋯①②③④A.32B.34C.37D.417.估计3×(23+5)的值应在(B )A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是(A )A.200(1+x )2=242B.200(1-x )2=242C.200(1+2x )=242D.200(1-2x )=2429.如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =CE ,则∠CDF 的度数为(C )A.45°B.60°C.67.5°D.77.5°A BCDEF10.如图,AB 是⊙O 的切线,B 为切点,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BD .若∠A =∠D ,且AC =3,则AB 的长度是(C )A.3B.4C.33D.42ABCDO11.若关于x 的一元一次不等式组x -1≥4x -13,5x -1<a的解集为x ≤-2,且关于y 的分式方程y -1y +1=a y +1-2的解是负整数,则所有满足条件的整数a 的值之和是(D )A.-26B.-24C.-15D.-1312.在多项式x -y -z -m -n 中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是(D )A.0B.1C.2D.3【解析】我们将括号(称为左括号,)称为右括号,左括号加在最左侧则不改变结果①正确;②不管如何加括号,x 的系数始终为1,y 的系数为-1,故②正确;③我们发现加括号或者不加括号只会影响z 、m 、n 的符号,故最多有23=8种结果x -(y -z )-m -n ,x -y -(z -m )-n ,x -y -z -(m -n ),x -(y -z -m )-n ,x -y -(z -m -n ),x -(y -z )-(m -n ),x -(y -z -m -n ),(x -y )-z -m -n二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:|-4|+(3-π)0=5.14.有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是13∙15.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB=2,∠BAD =60°,则图中阴影部分的面积为23-23π.(结果不取近似值)ABCDE F16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为35.【解析】设三座山各需香樟数量分别为4、3、9.甲、乙两山需红枫数量2a 、3a .∴4+2a3+3a=56,∴a =3,故丙山需要香樟9,红枫5,设香樟和红枫价格分别为m 、n .∴16m +20n =161-6.25% ×0.8m +20n ×1.25,∴m :n =5:4,∴实际购买香樟的总费用与实际购买红枫的总费用之比为16×1-6.25% ×0.8×520×1.25×4=0.6三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1)(x +2)2+x (x -4);(2)ab-1 ÷a 2-b 22b .【解析】1 原式=x 2+4x +4+x 2-4x =2x 2+42 原式=a -b b ×2b a +b a -b=2a +b18.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明△BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在△BAE 和△EFB 中,∵EF ⊥BC ,∴∠EFB =90°.又∠A =90°,∴∠A =∠EFB ①∵AD ⎳BC ,∴∠AEB =∠FBE②又BE =EB③∴△BAE ≌△EFB (AAS ).同理可得△EDC ≌△CFE AAS ④∴S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格80≤x <85,良好85≤x <95,优秀x ≥95),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B90b903030%抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图优秀合格良好m%根据以上信息,解答下列问题:(1)填空:a =95,b =90,m =20;(2)这个月公可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【解析】2 3000×30%=900台3 A 型号更好,在平均数均为90的情况下,A 型号的平均除尘量众数95>B 型号的平均除尘量众数90ABCDE20.已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x的图象相交于点A (1,m ).B (n ,-2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集:(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.654321654321654321654321Oxy20题图【解析】(1)解:A (1,4),B (-2,-2),AB 解析式为y =2x +2(2)-2<x <0或x >1(3)S △ABC =12×4×6=1221.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从 A 地沿相同路线骑行去距 A 地30 千米的 B 地,已知甲前行的速度是乙的1.2 倍.(1)若乙先骑行2 千米,甲才开始从 A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行 20 分钟,甲才开始从 A 地出发,则甲、乙恰好同时到达 B 地,求甲骑行的速度.【解析】解 (1)设乙的速度为 x km /h ,则甲的速度为 1.2x km /h ,由题意可列式 0.5 × 1.2x = 0.5x + 2, 解得 x = 20答:甲骑行的速度为 24km/h(2)20分钟=13小时由题意可列式30x-13=301.2x 解得x =15,检验成立答:甲骑行的速度为18km /h22.如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)【解析】1 过E作BC的垂线,垂足为H,∴EH=AC=200,DE=2002≈283米;2 AB=400,∴经过点B到达点D,总路程为500,∵BC=2003,AE=BC+BD-DH=2003+100-200=2003-100经过点E到达点D,总路程为2002+2003-100≈529>500故经过点B到达点D较近。

