小学奥数 5-1-1-1 算式谜(一).教师版
五年级奥数第23讲-算式与文字谜(学)

学科教师辅导讲义学员编号:年级:五年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第23讲——算式与文字谜授课类型T同步课堂P实战演练S归纳总结教学目标解有余数的除法这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。
授课日期及时段T(Textbook-Based)——同步课堂一、算式迷1、算式谜:一般是指那些含有未知数字或缺少运算符号的算式。
2、解决这类问题,可以根据已学过的知识,运用正确的分析推理方法,确定算式中的未知数字和运用符号。
由于这类题目的解答过程类似于平时进行的猜谜语游戏,所以,我们把这类题目称为“算式谜题”。
注意:解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。
3、解决算式谜题,关键是找准突破口,推理时应注意以下几点:1.认真分析算式中所包含的数量关系,找出隐蔽条件,选择有特征的部分作出局部判断;2.利用列举和筛选相结合的方法,逐步排除不合理的数字;3.试验时,应借助估值的方法,以缩小所求数字的取值范围,达到快速而准确的目的;4.算式谜解出后,要验算一遍。
二、文字迷一般说来,算式都是由一些数字和运算符号组成的,可有些算式却由汉字或英文字母组成,我们称它为文字算式。
文字算式是一种数字谜,解答时要注意在同一道题中,相同的文字或英文字母应表示相同的数字,不同知识梳理的文字或英文字母应表示不同的数字。
解文字算式谜与填竖式的步骤与方法基本是一样的,都要仔细观察算式的特征,认真分析,正确选择解题的突破口,最后通过尝试找寻正确答案。
典例分析题型一:算式谜例1、在下面算式的括号里填上合适的数。
例2、在□里填上适当的数,使算式成立。
例3、□里填哪些数字,可使这道除法算式成为一道完整的算式?56题型二:文字谜例1、下式中,每个字各代表一个不同的数字,其中“心”代表9,请问其他汉字分别代表哪个数字?例2、下面不同的汉字代表不同的数字,相同的汉字代表相同的数字。
五年级奥数专题-数字谜

五年级奥数专题-数字谜(一)数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。
谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。
这个地名第1个字可能是天。
“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。
这样谜底就出来了:天津。
算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。
“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。
文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。
文字算式谜也是最难的一种算式谜。
在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。
①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?思路导航:150*3-8-97-=345所以3个数之和为3+4+5=12。
例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。
分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。
求其中的除数。
分析:40796/102=399...98。
例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。
四年级奥数习题集

四年级奥数习题集55552)读一个零:55503)读两个零:55004)读三个零:50005)读四个零:02.请你用1、2、3、4、5、6六个数字,组成两个三位数,使得这两个三位数之和等于777.答案:159和618.提高篇1.请你用1、2、3、4、5、6六个数字,组成三个两位数,使得这三个两位数之和等于222.答案:13、59、150.2.请你用1、2、3、4、5、6、7、8八个数字,组成四个两位数,使得这四个两位数之和等于200.答案:13、24、57、96.第三讲:四舍五入找大小基础篇1.将下列数四舍五入到十位。
1)252)493)634)98答案:30、50、60、100.2.将下列数四舍五入到百位。
1)2562)4973)6314)983答案:300、500、600、1000. 提高篇1.将下列数四舍五入到千位。
1)25642)49733)63124)9831答案:3000、5000、6000、.2.将下列数四舍五入到个位。
1)25.62)49.33)63.74)98.2答案:26、49、64、98.第四讲:奇妙的进位制基础篇1.将下列十进制数转换成二进制数。
1)102)233)364)50答案:(1)1010 (2)(3)(4)2.将下列二进制数转换成十进制数。
1)10112)3)4)答案:(1)11 (2)26 (3)37 (4)57 提高篇1.将下列十进制数转换成八进制数。
1)262)533)784)123答案:(1)32 (2)65 (3)116 (4)173 2.将下列八进制数转换成十进制数。
1)572)1233)2344)456答案:(1)47 (2)83 (3)156 (4)302 11=320=43)把下面的八进制转换成十进制。
36=304)把下面的十六进制转换成十进制。
AB=1713.用五进制表示下面的数字。
1)十进制的7:2)十进制的13:3)十进制的24:4.用十进制表示下面的数字。
小学奥数- 算式谜(一)

5-1-1-1.算式谜(一)教学目标数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。
知识点拨一、基本概念填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指+、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质:①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数.④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.例题精讲模块一、巧填算符(一)巧填加减运算符号【例1】在下面算式适当的地方添上加号,使算式成立。
88888888=1000【例2】在等号左边9个数字之间填写6个加号或减号组成等式:123456789=101【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210□□□□□□□□3□□=【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【例4】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。
2022-2023学年小学五年级奥数(全国通用)测评卷05《算式谜》(解析版)

