九年级数学培优材料10.docx
九年级数学上册 一元二次方程(培优篇)(Word版 含解析)

九年级数学上册一元二次方程(培优篇)(Word版含解析)一、初三数学一元二次方程易错题压轴题(难)1.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x =90时,“=”成立,所以,当x =90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L .【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.2.已知关于x 的一元二次方程kx 2﹣2(k +1)x +k ﹣1=0有两个不相等的实数根x 1,x 2. (1)求k 的取值范围;(2)是否存在实数k ,使1211x x -=1成立?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)k >﹣13且k ≠0;(2)存在,7213,k =±详见解析 【解析】【分析】(1)根据一元二次方程的根的判别式,建立关于k 的不等式,求得k 的取值范围. (2)利用根与系数的关系,根据21121211,x x x x x x --=即可求出k 的值,看是否满足(1)中k 的取值范围,从而确定k 的值是否存在.【详解】解:(1)由题意知,k ≠0且△=b 2﹣4ac >0∴b 2﹣4ac =[﹣2(k +1)]2﹣4k (k ﹣1)>0,即4k 2+8k +4﹣4k 2+4k >0,∴12k >﹣4解得:k >13-且k ≠0(2)存在,且7213.k =±理由如下: ∵12122(1)1,,k k x x x x k k+-+== 又有211212111,x x x x x x --== 2112,x x x x ∴-=22222121122,x x x x x x ∴-+=22121212()4(),x x x x x x ∴+-=2222441()(),k k k k k k+--∴-= 22(22)(44)(1),k k k k ∴+--=-21430,k k ∴--=1,14,3,a b c ==-=-24208,b ac ∴∆=-=144137213.k ±∴==± k >13-且k ≠0, 172130.21,3-≈--> 17213.3+-> ∴满足条件的k 值存在,且7213.k =± .【点睛】本题考查的是一元二次方程根的判别式,一元二次方程根与系数的关系,掌握以上知识是解题的关键.3.如图,在平面直角坐标系中,O 为原点,点A (0,8),点B (m ,0),且m >0.把△AOB 绕点A 逆时针旋转90°,得△ACD ,点O ,B 旋转后的对应点为C ,D ,(1)点C 的坐标为 ;(2)①设△BCD 的面积为S ,用含m 的式子表示S ,并写出m 的取值范围;②当S=6时,求点B 的坐标(直接写出结果即可).【答案】(1)C (8,8);(2)①S=0.5m 2﹣4m (m >8),或S=﹣0.5m 2+4m (0<m <8);②点B 的坐标为(7,0)或(2,0)或(6,0).【解析】【分析】(1)由旋转的性质得出AC =AO =8,∠OAC =90°,得出C (8,8)即可;(2)①由旋转的性质得出DC =OB =m ,∠ACD =∠AOB =90°,∠OAC =90°,得出∠ACE =90°,证出四边形OACE 是矩形,得出DE ⊥x 轴,OE =AC =8,分三种情况:a 、当点B 在线段OE 的延长线上时,得出BE =OB−OE =m−8,由三角形的面积公式得出S =0.5m 2−4m (m >8)即可;b 、当点B 在线段OE 上(点B 不与O ,E 重合)时,BE =OE−OB =8−m ,由三角形的面积公式得出S=−0.5m2+4m(0<m<8)即可;c、当点B与E重合时,即m=8,△BCD不存在;②当S=6,m>8时,得出0.5m2−4m=6,解方程求出m即可;当S=6,0<m<8时,得出−0.5m2+4m=6,解方程求出m即可.【详解】(1)∵点A(0,8),∴AO=8,∵△AOB绕点A逆时针旋转90°得△ACD,∴AC=AO=8,∠OAC=90°,∴C(8,8),故答案为(8,8);(2)①延长DC交x轴于点E,∵点B(m,0),∴OB=m,∵△AOB绕点A逆时针旋转90°得△ACD,∴DC=OB=m,∠ACD=∠AOB=90°,∠OAC=90°,∴∠ACE=90°,∴四边形OACE是矩形,∴DE⊥x轴,OE=AC=8,分三种情况:a、当点B在线段OE的延长线上时,如图1所示:则BE=OB﹣OE=m﹣8,∴S=0.5DC•BE=0.5m(m﹣8),即S=0.5m2﹣4m(m>8);b、当点B在线段OE上(点B不与O,E重合)时,如图2所示:则BE=OE﹣OB=8﹣m,∴S=0.5DC•BE=0.5m(8﹣m),即S=﹣0.5m2+4m(0<m<8);c、当点B与E重合时,即m=8,△BCD不存在;综上所述,S=0.5m2﹣4m(m>8),或S=﹣0.5m2+4m(0<m<8);②当S=6,m>8时,0.5m2﹣4m=6,解得:m=4±27(负值舍去),∴m=4+27;当S=6,0<m<8时,﹣0.5m2+4m=6,解得:m=2或m=6,∴点B的坐标为(4+27,0)或(2,0)或(6,0).【点睛】本题是三角形综合题目,考查了坐标与图形性质、旋转的性质、矩形的判定与性质、三角形面积公式、一元二次方程的解法等知识;本题综合性强,有一定难度.4.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题5.(本题满分10分)如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、B,直线CD与x轴、y轴分别交于点C、D,AB与CD相交于点E,线段OA、OC的长是一元二次方程-18x+72=0的两根(OA>OC),BE=5,tan∠ABO=.(1)求点A,C的坐标;(2)若反比例函数y=的图象经过点E,求k的值;(3)若点P在坐标轴上,在平面内是否存在一点Q,使以点C,E,P,Q为顶点的四边形是矩形?若存在,请写出满足条件的点Q的个数,并直接写出位于x轴下方的点Q的坐标;若不存在,请说明理由.【答案】(1)、A(12,0),C(﹣6,0);(2)、k=36;(3)、6个;Q1(10,﹣12),Q2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E (3,12),C (﹣6,0),∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16,∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10,∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0),∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3), 考点:三角形相似的应用、三角函数、一元二次方程.6.某建材销售公司在2019年第一季度销售,A B 两种品牌的建材共126件,A 种品牌的建材售价为每件6000元,B 种品牌的建材售价为每件9000元.(1)若该销售公司在第一季度售完两种建材后总销售额不低于96.6万元,求至多销售A 种品牌的建材多少件?(2)该销售公司决定在2019年第二季度调整价格,将A 种品牌的建材在上一个季度的基础上下调%a ,B 种品牌的建材在上一个季度的基础上上涨%a ;同时,与(1)问中最低销售额的销售量相比,A 种品牌的建材的销售量增加了1%2a ,B 种品牌的建材的销售量减少了2%5a ,结果2019年第二季度的销售额比(1)问中最低销售额增加2%23a ,求a 的值. 【答案】(1)至多销售A 品牌的建材56件;(2)a 的值是30.【解析】【分析】(1)设销售A 品牌的建材x 件,根据售完两种建材后总销售额不低于96.6万元,列不等式求解;(2)根据题意列出方程求解即可.【详解】(1)设销售A 品牌的建材x 件.根据题意,得()60009000126966000x x +-≥,解这个不等式,得56x ≤,答:至多销售A 品牌的建材56件.(2)在(1)中销售额最低时,B 品牌的建材70件,根据题意,得()()()12260001%561%90001%701%6000569000701%2523a a a a a ⎛⎫⎛⎫⎛⎫-⨯+++⨯-=⨯+⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令%a y =,整理这个方程,得21030y y -=, 解这个方程,得1230,10y y ==, ∴10a =(舍去),230a =,即a 的值是30.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.7.如图直线y =kx +k 交x 轴负半轴于点A ,交y 轴正半轴于点B ,且AB =2(1)求k 的值;(2)点P 从A 出发,以每秒1个单位的速度沿射线AB 运动,过点P 作直线AB 的垂线交x 轴于点Q ,连接OP ,设△PQO 的面积为S ,点P 运动时间为t ,求S 与t 的函数关系式,并直接写出t 的取值范围;(3)在(2)的条件下,当P 在AB 的延长线上,若OQ +AB (BQ ﹣OP ),求此时直线PQ 的解析式.【答案】(1)k=3.(2)当0<t<12时,S=12•OQ•P y=12(1﹣2t)•3t=﹣3 2t2+34t.当t>12时,S=12OQ•P y=12(2t﹣1)•3t=3t2﹣3t.(3)直线PQ的解析式为y=﹣3x+53.【解析】【分析】(1)求出点B的坐标即可解决问题;(2)分两种情形①当0<t<12时,②当t>12时,根据S=12OQ•P y,分别求解即可;(3)根据已知条件构建方程求出t,推出点P,Q的坐标即可解决问题.【详解】解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB=223AB OA-=∴k=3.