深圳外国语学校(集团)龙华高中部2024-2025学年高三上学期第一次月考数学试卷(含答案)

深圳外国语学校(集团)龙华高中部2024-2025学年高三上学期第一次月考数学试卷(含答案)

深圳外国语学校(集团)龙华高中部2025届高三年级第一次月考 数学试卷本试卷共4页,19小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}30xAx ex =−<,{}1,0,1,2B =−,则集合A B = ( )A .{}1,2−B .{}1,1,2−C .{}1,2D .{}12.已知2i 1iz−=−+,则z =( ) A .1i +B .1i −C .3i −D .3i + 3.已知向量(,1)a x = ,(2,1)b =− ,若()(2)a b a b +⊥−,则实数x =( )A .2B .12−C .2−或4D .44.已知3sin 24θ=−,则1tan tan θθ+=( )A .43B .12−C .83D .83−5.已知圆锥的底面半径为2,高为4,有一个半径为1的圆柱内接于此圆锥,则该圆柱的侧面积是( )A .πB .2πC .3πD .4π6.已知函数()122,0,,0,x x f x x x ≤= > 则下列说法正确的是( )A .()f x 是R 上的增函数B .()f x 的值域为[)0,∞+C .“14x >”是“()12f x >”的充要条件D .若关于x 的方程()f x a =恰有一个实根,则1a >7.已知函数π()sin(2)2f x x ϕϕ=+< 满足ππ43f f = ,若()f x 在区间π,2t上恰有3个零点,则实数t 的取值范围为( )A .25π37π,2424B .25π49π,2424C .37π49π,2424D .37π49π,24248.已知函数()y f x =具有以下的性质:对于任意实数a 和b ,都有()()()()2f a b f a b f a f b ++−=⋅,则以下选项中,不可能是()1f 值的是( ) A .2− B .1− C .0 D .1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若随机变量()2~0,X N σ,()()f x P X x =≤,则( )A .()()1f x f x −=− B .()()22f x f x =C .()()()210P X x f x x <=−> D .若()121x f f x +> −,则113x << 10.已知三次函数()325(0)f x x bx b =++<有极小值点2x =,则下列说法中正确的有( )A .3b =−B .函数()f x 有三个零点C .函数()f x 的对称中心为(1,3D .过()1,1−可以作两条直线与()y f x =的图象相切11.数学中有许多形状优美,寓意美好的曲线,曲线22|:1|C x y x y +=+就是其中之一(如图).给出下列四个结论,其中正确结论是( )A .图形关于y 轴对称B .曲线C 恰好经过6个整点(即横、纵坐标均为整数的点)C .曲线C 的点D .曲线C 所围成的“心形”区域的面积大于3 三、填空题:本题共3小题,每小题5分,共15分.12.已知12,F F 为椭圆2222:1(0)C b b x a a y +>>=的两个焦点,P 为椭圆C 上一点,且12PF F △的周长为6,面C 的离心率为 .13.已知函数32(),()f x x x g x x a =−=+,曲线()y f x =在点(1,(1))f −−处的切线也是曲线()y g x =的切线.则a 的值是14.有一道楼梯共10阶,小王同学要登上这道楼梯,登楼梯时每步随机选择一步一阶或一步两阶,小王同学7步登完楼梯的概率为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)如图,一智能扫地机器人在A 处发现位于它正西方向的B 处和北偏东30°方向上的C 处分别有需要清扫的垃圾,红外线感应测量发现机器人到B 的距离比到C 的距离少0.4m ,于是选择沿A →B →C 路线清扫.已知智能扫地机器人的直线行走速度为0.2m /s ,忽略机器人吸入垃圾及在B 处旋转所用时间,10s 完成了清扫任务.(1)求B 、C 两处垃圾之间的距离;(2)求智能扫地机器人此次清扫行走路线的夹角B 的余弦值.16.