【五年级奥数举一反三—全国通用】测评卷05《算式谜》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2016•创新杯)加法算式中,七个方格中的数字和等于()A.51 B.56 C.49 D.48【分析】根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.即可求解.【解答】解:依题意可知:根据两数相加最大进位是1可知.个位数字相加结果是14,十位和百位数字相加和为18,千位有1个进位1.14+18+18+1=51.故选:A.2.(2016•华罗庚金杯)在如图的算式中,每个汉字代表0至9中的一个数字,不同汉字代表不同的数字.当算式成立时,“好”字代表的数字是()A.1 B.2 C.4 D.6【分析】“”一定是111的倍数,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n ≠1,然后根据n=2、3、4、5、6逐个筛选即可.【解答】解:根据分析可得,“”,表示为:111n=37×3×n,不同汉字代表不同的数字,所以n≠1,n=2,则“”=37×6(符合要求)或74×3(不符合要求),n=3,则“”=37×9(不符合要求),n=4,则“”=74×6(不符合要求),n=5,则“”=37×15(不符合要求),n=6,则“”=74×9(不符合要求),所以,“”=37×6=222,即“好”字代表的数字是2.故选:B.3.(2012•华罗庚金杯)在右面的加法算式中,每个汉字代表一个非零数字,不同的汉字代表不同的数字.当算式成立吋,贺+新+春=()A.24 B.22 C.20 D.18【分析】根据题干“放鞭炮”+“迎龙年”=“贺新春”,又因为1~9这9个数字的和是45,据此根据加法的计算法则,分别从十位与个位加法都进位,只有个位进位,只有十位进位和都不进位四个方面进行讨论分即可解答问题.【解答】解:(1)假设个位与十位相加都进位,则可得:炮+年=10+春,鞭+龙=10+新﹣1=9+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=10+春+9+新+贺﹣1=贺+新+春+18,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+18=45,即贺+新+春=,不符合题意;(2)假设只有个位数字相加进位,则炮+年=10+春,鞭+龙=新﹣1,放+迎=贺,则炮+年+鞭+龙+放+迎=10+春+新﹣1+贺=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(3)假设只有十位数字相加进位,则炮+年=春,鞭+龙=10+新,放+迎=贺﹣1,则炮+年+鞭+龙+放+迎=春+10+新+贺﹣1=贺+新+春+9,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)+9=45,即贺+新+春=18,符合题意;(4)假设都不进位,则炮+年=春,鞭+龙=新,放+迎=贺,则炮+年+鞭+龙+放+迎=春+新+贺,所以放=鞭+炮+迎+龙+年+贺+新+春=2(贺+新+春)=45,即贺+新+春=,不符合题意.综上所述,贺+新+春=18.故选:D.4.(2017•华罗庚金杯)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.5.(2016•华罗庚金杯)如图,在5×5的空格内填入数字,使每行、每列及每个粗线框中的数字为1,2,3,4,5,且不重复.那么五角星所在的空格内的数字是()A.1 B.2 C.3 D.4【分析】首先根据排除法在第一宫格中必须有4,那么第二行的第二列的数字只能为4.继续使用排除法即可推理成功.【解答】解:依题意可知:首先根据在第一宫格中必须有4,那么第二行的第二列的数字只能为4.同理在第二行第四列的数字只能是1.继续推理可得:所以再五角星的空格位置填写1.故选:A.6.(2014•迎春杯)下面的除法算式给出了部分数字,请将其补充完整.当商最大时,被除数是()A.21944 B.21996 C.24054 D.24111【分析】首先根据结果的数字4,利用末位分析法,尾数是4的符合题意的只有2×2或者2×7满足,如果是7不能满足第一个结果中的数字0,那么只能是2,再分析第一次的结果为200多,那么符合题意的有数字除数的十位数字是5.逐个分析即可求解.【解答】解:明显商的百位乘以除数是二百零几,如果是100多那么余数是三位数.2 乘以除数是三位数,所以商最大时,结果中个位数字是4.所有除数的个位是2 或7,要满足0 的话就只能为2,这时除数为52.商最大为42,因为最后一行只能为一百多,最大是52的3倍,所以商最大为423.这时被除数为21996÷52=423,符合条件故选:B.7.在如图所示的竖式里,四张小纸片各盖住了一个数字.被盖住的4个数字的总和是()A.14 B.24 C.23 D.25【分析】根据题意,由加法的计算方法进行推算:个位不能进位,可以有0+9=1+8=2+7=3+6=4+5,十位进位有5+9=6+8=7+7,由此选择进行解答即可.