(2)如图,∵tan ∠BAO=OB OA= ∴∠BAO =60°,∵PQ ⊥AB ,∴∠APQ =90°,∴∠AQP =30°,∴AQ =2AP =2t , 当0<t <12时,S =12•OQ •P y =12(1﹣2t)•2t=﹣2t 2+4t . 当t >12时,S =12OQ •P y =12(2t ﹣1=2. (3)∵OQ +AB(BQ ﹣OP ),∴2t ﹣1+2∴2t +121t t -+∴4t 2+4t +1=7t 2﹣7t +7,∴3t 2﹣11t +6=0,解得t =3或23(舍弃), ∴P(12,2),Q (5,0), 设直线PQ 的解析式为y =kx+b ,则有12250k b k b ⎧+=⎪⎨⎪+=⎩,解得3k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线PQ的解析式为33y x =-+. 【点睛】本题属于一次函数综合题,考查了一次函数的性质,三角形的面积,无理方程等知识,解题的关键是学会利用参数构建方程解决问题.8.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;②ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c=++与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为1x=-,∴{312a b ccba++==-=-,解得:1{23abc=-=-=,∴二次函数的解析式为223y x x=--+=2(1)4x-++,∴顶点坐标为(﹣1,4);(2)令2230y x x=--+=,解得3x=-或1x=,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在223y x x=--+上,∴设点P(x,223x x--+),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即2232y x x=--+=,解得21(舍去)或x=21-,∴点P(21-,2);②设P(x,y),则223y x x=--+,∵ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x⨯⨯⨯+++-=333222x y-+=2333(23)222x x x-+--+=239622x x--+=23375()228x-++,∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.9.如图,正方形ABCD 的四个顶点分别在正方形EFGH 的四条边上,我们称正方形EFGH 是正方形ABCD 的外接正方形.探究一:已知边长为1的正方形ABCD ,是否存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的2倍?如图,假设存在正方形EFGH ,它的面积是正方形ABCD 的2倍. 因为正方形ABCD 的面积为1,则正方形EFGH 的面积为2,所以EF =FG =GH =HE 2EB =x ,则BF 2﹣x ,∵Rt △AEB ≌Rt △BFC∴BF =AE 2﹣x在Rt △AEB 中,由勾股定理,得x 2+2﹣x )2=12解得,x 1=x 2=22∴BE =BF ,即点B 是EF 的中点.同理,点C ,D ,A 分别是FG ,GH ,HE 的中点.所以,存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的2倍探究二:已知边长为1的正方形ABCD ,是否存在一个外接正方形EFGH ,它的面积是正方形ABCD 面积的3倍?(仿照上述方法,完成探究过程)探究三:已知边长为1的正方形ABCD , 一个外接正方形EFGH ,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)探究四:已知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)【答案】不存在,详见解析【解析】【分析】探究二,根据探究一的解答过程、运用一元二次方程计算即可;探究三,根据探究一的解答过程、运用一元二次方程根的判别式解答;探究四,根据探究一的解答过程、运用一元二次方程根的判别式解答.【详解】探究二:因为正方形ABCD的面积为1,则正方形EFGH的面积为3,所以EF=FG=GH=HE,设EB=x,则BF x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+x)2=12,整理得x2x+1=0,b2﹣4ac=3﹣4<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍;探究三:因为正方形ABCD的面积为1,则正方形EFGH的面积为4,所以EF=FG=GH=HE=2,设EB=x,则BF=2﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE=2﹣x,在Rt△AEB中,由勾股定理,得,x2+(2﹣x)2=12,整理得2x2﹣4x+3=0,b2﹣4ac=16﹣24<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍,故答案为不存在;探究四:因为正方形ABCD的面积为1,则正方形EFGH的面积为n,所以EF=FG=GH=HE,设EB=x,则BF﹣x,∵Rt△AEB≌Rt△BFC,∴BF=AE﹣x,在Rt△AEB中,由勾股定理,得,x2+﹣x)2=12,整理得2x2﹣+n﹣1=0,b2﹣4ac=8﹣4n<0,此方程无解,不存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、一元二次方程的解法等知识.读懂探究一的解答过程、正确运用一元二次方程根的判别式是解题的关键.10.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y关于x的函数表达式;(2)找准等量关系,正确列出一元二次方程.。
初三数学培优

一、补成三角形1.补成三角形 例1.如图1,已知E 为梯形ABCD 的腰CD 的中点;证明:△ABE 的面积等于梯形ABCD 面积的一半。
2.补成等腰三角形例2 如图2.已知∠A =90°,AB =AC ,∠1=∠2,CE ⊥BD ,求证:BD=2CE3.补成直角三角形例3.如图3,在梯形ABCD 中,AD ∥BC ,∠B +∠C =90°,F 、G 分别是AD 、BC 的中点,若BC =18,AD =8,求FG 的长。
4.补成等边三角形例4.图4,△ABC 是等边三角形,延长BC 至D ,延长BA 至E ,使AE =BD ,连结CE 、ED 。
证明:EC =ED二、补成特殊的四边形1.补成平行四边形例5.如图5,四边形ABCD 中,E 、F 、G 、H 分别是AB 、CD 、AC 、BD的中点,并且E 、F 、G 、H 不在同一条直线上,求证:EF 和GH 互相平分。
2.补成矩形例6.如图6,四边形ABCD 中,∠A =60°,∠B =∠D =90°,AB =200m ,CD =100m ,求AD 、BC 的长。
图图63.补成菱形例7.如图7,凸五边形ABCDE 中,∠A=∠B =120°,EA =AB =BC =2,CD =DE =4,求其面积4.补成正方形例8.如图8,在△ABC 中,AD ⊥BC 于D ,∠BAC =45°,BD =3,DC =2。
求△ABC 的面积。
5.补成梯形例9.如图9,已知: G 是△ABC 中BC 边上的中线的中点,L 是△ABC 外的一条直线,自A 、B 、C 、G 向L 作垂线,垂足分别为A 1、B 1、C 1、G 1。
求证:GG 1=41(2AA 1+BB 1+CC 1)。
图7图8图9。
北师大版本数学九年级上册培优精品(全套)

北师大版本初三数学培优教案(精品资源)目录第一讲:相似三角形的判定及模型 (1)模块一:相似三角形的判定与性质 (1)模块二:A字型与8字型 (4)模块三:射影定理 (7)第二讲:相似三角形的计算及证明 (9)模块一:共线三等角 (9)模块二:相似中的比例证明 (13)第三讲:动态几何专题一 (17)模块一:相似三角形 (17)模块二:特殊四边形 (20)第四讲:相似综合计算及应用 (24)模块一:相似应用 (24)模块二:相似的综合计算 (26)第五讲:反比例函数 (29)模块一:反比例函数定义和性质 (29)模块二:反比例函数k值意义初步 (34)第六讲:反比例K意义进阶 (37)模块一:反比例K意义进阶 (37)第七讲:反比例函数综合及应用 (45)模块一:函数应用 (45)模块二:函数综合 (48)第八讲:一元二次方程及其应用 (55)模块一:一元二次方程 (55)模块二:一元二次方程的应用 (60)第一讲:相似三角形的判定及模型模块一:相似三角形的判定与性质1.相似三角形的判定(1)三边法:三组对应边的比相等的两个三角形相似.(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.(3)两角法:有两组角对应相等的两个三角形相似.2.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等.(2)相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.(3)相似三角形的面积的比等于相似比的平方.(4)由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.例题精讲知识点一:相似三角形的判定例1.(1)如图,点D ,E 分别在△ABC 的AB ,AC 边上,增加下列条件中的一个:△△AED=△B ,△△ADE=△C ,△BC DE AB AE =,△ABAE AC AD =,△AC 2=AD·AE ,使△ADE 与△ACB 一定相似的有( )A . △△△B .