(15分)已知双曲线2222:1(0,0)x y C a b a b −=>>的焦点与椭圆2215x y +=的焦点重合,其渐近线方程为y x =. (1)求双曲线C 的方程;(2)若,A B 为双曲线C 上的两点且不关于原点对称,直线1:3l y x =过AB 的中点,求直线AB 的斜率.17.(15分)如图,在四棱锥B ACDE -中,正方形ACDE 所在平面与正ABC 所在平面垂直,M N ,分别为BC AE ,的中点,F 在棱CD 上.(1)证明://MN 平面BDE .(2)已知2AB =,点M 到AF 求三棱锥C AFM -的体积.18.(17分)蓝莓种植技术获得突破性进展,喷洒A 型营养药有--定的改良蓝莓植株基因的作用,能使蓝莓果的产量和营养价值获得较大提升.某基地每次喷洒A 型营养药后,可以使植株中的80%获得基因改良,经过三次喷洒后没有改良基因的植株将会被淘汰,重新种植新的植株. (1)经过三次喷洒后,从该基地的所有植株中随机检测一株,求-株植株能获得基因改良的概率;(2)从该基地多个种植区域随机选取一个,记为甲区域,在甲区域第一次喷洒A 型营养药后,对全部N 株植株检测发现有162株获得了基因改良,请求出甲区域种植总数N 的最大可能值;(3)该基地喷洒三次A 型营养药后,对植株进行分组检测,以淘汰改良失败的植株,每组n 株(50)n ≤,一株检测费为10元,n 株混合后的检测费用为8n +元,若混合后检测出有未改良成功的,还需逐一检测,求n 的估计值,使每株检测的平均费用最小,并求出最小值.(结果精确到0.1元)附:当0.01a <,50n ≤时,()11nna a ≈++,*n N ∈.19.(17分)“函数()x ϕ的图象关于点(),m n 对称”的充要条件是“对于函数()x ϕ定义域内的任意x ,都有()(2)2x m x n ϕϕ+−=,若函数()f x 的图象关于点()12,对称,且当[]01x ∈,时,2()1f x x ax a =−++ (1)求(0)(2)f f +的值; (2)设函数4()2xg x x=− ①证明函数()g x 的图象关于点(2,4)−称;②若对任意[]10,2x ∈,总存在22,13x∈−,使得()()12f x g x =成立,求实数a 的取值范围.数学参考答案:1.D【详解】解:将B 中元素分别代入30x e x −<,只有1符合,则{}1A B ∩=. 故选:D. 2.B 【详解】2i 21i 1i 1izz z −=−⇒−=−⇒=++, 所以1i z =−. 故选:B . 3.C【详解】由题设(2,0)a b x +=+ ,2(4,3)a b x −=−, 所以()(2)(2)(4)0a b a b x x +⋅−=+−=,可得x =2−或4.故选:C 4.D【详解】3sin 22sin cos 4θθθ==− ,3sin cos 8θθ∴=−,221sin cos sin cos 18tan 3tan cos sin sin cos 38θθθθθθθθθθ+∴+=+===−−. 故选:D. 5.D【详解】如图,设圆柱的高为h ,由题意可得142h =,所以2h =,从而圆柱的侧面积2124S ππ=××=侧,故选:D.6.D【详解】对于A ,当0x =时,102210=>,所以()f x 不是R 上的增函数,所以A 错误, 对于B ,当0x ≤时,021x <≤,当0x >时,120x >, 所以()f x 的值域为(0,)+∞,所以B 错误, 对于C ,当0x ≤时,由()12f x >,得122x >,解得10−<≤x ,当0x >时,由()12f x >,得1212x >,解得14x >,综上,由()12f x >,得10−<≤x ,或14x >,所以“14x >”是“()12f x >”的充分不必要条件,所以C 错误,对于D ,()f x 的图象如图所示,由图可知当1a >时,直线y a =与()y f x =图象只有一个交点, 即关于x 的方程()f x a =恰有一个实根,所以D 正确, 故选:D 7.C【详解】由题意可知,()f x 的最小正周期2ππ2T ==, 因为πππ34124T−=<,可知ππ7π34224x +=为()f x 的一条对称轴, 所以()f x 在7π24x =之后的零点依次为7π13π24424T +=,7π325π24424T +=,7π537π24424T +=,7π749π24424T +=,…, 若()f x 在区间π,2t上恰有3个零点,所以37π49π2424t ≤<. 