△△△C . △△△△D .△△△△*(2)如图,已知△ABC,AB=AC,点E、F在边BC上,满足△EAF=△C,若BF=6,CE=4,则AC的值为.训练1-1.如图,已知△1=△2,若再增加一个条件不一定能使结论△ADE△△ABC成立,则这个条件是()A.△D=△B B.C.D.△AED=△C训练1-2.如图,在四边形ABCD中,如果△ADC=△BAC,那么下列条件中不能判定△ADC 和△BAC相似的是()A.△DAC=△ABC B.AC是△BCD的平分线C.AC2=BC•CD D.=训练1-3.如图所示,矩形ABCD中,点E在DC上且DE:EC=2:3,连接BE交对角线AC于点O.延长AD交BE的延长线于点F,则△AOF与△BOC的面积之比为.知识点二:相似三角形的性质例2.如图,在平行四边形ABCD中,AB=6,AD=9,△BAD的平分线交BC于E,交DC 的延长线于F,BG△AE于G,BG=,则△EFC的周长为()A.11B.10C.9D.8训练2-1.如图,在△ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCB的面积比为()A.B.C.D.训练2-2.若△ADE△△ACB,且=,若四边形BCED的面积是2,则△ADE的面积是.模块二:A字型与8字型1.A 字型及其变形:EC AE DB AD =,BCDE AC AE AB AD == AB AE AC AD ⋅=⋅2.8字型及其变形:CD AB CO BO DO AO == CDAB DO BO CO AO ==例题精讲知识点一:A 字型例1.(1)如图,在△ABC 中,正方形EFGH 的两个顶点E 、F 在BC 上,另外两个顶点G 、H 分别在AC 、AB 上,BC=15,BC 边上的高是10,则正方形的面积为( )A .6B .36C .12D .49(2)如图,已知△ABC 、△DCE 、△FEG 、△HGI 是4个全等的等腰三角形,底边BC 、CE 、EG 、GI 在同一直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,则QI= .训练1-1.(1)如图,要在一起△ABC 的纸片上截取正方形DEFG 模型,其中G 、F 在BC 边上,D 、E 分别在 AB 、AC 边上,AH△BC 交于DE 于M ,若BC=12,AH=8,则正方形DEFG 的边长为( )A .524 B .4 C .724D .5训练1-2.如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B 2D 1C 1面积为S 1,△B 3D 2C 2面积为S 2,…,△B n+1D n C n 面积为S n ,则S n 等于( )A .B .C .D .知识点二:8字型例2.(1)如图,点D 是AB 边的中点,AF△BC ,CG:GA=3:1,BC=8,则AF= .(2)如图,已知△ABC△△DCE△△HEF,三条对应边BC、CE、EF在同一条直线上,连接BH,分别交AC、DC、DE于点P、Q、K,其中S△PQC=1,则图中三个阴影部分的面积和为.训练2.(1)如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=.(2)如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n C n M n的面积为S n,则S n=.(用含n的式子表示)模块三:射影定理1.射影定理射影定理图模:如右图所示,图中所有的直角三角形都是相似的,则有:AC2=AD·AB;CD2=AD·DB;BC2=BD·AB.2.广义射影定理图模如右图所示,当△ACD=△B时,△ACD△△ABC,则有:AC2=AD·AB例题精讲知识点一:射影定理例1.(1)如图,Rt△ABC在中,△C=90°,CD△AB于点D,且AD:BD=9:4,AC:BC的值为.(2)如图,在矩形ABCD中,F是AB的中点,且CF△BD于G,DG=2,CG值为,CD值为.(3)如图,已知△ACP=△B,AC=4,AP=2,则AB=.3,则训练1-1.(1)如图,Rt△ABC在中,△C=90°,CD△AB于点D,且AD=6,AC=6CB=.(2)如图,在矩形ABCD中,AF:BF=2:1,且CF△BD于G,DG=3,CG值为,CD值为.(3)如图,已知△ACD=△B,AC=5,AD=3,则AB=.第二讲:相似三角形的计算及证明模块一:共线三等角1.三垂直及斜K模型△ABE△△ECD △ AB·CD = BE·EC2.共线三等角拓展模型特别地,当点E 是BC 的中点时,△ABE△△ECD△△AED,AE、DE 分别平分△ABD、△ADE.3.手拉手模型:结论:△ABC△△ADE△ABD△△ACE例题精讲知识点一:三垂直例1.(1)在矩形ABCD中,由8个边长均为1的正方形组成的“L 型”模板如图2放置,则BC边的长度为.(2)在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2018个正方形的面积为.训练1-1.(1)如图,正方形ABCD的边长为10,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则DE 的长为.(2)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2△P2P3,P2P3△P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为.训练1-2.(1)如图为两正方形ABCD 、BEFG 和矩形DGHI 的位置图,其中G 、F 两点分别在BC 、EH 上.若AB=5,BG=3,则△GFH 的面积为何?( )A .10B .11C .D .(2) 如图,直线y=﹣2x+2与坐标轴交于A ,B 两点.以AB 为短边在第一象限作一个矩形ABCD ,使得AB :AD=1﹕2.则D 点的坐标为 .知识点二:斜K 模型例2.如图,四边形ABCD ,M 为BC 边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则BC 的长为 .训练2.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=34,则△ABC 的周长为 .知识点三:手拉手模型例3.(1)如图,△ABC 中,AC=3,分别以BC 、AB 为底边作顶角为120°的等腰△BDC 和△AEB ,D 在△ABC 内,E 在△ABC 外,那么ED 的长等于 .(2)如图,Rt△ABC 中,△BCA=90°,AB=AC ,AC 边上有点 D ,连结BD ,以BD 为腰作等腰直角三角形的BDE ,DE 交BC 于F ,那么下面结论:△△ABD△△CBE ; △△BCE=90°△DF·EF=BF·CF ; △BC -CE=2CD .其中正确的有( )A .△△B .△△△C .△△△D .△△△△训练3.(1)如图,△ABC 中,AC=5,分别以BC 、AB 为底边作等边△BDC 和△AEB ,D 在△ABC 内,E 在△ABC 外,那么ED 的长等于( )A .5B .52C .55D .5(2)如图,在同一平面内将两个全等的等腰Rt△ABC和△AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF,AG与边BC的交点分别为D,E(点D不与点B重合,点E不与点C重合).若BD=4,,DE=5,CE=3,则AD= ,AE= .模块二:相似中的比例证明例题精讲例4.(1)如图,已知正方形ABCD中,BE平分△DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.①求证:△BDG△△DEG;②若EG•BG=4,求BE的长.(2)如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF△DE,垂足为F,BF交边DC于点G,求证:GD•AB=DF•BG.(3)如图,已知DE△BC,AO,DF交于点C.△EAB=△BCF,求证:OB2=OE•OF.训练4.(1)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D对应点为C,点A的对应点为F,过点E作ME△AF交BC于点M,交BD于点N,现有下列结论:△AM=AD+MC;△AM=DE+BM;△DE2=AD•CM;△点N为AM的中点其中正确的结论为.(4)如图,已知在△ABC中,△BAC=2△B,AD平分△BAC,DF△BE,点E在线段BA的延长线上,联结DE,交AC于点G,且△E=△C.①求证:AD2=AF•AB;②求证:AD•BE=DE•AB.(3)如图,已知A、B、C三点在同一条直线上,△ABD与△BCE都是等边三角形,其中线段AE交DB于点F,线段CD交BE于点G.求证:=.拓展(辅助线)△ABC,点D是AB的中点,过点D任作一条直线DF,交BC的延长线于F点,交AC于E点;求证:AE•CF=BF•EC.第三讲:动态几何专题一模块一:相似三角形例题精讲知识点一:直角相似例1.如图,在Rt△ABC中,△ACB=90°,AC=8,BC=6,CD△AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?训练1-1.如图所示,已知直线l的表达式为y=﹣x+8,且l与x轴、y轴分别交于A、B 两点,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向A移动,同时动点P 从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,其中一点停止运动,另一点也随之停止运动,设点Q、P移动时间为t秒.(1)求点A、B的坐标(2)当t为何值时,△APQ与△AOB相似;(3)当t为何值时,△APQ的面积最大,最大面积是多少?知识点二:非直角相似例2.