故选:C. 8.A【详解】因为函数()y f x =对于任意实数a 和b ,都有()()()()2f a b f a b f a f b ++−=⋅,所以令0a b ==,有()()()()00200f f f f +=⋅,即()()20[01]0f f −=,所以()00f =或()01f =;令2x a b ==,x 为任意实数,有()()0222x x f x f f f +=⋅ ,即()()2022x x f x f f f⋅−; 因为022x x f f⋅≥,所以()()0f x f ≥−,当()00f =时,()0f x ≥;当()01f =时,()1f x ≥−; 所以()f x 的值不可能是2−, 故选:A. 9.ACD【详解】对于A ,随机变量()2~0,X N σ满足正态分布,且0µ=,故()()()()1f x P X x P X x f x −=≤−=≥=−,故A 正确; 对于B ,当0x =时,()()()(),20212201,f x P X f x P X =≤=≤== 此时()()22f x f x ≠,故B 错误;对于C ,()()()20P X x P x X x P X x <=−<<=<<()()12212f x f x=−=−,故C 正确;对于D ,()()f x P X x =≤,故()f x 单调递增,故()121x f f x +> −,即121x x +>−, 解得113x <<,故D 正确. 故选:ACD 10.ACD【详解】()232f x x bx ′=+, 因为函数()325(0)f x x bx b =++<有极小值点2x =,所以()21240f b ′=+=,解得3b =−,所以()3235f x x x =−+,()236f x x x ′=−, 当2x >或0x <时,()0f x '>,当02x <<时,()0f x ′<, 所以函数()f x 在()(),0,2,−∞+∞上单调递增,在()0,2上单调递减,所以()()()()05,21f x f f x f ====极大值极小值, 又()215f −=− 所以函数()f x 仅有1个在区间()2,0−上的零点,故A 正确,故B 错误;对于C ,由()()3223535f x x x x x =−+=−+,得()()()()()()2211113511356f x f x x x x x ++−=++−++−−−+=, 所以函数()f x 的图象关于()1,3对称,故C 正确;对于D ,设切点为()32000,35x x x −+,则()200036f x x x =−′, 故切线方程为()()()320020003365y x x x x x x −−+−−=,又过点()1,1−,所以()()()3200200315163x x xx x −−−+=−−,整理得300320x x −−=,即()()200120x x +−=, 解得01x =−或02x =,所以过()1,1−可以作两条直线与()y f x =的图象相切,故D 正确. 故选:ACD.11.ABD【详解】对于A ,将x 换成x −方程不变,所以图形关于y 轴对称,故A 正确; 对于B ,当0x =时,代入可得21y =,解得1y =±,即曲线经过点(0,1),(0,1)−,当0x >时,方程变换为2210y xy x −+−=,由224(1)0x x ∆=−−≥,解得x ∈ ,所以x 只能取整数1,当1x =时,20y y −=,解得0y =或1y =,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(1,0),(1,1)−−,故曲线一共经过6个整点,故B 正确;对于C ,当0x >时,由221x y xy +=+可得222212x y x y xy ++−=≤,(当x y =时取等号),222x y ∴+≤,C 上y称性可得:曲线C ,故C 错误;对于D ,如图所示,在x 轴上图形的面积大于矩形ABCD 的面积:1122S =×=,x 轴下方的面积大于等腰三角形ABE 的面积:212112S =××=,所以曲线C 所围成的“心形”区域的面积大于213+=,故D 正确; 故选:ABD12.12/0.5【详解】依题意,12PF F △的周长为226a c +=,所以123,a c PF F +=面积的最大值为122c b bc ××又222a b c =+,整理得2223(3)c c c−=+,即2(1)(21)0c c −+=,解得1,2,===c a b C 的离心率为12,故答案为:12 13.3【详解】由题意知,(1)1(1)0f −=−−−=,2()31x f x ′=−,(1)312f ′−=−=, 则()y f x =在点()1,0−处的切线方程为2(1)y x =+, 即22y x =+,设该切线与()g x 切于点()00,()x g x , 其中()2g x x ′=,则00()22g x x ′==,解得01x =, 将01x =代入切线方程,得2124y =×+=, 则(1)14g a =+=,解得3a =; 故答案为:3 14.3589【详解】解:由题意可分为5步、6步、7步、8步、9步、10步共6种情况,①5步:即5步两阶,有551C =种;②6步:即4步两阶与2步一阶,有2615C =种;③7步:即3步两阶与4步一阶,有3735C =种;④8步:即2步两阶与6步一阶,有2828C =种;⑤9步:即1步两阶与8步一阶,有199C =种;⑥10步:即10步一阶,有10101C =种;综上可得一共有89种情况,满足7步登完楼梯的有35种; 故7步登完楼梯的概率为3589故答案为:358915.(1)()1.4m (2)1114【详解】(1)由题意得0.2102AB BC +=×=,设BC x =,02x <<,则2AB x =−,20.4 2.4AC x x =−+=−,由题意得9030120A=°+°=°. 在ABC 中,由余弦定理得222cos 2AB AC BC A AB AC+−=× ()()222(2)(2.4)122 2.42x x x x x −+−−==−×−×−, 解得 1.4x =或5.2(舍去), ∴()1.4m BC =(2)由(1)知62 1.0.4AB =−=, 2.4 1.41AC =−=, 1.4BC =. ∴2222220.6 1.4111cos 220.6 1.414AB BC AC B AB BC +−+−===⋅××. 16.(1)2213x y −= (2)1 【详解】(1)椭圆2215x y +=的焦点为()2,0±,故224a b +=,由双曲线的渐近线为y =,故b a =1,b a ==故双曲线方程为:2213x y −=. (2)设()()1122,,,A x y B x y ,AB 的中点为M ,因为M 在直线1:3l y x =,故13M M y x =, 而121231y x −=,222231y x −=()()12120y y y y −+=, 故()()121203M M x x x y y y −−−=, 由题设可知AB 的中点不为原点,故0M M x y ≠,所以121213M M y y xx x y −==−, 故直线AB 的斜率为1.此时12:33M M M AB y x x x x x =−+=−, 由222333M x y x x y =− −=可得222333M x x x −−= ,整理得到:22424303M M x x x x −++=, 当222416Δ168324033M M M x x x =−+=−>即M x <M x >即当M x <M x >AB 存在且斜率为1. 17.(1)证明见解析;(2)【详解】(1)取CD 中点G ,连接NG ,MG,G M 为,CD BC 中点 //GM BD ∴又BD ⊂平面BDE ,GM ⊄平面BDE //GM ∴平面BDE四边形ACDE 为正方形,,N G 为,AE CD 中点 //NG DE ∴又NG ⊂平面BDE ,NG ⊄平面BDE //NG ∴平面BDEGM NG G = ,,GM NG ⊂平面MNG ∴平面//MNG 平面BDE又MN ⊂平面MNG //MN ∴平面BDE(2)ABC ∆ 为正三角形,M 为BC 中点 AM BC ∴⊥平面ACDE ⊥平面ABC ,CD AC ⊥,平面ACDE 平面ABC AC =,CD ⊂平面ACDE CD 平面ABC ,又AM ⊂平面ABC AM CD ∴⊥又BC CD C ∩=,,BC CD ⊂平面BCD AM ∴⊥平面BCD FM ⊂ 平面BCD AM MF ∴⊥设CF a =,则AF =MF =,AM =AF AM MF ∴=⋅=1a =11111332C AFM A FCM FCM V V S AM −−∆∴==⋅=×××=18.