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD△y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,△BAC=45°.(1)求点A,C的坐标;(2)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.模块二:特殊四边形例题精讲(菱形+直角三角形)例3.如图,在Rt△ABC中,△B=90°,AC=60,AB=30.D是AC上的动点,过D作DF△BC 于F,过F作FE△AC,交AB于E.设CD=x,DF=y.(1)求y与x的函数关系式;(2)当四边形AEFD为菱形时,求x的值;(3)当△DEF是直角三角形时,求x的值.训练3.如图,在△ABC中,AB=AC,AD△BC于点D,BC=10cm,AD=8cm.点P从点B 出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)连接DE、DF,当四边形AEDF为菱形,请求出此时t的值;(2)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.(面积+平行四边形)例4.如图△,矩形OABC的边OA、OC分别在坐标轴上,点B在第二象限,且点B的横、纵坐标是一元二次方程m2+m﹣12=0的两个实数根.把矩形OABC沿直线BE折叠,使点C落在AB边上的点F处,点E在CO边上.(1)直接填空:B(,),F(,);(2)如图△,若△BCE从该位置开始,以固定的速度沿x轴水平向右移动,直到点C与原点O重合时停止.记△BCE平移后为△B′C′E′,△B′C′E′与四边形OABE重叠部分的面积为S,请求出面积S与平移距离t之间的函数关系式,并直接写出t的取值范围;(3)如图△,设点G为EF中点,若点M在直线CG上,点N在y轴上,是否存在这样的点M,使得以M、N、B、G为顶点的四边形为平行四边形?若存在,直接写出点M的坐标;若不存在,请说明理由.训练4.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC 与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.第四讲:相似综合计算及应用模块一:相似应用例题精讲例1.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB是多少?训练1.墙壁CD上D处有一盏灯(如图),小明站在A处测得他的影长与身长相等,都为1.6m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=.例2.(1)如图,当太阳光与地面上的树影成45°角时,树影投射在墙上的影高CD等于2米,若树根到墙的距离BC等于8米,则树高AB等于米.(2)如图,在斜坡的顶部有一铁塔AB,在阳光的照射下,塔影DE留在坡面上,已知铁塔底座宽CD=14m,塔影长DE=36m,小明和小华的身高都是1.6m,小明站在点E处,影子也在斜坡面上,小华站在沿DE方向的坡脚下,影子在平地上,两人的影长分别为4m与2m,那么塔高AB为m.训练2.(1)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为.(2)如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12m,DE=18m,小明和小华的身高都是1.5m,同一时刻小明站在E处,影子落在坡面上,影长为2m,小华站在平地上,影子也落在平地上,影长为1m,则塔高AB是米.模块二:相似的综合计算深圳中考真题训练1.如图,四边形ABCD 是正方体,CEA ∠和ABF ∠都是直角且点,,E A B 三点共线,4AB =,则阴影部分的面积是 .2.在Rt ABC ∆中,︒=∠90C ,AD 平分CAB ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC = .3.如图,在Rt△ABC 中,△ABC=90°,AB=3,BC=4,Rt△MPN ,△MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= .4.如图,CB=CA ,△ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG△CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:△AC=FG ;△2:1==CEFG FAB S S 四边形△;△△ABC=△ABF ;△AC FQ AD •=2,其中正确的结论个数是( )A .1B .2C .3D .4例题精讲例3.(1)正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH 沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分△CGE时,BM=2,AE=8,则ED=.(2)如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE.当点D在边BC上运动时,OE的长度的最小值是.训练3.(1)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为.(2)一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为.(3)如图,点E是正方形ABCD的边BC延长线一点,连接AE交CD于F,作△AEG=△AEB,EG交CD的延长线于G,连接AG,当CE=BC=2时,作FH△AG于H,连接DH,则DH 的长为.第五讲:反比例函数模块一:反比例函数定义和性质1.反比例函数的定义形如y=(k 为常数,k≠0)的函数称为反比例函数.其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.三种形式:y=(k 为常数,k≠0)、y=kx ﹣1(k 为常数,k≠0)、k y x =⋅(k 为常数,k≠0)2.反比例函数图象的对称性反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:△二、四象限的角平分线y=﹣x ; △一、三象限的角平分线y=x ;对称中心是:坐标原点.3.反比例函数的性质(1)反比例函数y=kx (k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.注意:反比例函数的图象与坐标轴没有交点.例题精讲例1.(1)下列函数中,表示y 是x 的反比例函数的是( )A .y=B .y=C .y=2xD .y=(2)函数y=(m+1)x是y 关于x 的反比例函数,则m= .(3)反比例函数y=(2m ﹣1)x ,在每个象限内,y 随x 的增大而增大,则m 的值是.训练1.(1)下列函数是反比例函数的是()A.B.y=x2+x C.D.y=4x+8(2)若函数y=(m+1)是反比例函数,则m的值为.(3)若反比例函数的图象在第二、四象限,m的值为.例2.(1)在同一平面直角坐标系中,函数y=mx+2和y=(m≠0)的图象大致是()A.B.C.D.(2)如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1),若反比例函数y=在第一象限内的图象与△ABC有公共点,则k的取值范围是.训练2.(1)已知一次函数y=mx+n与反比例函数y=其中m、n为常数,且mn<0,则它们在同一坐标系中的图象可能是()A.B.C.D.(2)如图,△ABC的三个顶点分别为A(1,3),B(5,3),C(5,5),若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤15B.3≤k≤15C.3≤k≤25D.15≤k≤25例3.(1)如果直线y=mx与双曲线y=的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为.(2)函数y=﹣的图象经过点A(x1,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>0训练3.(1)在平面直角坐标系xOy中,反比例函数y=的图象与正比例函数y=kx的图象交于点A(1,3)和点B,则点B的坐标为.(2)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.(3)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1例4.(1)已知函数y1=,y2=x+1,若y1>y2,则x的取值范围是()A.x<﹣1或0<x<2 B.﹣1<x<0或x>2C.﹣2<x<0或x>1D.x<﹣2或0<x<1(2)如图,一次函数y1=x﹣1与反比例函数的图象交于点A(2,1)、B(﹣1,﹣2),则使y1>y2的x的取值范围是.训练4.(1)已知直线y1=ax与双曲线y2=相交,如图所示,y1>y2时x的范围是.(2)如图,直线y1=﹣x+b与双曲线y2=交于A、B两点,点A的横坐标为1,则不等式﹣x+b<的解集是.模块二:反比例函数k 值意义初步1.k 的计算方法(1)一点坐标乘积xy=k (2)两点坐标乘积相等,列方程求k(3)三角形面积求k (4)矩形面积求k2.k 的几何意义(1)k =AOBP S 矩形 (2)ABO S △2k =(3)ABC S △=2|k| (4)ABM S △=|k|**3.面积问题中的两种方法(1)几何法:△通过三角形或矩形的面积转化,把要求的面积转化成熟悉的三角形或矩形面积; △充分抓住已知条件中的特殊关系(比值、中点等)△如果找不到或用不上熟悉三角形或矩形,则需要作辅助线,辅助线的做法通常是通过反比例函数图像上的点作x 轴或y 轴的垂线来构造出熟悉三角形或矩形;△最后通过三角形或矩形面积算出k 的值.