(1)0.992(2)202株(3)10n =,2.6元 【详解】(1)记事件A =“该基地的植株经过三次喷洒后,随机检测一株植株能获得基因改良”,所以2()0.80.20.80.20.80.992P A =+×+×=,(2)因为植株经过一次喷洒后基因改良的概率为0.8,经过一次喷洒后基因改良的株数k 服从二项分布,()C 0.80.2k k N k N P N k −⋅==,0,1,2,,k N = 当162k <时,()1620Pk == 当162k ≥时,设162162162(162)C 0.80.2N N P k −==⋅ 若162N =时,则()()162161P k P k =<=若162N >时,则16216216216216216111621621621621621631C 0.80.2C 0.80.2C 0.80.2C 0.80.2N N N N N N NN −−+−−− ≥ ≥ ,所以0.8161.20.8162N N ≥ ≤ , 解得201.5202.5N ≤≤,又*N N ∈,所以202N = 所以甲区域种植总数N 的最大可能值为202株. (3)设每组n 株(50)n ≤的总费用为X 元,则X 的取值为8n +,118n + 所以 X8n + 118n +P 0.992n 10.992n −所以()(8)0.992(118)(10.992)n n E X n n =+++− (8)0.992(118)(10.992)n nn n n+++−= 所以()811100.992n E X n n=−×+ 因为()0.99210.00810.008n n n =−≈− 所以()810.081 2.6E X n n n =++≥+=(当且仅当10n =时等号成立) 所以当以10个每组时,检测成本最低,每株2.6元.19.(1)4【详解】(1)由题意可得,()(2)224f x f x +−=×=,令0x =,可得(0)(2)4f f +=. (2)①由4()2x g x x=−,(,2)(2,)x ∈−∞+∞ , 44(4)()(4)22(4)x x g x g x x x −+−=+−−−416422x x x x−−−−8162x x −=−8=−2(4)=×−, 所以函数()g x 的图象关于点(2,4)−对称.②4()2x g x x =−842x =−+−,函数在2,13 − 上单调递增,所以[]()1,4g x ∈−, 不妨设()f x 在[]0,2上的值域为A ,则[]1,4A ⊆−,因为[]01x ∈,时,2()1f x x ax a =−++, 所以(1)2f =,即函数()f x 的图象过对称中心()12,, (i )当02a ≤时,即0a ≤,函数()f x 在[]0,1上单调递增, 由对称性可知,()f x 在[]1,2上单调递增,所以()f x 在[]0,2上单调递增,由(0)1f a =+,(0)(2)4f f +=,所以(2)3f a =−,所以[]1,3A a a =+−, 由[]1,4A ⊆−,可得114313a a a a +≥− ≥− +≤−,解得10a −≤≤; (ii )当012a <<时,即02a <<,函数()f x 在0,2a上单调递减,()f x 在,12a 上单调递增,由对称性可知,()f x 在1,22a − 上单调递增,()f x 在2,22a −上单调递减, 所以()f x 在0,2a 上单调递减,在,222a a − 上单调递增,在2,22a − 上单调递减, 结合对称性可得,[](2),(0)A f f = 或(),(2)22a a A f f =− , 因为02a <<,所以(0)1(1,3)f a =+∈,(2)3(1,3)f a =−∈, 易知2()1(1,2)24a a f a =−++∈,又()(2)422a a f f +−=,所以(2)(2,3)2a f −∈, 所以当02a <<时,[]1,4A ⊆−成立; (iii )当12a ≥时,即2a ≥时,函数()f x 在[]0,1上单调递减, 由对称性可知,()f x 在[]1,2上单调递减,所以函数()f x 在[]0,2上单调递减,又(0)1f a =+,(2)3f a =−,则[]3,1A a a =−+,由[]1,4A ⊆−得, 311431a a a a −≥− +≤ −≤+,解得23a ≤≤. 综上可知,实数a 的取值范围为[]1,3−.。

JC04人格心理学单元作业题(新版教材2022年5月考生适用)22

JC04人格心理学单元作业题(新版教材2022年5月考生适用)22

一、单选题1 、没有两个人能对同一事物做出相同的反应,反映的是人格的()独特性2 、人格决定一个人的生活方式,甚至有时会决定一个人的命运,反映的是人格的()功能性3 、人格理论研究的流派众多,每个流派都在帮助我们理解()的问题上提供了有价值的帮助。

我是谁4 、个体将不被社会所接受的冲动转化为社会赞许的行为,其所运营的防御机制是()升华5 、霍尼所说的()是指个体在此时此地所表现出来的一切存在的总和,是别人所能观察到的客观存在,独立于个体的自我概念和知觉。

现实自我6 、根据霍尼的理论,在()的控制下,个体会产生很多不切实际的期望。

理想自我7 、在荣格的意识三层次理论中,处于最深层的是()集体潜意识8 、阿德勒认为,很少受到父母关注的儿童在长大后容易变得()冷漠多疑9 、根据荣格的理论,()是人格的核心,是有条理的,统合的人格原型。

自性10 、自卑与心理补偿是()的观点阿德勒11 、根据艾力克森的观点,儿童早期的发展任务是获得主动感,克服()。

内疚感12 、根据卡特尔的理论,在根源特质中,()是由遗传决定的特性,决定个体对情境做出反应的速度、能量、脾气等。

气质特质13 、奥尔波特把人格特质分为两类,即()。

共同特质和个人特质14 、人格五因素模型中,开放性得分高者的特征是()。

独立思考15 、人格特质理论的创始人是()。

G.W.奥尔波特16 、抑制型儿童在新环境中表现出退缩的反应模式,心理学家称之为()。

新异焦虑17 、在人格适应方面,罗杰斯认为一个心理健康的人应该具有()。

自我一致性18 、个体在感知信息后会形成心理表征,表征通常是以()的方式存在。

图式19 、个人建构论认为,人格差异主要来自于()。

个体解释世界的不同方式20 、认知心理学家对“原型”进行研究,发现人们利用原型,可以()。

快速的完成判断21 、个体暂时的、偶然表现出来的心理与行为不能成为人格的组成部分,说明人格具有()的特征。

稳定性22 、个体人格中不同的元素是依照一定的秩序和规则有机结合起来形成运行系统,不能被拆散为各个部分,这说明人格具有()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

国家普通话水平测试试卷(22)
编号:I-20049577
一、读单音节字词(100个音节,共10分,限时3.5分钟)
渊狭筐野桃窘酸忙捅淡
死撞汞驼偶浓宾昂鸟昌
捆弊党乎盼扔流最秆却
辉彭稳枪莫揩允遮穆睬
谬翁府洼密寡椎日捐垒
骗雪怪砸氢钾钱内粉涉
直宝赛铁兽欺净辰郡聊
次盆灯而充筏科蜡垂边
柔署寒绕凝脸怀丰驴修
蛹破走廷蹿何匠须烁银
二、读多音节词语(100个音节,共20分,限时2.5分钟)
创新苍穹闺女胸骨优良没准儿侵略
花瓶另外国王麻烦巍峨妨害送别
金丝猴热爱苗条上来夸张水獭顶牛儿
宣布橡皮调动佛教脑袋遵循万岁
坎肩儿典雅政策品种山川全身迟到
婴儿操纵体育馆会计节约无非博士
恰如做活儿筹备难免人群自力更生
四、朗读短文(400个音节,共30分,限时4分钟)
作品48号
我们的船渐渐地逼近榕树了。

我有机会看清它的真面目:是一棵大树,有数不清的丫枝,枝上又生根,有许多根一直垂到地上,伸进泥土里。

一部分树枝垂到水面,从远处看,就像一棵大树斜躺在水面上一样。

现在正是枝繁叶茂的时节。

这棵榕树好像在把它的全部生命力展示给我们看。

那么多的绿叶,一簇堆在另一簇的上面,不留一点儿缝隙。

翠绿的颜色明亮地在我们的眼前闪耀,似乎每一片树叶上都有一个新的生命在颤动,这美丽的南国的树!
船在树下泊了片刻,岸上很湿,我们没有上去。

朋友说这里是“鸟的天堂”,有许多鸟在这棵树上做窝,农民不许人去捉它们。

我仿佛听见几只鸟扑翅的声音,但是等到我的眼睛注意地看那里时,我却看不见一只鸟的影子。

只有无数的树根立在地上,像许多根木桩。

地是湿的,大概涨潮时河水常常冲上岸去。

“鸟的天堂”里没有一只鸟,我这样想到。

船开了,一个朋友拨着船,缓缓地流到河中间去。

第二天,我们划着船到一个朋友的家乡去,就是那个有山有塔的地方。

从学校出发,我们又经过那“鸟的天堂”。

这一次是在早晨,阳光照在水面上,也照在树梢上。

一切都∥显得非常光明。

……
五、命题说话(请在下列话题中任选一个,共30分,限时3分钟)
1.我的学习生活
2.谈谈美食
1。

相关文档
最新文档