(2)代数法:△在反比例函数上找一合适的点(跟中点或比值等特殊关系有关的点)并设其坐标为(x ,y );△用x 和y 表示出整块大图形的面积和除已知面积图形外的三角形面积,并将其代入方程:已知部分全S S S =-△解出x 和y ,并通过xy=k 计算出k 的值.例题精讲例5.(1)已知反比例函数图像上有两点A (a ,2)、B(m ,4),已知a 和m 是方程0862=+-x x 的两个不等的解,则该反比例函数的解析式为 .(2)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=的图象上,若点A 的坐标为(﹣2,﹣2),则k 的值为 .训练5.(1)已知反比例函数图像经过二、四象限,并经过两点(a ,a+2)与(1,6a+5),则该反比例函数图像的解析式为 .(2)如图,B (3,﹣3),C (5,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为 .例6.(1)如图,已知函数y=kx 与函数y=的图象交于A 、B 两点,过点B 作BC△y 轴,垂足为C,连接AC.若△ABC 的面积为2,则k 的值为.(2)如图,直线l分别交x轴、y轴于点A、B,交双曲线y=(x>0)于点C,若AB:AC=1:3,且S△AOB=,则k的值为.训练6.(1)如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、C两点,AB△x 轴于B,CD△x轴于D,则四边形ABCD的面积为.(2)如图,已知直线y=﹣2x+5与x轴交于点A,与y轴交于点B,将△AOB沿直线AB 翻折后,设点O的对应点为点C,双曲线y=(x>0)经过点C,则k的值为.第六讲:反比例K 意义进阶模块一:反比例K 意义进阶面积问题中的两种方法(1)几何法:△通过三角形或矩形的面积转化,把要求的面积转化成熟悉的三角形或矩形面积; △充分抓住已知条件中的特殊关系(比值、中点等)△如果找不到或用不上熟悉三角形或矩形,则需要作辅助线,辅助线的做法通常是通过反比例函数图像上的点作x 轴或y 轴的垂线来构造出熟悉三角形或矩形; △最后通过三角形或矩形面积算出k 的值.(2)代数法:△在反比例函数上找一合适的点(跟中点或比值等特殊关系有关的点)并设其坐标为(x ,y );△用x 和y 表示出整块大图形的面积和除已知面积图形外的三角形面积,并将其代入方程:已知部分全S S S =-△解出x 和y ,并通过xy=k 计算出k 的值.中考真题训练1.如图,A B 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )△AOP BOP ∆≅∆;△AOP BOP S S ∆∆=;△若OA OB =,则OP 平分AOB ∠;△若4BOP S ∆=,则16ABP S ∆=.A .△△B .△△C .△△D .△△2.如图,四边形ABCO 是平行四边形,,6,2==AB OA 点C 在x 轴的负半轴上,将 ABCO 绕点A 逆时针旋转得到平行四边形ADEF ,AD 经过点O ,点F 恰好落在x 轴的正半轴上.若点D 在反比例函数)0(y <=x xk 的图像上,则k 的值为_________.3.如图,Rt△ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 的反向延长线交y 轴负半轴于点E ,双曲线xk y =(k >0)的图象经过点A ,若S △BEC =8,则k 等于4.如图,双曲线y=经过Rt△BOC 斜边上的点A ,且满足=,与BC 交于点D ,S △BOD =21,求k= .例题精讲考点一:边长比例类例1.(1)已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y 轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.(2)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE 的面积为3,则k的值为.训练1.(1)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴上的正半轴上,BC=2AC,点B、C在反比例函数y=(x>0)的图象上,则△OAB的面积为.(2)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,,△AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是.考点二:两个反比例函数例2.(1)双曲线与在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为.(2)如图,点A与点B分别在函数y=与y=的图象上,线段AB 的中点M在y轴上.若△AOB的面积为2,则k1﹣k2的值是.(3)如图,已知点A是双曲线在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.训练2.(1)如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,且AB△x轴,BC△x轴于点C,则四边形ABCO的面积为.(2)如图,反比例函数y=﹣和y=上分别有两点B、C,且BC△x轴,点P是x轴上一动点,则△BCP的面积是.(3)如图,在Rt△ABC中,△ABC=90°,点B在x轴上,且B(﹣1,0),A点的横坐标是2,AB=3BC,双曲线y=(m>0)经过A点,双曲线y=﹣经过C点,则Rt△ABC 的面积为.考点三:面积综合例3.(1)如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD△x轴于点D,过点B作BC△y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.(2)如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x 轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为.(3)如图,△AOB和△BCD均为等边三角形,且顶点A、C均在双曲线y=(x>0),AD 与BC相交于点P,则图中△OAP的面积为.训练3.(1)如图,点E、F在函数y=的图象上,直线EF分别与x轴、y轴交于点A、B,且BE:BF=1:3,则△EOF的面积是.(2)如图,点A是反比例函数y=(x>0)的图象上一点,OA与反比例函数y=(x>0)的图象交于点C,点B在y轴的正半轴上,且AB=OA,若△ABC的面积为6,则k的值为.(3)如图,点A、B在双曲线y=的第一象限分支上,AO的延长线交第三象限的双曲线于C,AB的延长线与x轴交于点D,连接CD与y轴交于点E,若AB=BD,S△ODE=,则k=.拓展题1.如图,△AOB为等边三角形,点B的坐标为(﹣4,0),过点C(4,0)作直线l交AO 于D,交AB于E,点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,那么该反比例函数的解析式为y=.2.如图,已知反比例函数y=(x>0)的图象经过点A(3,4),在该图象上面找一点P,使△POA=45°,则点P的坐标为.第七讲:反比例函数综合及应用模块一:函数应用例题精讲例1.(1)某市一蔬菜生产基础用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20△的新品种,图中是某天恒温系统从开启到关闭及关闭后,大棚内温度y(△)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC是双曲线y=的一部分.请根据图中的信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大鹏温度在15△及15△以上的时间有多少小时?(2)一般情况下,学生注意力上课后逐渐增强,中间有段时间处于较理想的稳定状态,随后开始分散.实验结果表明,学生注意力指数y随时间x(min)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)上课后第5min与第30min相比较,何时学生注意力更集中?(2)某道难题需连续讲19min,为保证效果,学生注意力指数不宜低于36,老师能否在所需要求下讲完这道题?训练1.(1)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).①根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.②问血液中药物浓度不低于4微克/毫升的持续时间多少小时?(2)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800△,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600△.煅烧时温度y(△)与时间x(min)成一次函数关系;锻造时,温度y(△)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32△.①分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;②根据工艺要求,当材料温度低于480△时,须停止操作.那么锻造的操作时间有多长?。
初三数学培优辅导资料

OAB初三数学培优辅导资料(三)一、选择题(每题3分,共30分)1、已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( ) A.6 B.5 C.4 D.32、用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )3、如图,平行四边形ABCD 的顶点A 、B 、D 在⊙0上,顶点C 在⊙O 直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( )A .44°B . 54°C .72°D .53°第3题 第5题 第6题 第7题4、已知⊙O 的面积为2π,则其内接正三角形的面积为( ) A. 33 B. 36 C. 332D. 3625、扇形AOB 的半径为1,∠AOB =90°,以AB 为直径画半圆.则图中阴影部分面积为( ) A .14π B .π12- C .12D .1142π+6、如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC =2,AE =,CE =1.则弧BD 的长是( )A.39π B. 239π C.33π D. 233π7、如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为,则a 的值是( )A.4B. 32C. 32D. 338、已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为( )A . 2πcmB . 1.5cmC . πcmD . 1cmA. 25B. 45C. 25或45D. 23或439、如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为( )A. πcm.B. 2πcm.C.3πcmD. 4πcm.10、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则P A+PB的最小值为()A.B.1C.2 D.2第9题第10题第11题二、填空题(每题4分,共24分)11、如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.12、直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.13、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.14、在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是cm.15、如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为.第13题第14题第15题第16题16、如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、简答题(共66分)17、(本题6分)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,求折痕AB的长.18、(本题8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD 与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.19、(本题8分)如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.20、(本题10分)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,求AD的长.21.(本题10分)如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90o ,∠A =30o ,若△RtABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线上l 时,求点A 所经过的路线的长。
初三数学培优(10)

初三数学培优(10) 姓名_________1、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2.2、如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 3、函数11y x =+与2y ax b =+(0a ≠)的图象如图所示,这两个函数图象的交点在y 轴上,那么使1y ,2y 的值都大于零的x 的取值范围是 .4、二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论中:(1)c <0;0)2(>b ; (3)420a b c ++>; (4)22)(b c a <+,正确的有( )B . 3个C . 2个D . 1个5、如图,BD AC ,是⊙O直径,且BD AC ⊥,动点P 从圆心O 出发,沿O D C O →→→ 路线作匀速运动,设运动时间为t (秒),y APB =∠(度),则下列图象中表示y 与t 之间的函数关系最恰当的是( )6、如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数x y 2-=(x <0)的图象于B ,交函数x y 6=(x >0)的图象于C ,过C作y 轴的平行线交BD 的延长线于D . (1)如果点A 的坐标为(02),,求线段AB 与线段CA (2)如果点A的坐标为(0)a ,,求线段AB 与线段CA (3)在(2)的条件下,求四边形AODC 的面积.y y第4题图B .D .A .C .7、某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个.(1)假设销售单价提高x 元,那么销售每个篮球所获得的利润是 元;这种篮球每月的销售量是 个;(用含x 的代数式表示)(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并求出此时篮球的售价应定为多少元.8、如图,在Rt △ABC 中,∠C =90°,BC =4,AC =8,点D 在斜边AB 上(不与A 、B 重合),分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E ,F ,得四边形DECF ,设DE =x , DF =y.(1)用含y 的代数式表示AE ,得AE =________. (2)求y 与x 之间的函数关系式,并求出x 的取值范围. (3)设四边形DECF 的面积为S ,求出S 的最大值.9、已知:如图,直径为OA 的M ⊙与x 轴交于点O 、A , 点B C 、把弧OA 分为三等分,连结MC 并延长 交y 轴于D (0,3)。
人教版九年级数学培优辅导资料

九年级数学培优辅导资料第1、2讲 一元一次方程与二元一次方程组一、目标要求:1.了解等式、方程、一元一次方程和二元一次方程(组)的概念,掌握等式的基本性质. 2.掌握一元一次方程的标准形式,熟练掌握一元一次方程和二元一次方程组的解法. 3.会列方程(组)解决实际问题.二、课前热身1.方程2x-5=3的解是( )A .x=4B .x=-4C .x=1D .x=-12.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x )=87B.1.2×0.8x+2×0.9(60﹣x )=87C.2×0.9x+1.2×0.8(60+x )=87D.2×0.9x+1.2×0.8(60﹣x )=873.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A .3412x y x y +=⎧⎨+=⎩B .3421x y x y +=⎧⎨=+⎩C .3421x y x y +=⎧⎨=+⎩D .23421x y x y +=⎧⎨=+⎩4.方程组525x y x y =+⎧⎨-=⎩的解满足方程x +y -a=0,那么a 的值是( )A .5B .-5C .3D .-35.方程组的解是( )A .B .C .D .三、【基础知识重温】1.等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1.x y 60x 2y 30+=⎧⎨-=⎩x 70y 10=⎧⎨=-⎩x 90y 30=⎧⎨=-⎩x 50y 10=⎧⎨=⎩x 30y 30=⎧⎨=⎩5. 二元一次方程组:把具有相同未知数的两个 合在一起,就组成了一个二元一次方程组.6.二元一次方程的解: 适合一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.7.二元一次方程组的解: 二元一次方程组的两个方程的 ,叫做二元一次方程组的解. 8. 解二元一次方程组的方法:消元是解二元一次方程组的基本思路,方法有 消元和 消元法两种.四、例题分析题型一 一元一次方程的解法例1. (2016·辽宁大连)方程2x+3=7的解是( )A .x=5B .x=4C .x=3.5D .x=2 【趁热打铁】1.已知关于x 的方程3a-x=4的解为2,求代数式(-a)2-2a+1的值.2.解方程:(1)53(2)8x x +-= (2)212143x x -+=-3.解方程:)21(25)2(34y y y --=+-题型二 二元一次方程组的解法 例2. (2016•新疆)解方程组⎩⎨⎧=-=+②8y 3x ①732y x .例3. (2016•内蒙古通辽)已知a 、b 满足方程组23319a b a b -=⎧⎨+=⎩= .【趁热打铁】1.已知是方程组的解,则a ﹣b 的值是( )A. B. C. D.2.方程组⎩⎨⎧=-=+32y x a y x 的解为⎩⎨⎧==by x 5,则a 、b 分别为 ( )A .a =8,b =-2B .a =8,b =2C .a =12,b =2D .a =18,b =8 3.方程组13x y x y -=⎧⎨+=⎩的解是 。
初三数学培优辅导资料(可编辑修改word版)

,;C n的顶点表示) .2 2 21. 阅读理解:初三数学培优辅导资料(十)如图 1,在平面内选一定点 O ,引一条有方向的射线 Ox ,再选定一个单位长度,那么平面上任一点 M 的位置可由∠MOx 的度数 θ 与 OM 的长度 m 确定,有序数对(θ,m )称为 M 点的“极坐标”,这样建立的坐标系称为“极坐标系”。
应用:在图 2 的极坐标系下,如果正六边形的边长为 2,有一边 OA 在射线 Ox 上,则正六边形的顶点 C 的极坐标应记为()A .(60°,4)B .(45°,4)C .(60°,2 )D .(50°,2 ) 2. 如图,已知点 A 1,A 2,…,A 2011 在函数 y = x 2 位于第二象限的图象上,点 B 1,B 2,…,B 2011在函数 y = x 2 位于第一象限的图象上,点 C 1,C 2,…,C 2011 在 y 轴的正半轴上,若四边形OA 1C 1B 1 、C 1 A 2C 2 B 2 ,…, C 2010 A 2011C 2011B 2011 都是正方形,则正方形C 2010 A 2011C 2011B 2011 的边长为()A. 2010B. 2011C. 2010D. 2011A第 1 题图第 2 题图第 3 题图3. 如图,点 A 、B 、C 在⊙O 上,OD ⊥AB 于点 D ,OE ⊥CB 于点 E ,弧 AB 度数为 40°,弧 CB 的度数为 50°,且 DE =6,则⊙O 半径的长度是 .4. 如图,在平面直角坐标系 xOy 中,已知抛物线 y =-x (x -3)(0≤x ≤3)在 x 轴上方部分记作 C 1, 它与 x 轴交于点 O ,A 1,将 C 1 绕点 A 1 旋转 180°得 C 2,C 2 与 x 轴交于另一点 A 2.继续操作并探究:将 C 2 绕点 A 2 旋转 180°得 C 3,与 x 轴交 于另一点 A 3;将 C 3 绕点 A 2 旋转 180°得 C 4,与 x 轴交于另一点 A 4,这样依次得到 x 轴上的点 A 1,A 2,A 3,…,A n …,及抛物线 C 1,C 2,…,C n ,则点 A 4 的坐标为 Cn 的顶点坐标为 (n 为正整数,用含 n 的代数式5. 一张圆心角为 45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为 1,则扇形和圆形纸板的面积比是( )A . 5:4B . 5:2C .:2D .:6. 如图是二次函数 y =ax 2+bx +c (a ≠0)图象的一部分,其对称轴为 x =-1,且过点(-3,0)。
初三数学培优题

初三数学培优题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998为您提供优质放心的教育服务数学培优题]孙老师第一讲(三角形、四边形及多边形)第二讲:(三角形、四边形及多边形)第三讲与圆有关的性质第四讲直线与圆的位置关系第五讲:与圆有关的比例线段+圆内接四边形第六讲:圆的综合运用第七讲:函数图像、性质的应用第八讲:二次函数-特殊三角形第九讲:二次函数-平行四边形第十讲二次函数(面积与计算)第十一讲:三角函数及综合第十二讲一次函数与反比例函数第一讲(三角形、四边形及多边形)★你了解直线型问题的中考方向吗所谓直线型问题,包括了直线、角、三角形、四边形及其多边形,这部分内容知识点多,题型变化多样,是中考重点考察内容之一。
成都市历年中考题中,这部分知识点约占25分。
分析近三年成都和全国其他省市的中考题,我们发现:这部分知识的考题一般设置为中档题,在A卷出现比较多些,有填空、选择、解答或证明,在B 卷中出现的题量和分值配备相对少些。
但是,当这部分知识与圆相结合或与函数图象结合,常常成为压轴题的重要组成部分。
★你必须记住的考点1、平行线的性质与判定;2、三角形的内角和定理;3、三角形三边之间的关系定理;★4、三角形全等(相似)的性质与判定;5、三角形(梯形)的中位线定理;6、三角形的“五心”;★7、特殊三角形(等腰三角形、直角三角形等)的性质与判定;★8、平行四边形(包括正方形、菱形、矩形)的性质与判定;9、多边形的内角和定理;★10、三角形中的重要线段(角平分线,中线,垂线,高)★你必须掌握的方法解决直线型问题最基本的方法就是法:面对复杂几何图形时,要从不同的角度去观察,学会辨认图形。
即要善于从复杂图形中寻找、分离出我们最熟悉的图形,从而利用熟悉图形的性质给予解答。
同时思考问题一定要快速、准确、全面,还要综合运用分类讨论法、方程等思想方法。
★全等、相似常见模型全等模型有:旋转型、对称型、叠合型、平移型;相似常见模型:(1)平行型:(A 型,X 型) (2)交错型 (3)旋转型 (4)母子三角形★ 中考考点分析、典例解析◆ 题型一------概念型【例1】如图:直线a,b,c 表示三条相互交叉的公路,现要建一个货物中转站P ,要求它到三条公路的距离相等,则(1)可供选择的地址有( )A 、一处B 、二处C 、三处D 、四处(2)、若∠ABC=070,则∠APC=【例2】若三角形的三个角满足关系式:C B A ∠=∠=∠3121,则这个三角形是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形◎ 目标训练11、等腰三角形一边长为5,另一边长为11,则其周长为( )A 、21B 、27C 、21或27D 、162、如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( )◆ 题型二------计算、证明型【例3】已知关于x 的一元二次方程(a +c )x 2+2bx +(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x =﹣1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.【例4】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【例5】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P 点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化若变化,说明理由;若不变,求出线段EF的长度.【例6】例如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.【例7】如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,OP 交AC于点Q.(1)求证:△APQ∽△CDQ;(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.①当t为何值时,DP⊥AC②设S △APQ +S △DCQ =y ,写出y 与t 之间的函数解析式,并探究P 点运动到第几秒到第几秒之间时,y 取得最小值.【例8】如图,已知直线l 1∥l 2,线段AB 在直线l 1上,BC 垂直于l 1交l 2于点C ,且AB =BC ,P 是线段BC 上异于两端点的一点,过点P 的直线分别交l 2、l 1于点D 、E (点A 、E 位于点B 的两侧),满足BP =BE ,连接AP 、CE .(1)求证:△ABP ≌△CBE ;(2)连结AD 、BD ,BD 与AP 相交于点F .如图2.①当=2时,求证:AP ⊥BD ;②当=n (n >1)时,设△PAD 的面积为S 1,△PCE 的面积为S 2,求的值.第二讲:(三角形、四边形及多边形)2一:知识点回顾1四边形性质2特殊四边形(平行四边形、菱形、矩形、正方形、梯形)的性质及差异 3特殊四边形的判定方法4四边形中常见的辅助线二:例题分析例1:如图,在平行四边形ABCD 中,∠C =60°,M 、N 分别是AD 、BC 的中点,BC =2C D .(1)求证:四边形MNCD 是平行四边形;(2)求证:BD =MN .例2:如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .(1)证明:FD =AB ;(2)当平行四边形ABCD 的面积为8时,求△FED 的面积.例3:如图,在△ABC 中,AB =AC ,AD ⊥AB 于点D ,BC =10cm ,AD =8cm .点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形若存在,请求出此时刻t的值;若不存在,请说明理由.例4:如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:=.例5:如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M 顺时针旋转90°得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系请说明理由.例6:如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,(1)的值为;(2)求证:AE=EP;(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形若存在,请给予证明;若不存在,请说明理由.第三讲与圆有关的性质1.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.2.如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.B 3.如图,在△ABC 中,∠BAC=90°,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC 于点E ,BE 交⊙O 于点F ,连接AF ,AF 的延长线交DE 于点P .(1)求证:DE 是⊙O 的切线;(2)求tan ∠ABE 的值;(3)若OA=2,求线段AP 的长.4.(2014年天津市,第21题10分)已知⊙O 的直径为10,点A ,点B ,点C 在⊙O 上,∠CAB 的平分线交⊙O 于点D .(Ⅰ)如图①,若BC 为⊙O 的直径,AB =6,求AC ,BD ,CD 的长;(Ⅱ)如图②,若∠CAB =60°,求BD 的长.5.如图,AD 是△ABC 的角平分线,以点C 为圆心,CD 为半径作圆交BC 的延长线于点E ,交AD 于点F ,交AE 于点M ,且∠B=∠CAE ,EF :FD=4:3.(1)求证:点F 是AD 的中点;(2)求cos ∠AED 的值;(3)如果BD=10,求半径CD 的长.6.(2014襄阳,第25题10分)如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠BPC =60°,过点A 作⊙O 的切线交BP 的延长线于点D .(1)求证:△ADP ∽△BDA ;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)若AD =2,PD =1,求线段BC 的长.7.如图,在Rt △ABC 中,∠A=90°,O 是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与AC 、BC 边分别交于点E 、F 、G ,连接OD ,已知BD=2,AE=3,tan ∠BOD=.(1)求⊙O 的半径OD ;(2)求证:AE 是⊙O 的切线;(3)求图中两部分阴影面积的和.8.已知:如图,ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交 ⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD .(1)求证:∠DAC =∠DBA ;(2)求证:P 是线段AF 的中点;(3)若⊙O 的半径为5,AF = 215,求tan ∠ABF 9.已知:如图,以矩形ABCD 的对角线AC 的中点O 0,⊙O 经过B 、D 两点,过点B 作BK ⊥AC ,垂足为K .过D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H .(1)求证:AE=CK;(2)如果AB=a,AD=13a (a为大于零的常数),求BK的长;(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.第四讲直线与圆的位置关系【知识点】※1. 直线和圆相交、相切相离的定义:(1)相交: 直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线.(2)相切: 直线和圆有惟一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,惟一的公共点做切点.(3)相离: 直线和圆没有公共点时,叫做直线和圆相离.※2. 直线与圆的位置关系的数量特征:设⊙O的半径为r,圆心O到直线的距离为d;①d<r <===> 直线L和⊙O相交.②d=r <===> 直线L和⊙O相切.③d>r <===> 直线L和⊙O相离.※3. 切线的总判定定理:经过半径的外端并且垂直于这个条半径的直线是圆的切线.※4. 切线的性质定理:圆的切线垂直于过切点的半径.※推论1 经过圆心且垂直于切线的直线必经过切点.※推论2 经过切点且垂直于切线的直线必经过圆心.※分析性质定理及两个推论的条件和结论间的关系,可得如下结论:如果一条直线具备下列三个条件中的任意两个,就可推出第三个.①垂直于切线; ②过切点; ③过圆心.※5. 三角形的内切圆、内心、圆的外切三角形的概念.和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心, 这个三角形叫做圆的外切三角形.※6. 三角形内心的性质:(1)三角形的内心到三边的距离相等.(2)过三角形顶点和内心的射线平分三角形的内角.由此性质引出一条重要的辅助线: 连接内心和三角形的顶点,该线平分三角形的这个内角.【例题分析】1.(2014德州,第22题10分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC 、AD 的长;(2)试判断直线PC 与⊙O 的位置关系,并说明理由.2. 如图,直线与⊙O 相切于点D ,过圆心O 作EF ∥交⊙O于E 、F 两点,点A 是⊙O 上一点,连接AE ,AF ,并分别延长交直线于B 、C 两点;(1)求证:∠ABC+∠ACB=90°;(2)若⊙O 的半径5=R ,BD=12,求tan ∠ACB 的值.3.如图,AB 为的直径,点C 在⊙O 上,点P 是直径AB 上的一点(不与A ,B重合),过点P 作AB 的垂线交BC 的延长线于点Q 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学培优材料(10)
-----元月调考模拟测试
一、选择题
1、二次根式越有意义,x的取值范围为()
3 2 3
A、x20
B、x三㊁
C、
D、
2、下列各式中为最简二次根式的是()
A、y/12
B、
C、±
D、y/5
3、将一元二次方程x?+3=x化为一般形式后,二次项系数和一次项系数分别为()
A、0、3
B、0、1
C、1、3
D、1、-1
4、如图,在ZXOAB绕点O逆时针旋转70°得到△ OCD,若ZA=100° , ZD=50°,贝iJZAOD 的度数是()
A、20°
B、30°
C、40°
D、50°
5、如图,已知AB 为(DO 直径,AB=20cm,弦AB=20cm,弦CD丄AB 于M,若OM: 0B=3:5, 则CD的长为()
A、8cm
B、10cm
C、14cm
D、16cm
6、下列格式中计算正确的是()
A、^J|=3V15
B、辰±2
C、V^b=a2Vb
D、
7、在一个不透明的口袋中,装有3个红球和a个黄球,它们除了颜色不同外其余均相同,若
2
从中随机摸出一个球,摸到黄球的概率为予则口袋中球的总数为()
A、2 个
B、6 个
C、9 个
D、12 个
8、如图,正方形ABCD的边长为4,点E是AB上一点,将ZXBCE沿着CE折叠至Z\FCE, 若CF、CE恰好与正方形ABCD的中心为圆心的(DO相切,则折痕CE=()
A、5羽
B、5
C、
D、以上都不对
9、如图,MN是00的直径,MN=2,点A在OO上,ZAMN=30° , B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值是()
A、2^2
B、迄
C、2
D、1
10、已知四边形ABCD是矩形,AB是的直径,E是00 ±一点,过点E作EF丄DC于
点F,若DF=EF=10,且心=*©,则矩形ABCD中AD的长度为()
A、10(^3-1)
B、10(01)
C、20 或10(^3-1)
D、10 (^3-1)或10 (羽+1)
二、填空题
11、计算莎-辰= _______ ;
12、点A(a,l)与点B(5,b)关于点P(l,l)对称,则a-b的值为________ 。
13、把球放在长方形纸盒内,球的一部分露在盒外面,其截面如图所示,已知EF=CD=16cm,则球的半径为 ______ cm.
14、同吋掷两个质地均匀的骰子,两个骰子的点数和为6,的概率为 _______ o
15、一个圆锥的侧面积是底面积的4倍,则这个圆锥的侧面展开图的中心角的度数为____ ;
16、如图,在等腰RtAABC中,ZC=90° , CD=2, BD=3, D、E分别是BC、AC边上的点,
将DE绕D点顺时针旋转90° , E点刚好落在AB边上的F处,则CE的长度为____________ 。
三、解答题
17、(6 分)解方程:3(X-1)2=X (x-1)
18、(6分)如图,点A、B、C是00上的三点,B0平分ZABC,求证:BA=BC;
19、(6分)在一个不透明的盒子中,共有“1白3黑”四枚围棋子,它们除颜色外无其它区别。
(1)随机地从盒子中取出1枚,则取出的是白子的概率是多少?
1
(2) 随机地从盒子中取出1枚,不放回取出第二枚,请用画树状图或列表的方式表示出所有等 可能的结果,并求出恰好“两枚棋子颜色不相同”的概率是多少?
20、(7 分)如图,点 P 是等边AABC 外一点,PA=3, PB=4, PC=5.
(1) 将AAPC 绕点A 逆时针旋转60°,得到△ P 山B”画出旋转后的图形。
⑵在(1)的条件下,ZAPN 的度数为 __________ ° -
21、(7分)设X 】、X2是关于x 的方程x 2+(2a-l)x+a 2=0的两个实数根.
(1)求a 的取值范围;
⑵当(xi+1) (x 2+l)=ll 时,求a 的值;
22、(8分)如图,半径为4的©0中直径AB 垂直弦CD 于E,过C 作00的切线CP 交AB 的延 长线于P,连结DB 并延长交CP 于F,连结AC, AD, PD, OF.
(1) 求证:PD 是00的切线;
(2) 若E 为半径0B 的中点,求线段0F 的长度.
P
D
23、(10分)如图,小芹从市场上买回一块矩形铁皮,她将此矩形铁皮的四个角各剪去一个 边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米彳的无盖长方体箱子,且此 长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问小芹购回这张
24、(10分)如图1、以AABC 的边AB 、AC 为直角边向外作等腰直角AABE 和AACD, M 是BC 上的一点。
(1) 当ZBAC=90。
时(如图1)线段AM 与线段ED 的数量关系是: _______________ ;
(2) 当ZBAC>90°时(如图2),线段AM 与线段ED 的数量关系是: ________________ ;
(3) 如图3,若以AABC 的边AB 、AC 为直角边,向内作等腰直角AABE 和AACD,其它条 件
不变,试探究线段AM 与DE 之间的数量关系。
证明你的结论。
矩形铁皮共花了多少元钱?
25、(12分)如图,以y 轴正半轴上一点q 为圆心的圆分别交x 轴于A 、B 两点,交y 轴于 尸(0,2 + 血)、G(0,A /2-2)
(1)求点A 的坐标;
(2) N (a,b)为0 0]上第二象限内一点,且a 、b 为方程x 2+(2.-k)x-2k = 0的两根,且
PG —PF 的值是否为定值,若为定值,求岀此值;若不是定值,求出其
(3) 点C 是弧AB 上的一个动点(不与点A 、B)重合,丄BC 、。
出丄AC ,垂足分 别为D 、E,设BD=t, AD0.E 的面积为S,求S 关于t 的函数关系式,并写出它的自变量取值 范围. P 是劣弧NF 上-点, 变化的范围;。