【解答】解:个位上,两个数字的和是9;十位上,两个数字和是14,那么,被盖住的4个数字的总和就是:9+14=23.故选:C.二.填空题(共12小题,满分32分)8.(2分)(2017•走美杯)24点游戏,用适当的运算符号(包括括号)把3,3,9,9这四个数组成一个算式,是结果等于24.3×9﹣9÷3=24.【分析】结合4个数字和24之间的关系进行试运算,可以联想24相关的加减乘除运算,据此解答.【解答】解:3+3+9+9=24,3×9﹣9÷3=24.故答案为:3+3+9+9=24,3×9﹣9÷3=24等.9.(2分)(2017•华罗庚金杯模拟)已知除法竖式如图:则除数是15,商是29.【分析】根据题意,由除法竖式的计算方法进行推算即可.【解答】解:根据竖式可知,除数与商的个位数相乘的积的末尾是5,可得,除数的个位数与商的个位数必有一个是5,另一个是奇数;假设,商的个位数是5,即商是25,由135÷5=27,27×2=54,大于被除数的前两位,不符合题意,那么除数的个位数字是5;由□5×2是两位数,并且小于4□,可知除数的十位数字小于或等于2,假设是2即25×2=50>4□,不符合题意,那么除数只能是15;又因为15×9=135,所以,商是29,被除数是29×15=435.竖式是:故答案为:15,29.10.(2分)(2016•陈省身杯)在算式“2□3□7□5”的三个方框中分别填入“+”、“﹣”、“×”这三个运算符号各一次,使得填入符号之后的运算结果最大,这个最大的结果是34.【分析】根据加法、减法、乘法的意义可知,要使值最大,则就要使积尽量大,加数尽量大,减数尽量小,据此根据四则混合运算的运算顺序分析填空即可.【解答】解:要使值最大,就要把最大的两个数相乘,且最小的两个数相减,所以,这个最大的结果是:2﹣3+7×5=﹣1+35=34故答案为:34.11.(2分)(2018•迎春杯)在下列横式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,且没有汉字代表7,“迎”、“春”、“杯”均不等于1,那么“迎”、“春”、“杯”所代表三个数字的和是15..【分析】确定不含5,为7的倍数,且不为49,考虑3,6,9的分配,即可得出结论.【解答】解:若含5,则必为“加”,此时=56,3和9各剩一个,无法满足,所以不含5,为7的倍数,且不为49,考虑3,6,9的分配.第一种情况,吧=9,则3,6在左侧,且不是3的倍数,则=14或28,无解;第二种情况,9在左侧,则3,6在右侧,可得1×2×4×9×7=63×8,所以“迎”、“春”、“杯”所代表三个数字的和是15.故答案为15.12.(2017•华罗庚金杯模拟)“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是94.【分析】本题考察凑数谜.【解答】解:根据“加数=和﹣另一个加数”,“华杯”=2004﹣1910=94.13.(2017•小机灵杯)在×=这个等式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么,=1207、1458、1729.【分析】根据式子的特点,我们可从“个位分析”入手,B×A的个位是B,可能分为:第一种,A=1,B为2﹣﹣9;第二种,A是奇数3、7、9,B=5;第三种,A为2、4、8,B没可取的值;第四种,A=6,B为2、4、8.然后用“枚举法”对第一、二、四种存在的情况一一检验,即可得出答案.【解答】解:因为B×A的个位是B,所以可能有下列4种情况:第一种,A=1,B为2﹣﹣9时,有12×21=252,13×31=403,14×41=574,15×51=765,16×61=976均不符合舍去而17×71=1207,18×81=1458,19×91=1729这三个都符合;第二种,A是奇数3、7、9,B=5时,有35×53=1855,75×57=4275,95×59=5605均不符合,舍去;第三种,A为2、4、8,B直接没有可取得值,所以舍去;第四种,A=6,B为2、4、8时,62×26=1612,64×46=2944,68×86=5848均不符合舍去.综上可得符合的有:17×71=1207,18×81=1458,19×91=1729故:ACDB=1207、1458、1729.14.(2018•陈省身杯)在下面的算式中,“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则三位数“”=246.×杯+=2018【分析】“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;因为最后的得数是2018,据此然后确定“身”和“好”即可.【解答】解:“陈”、“省”、“身”、“杯”、“好”分别代表一个不同偶数数字,则只能是0、2、4、6、8,所以最大等于58,最小等于50,那么,2018﹣58=1960,2018﹣50=1968即×杯的值应在1960~1968范围内;由于每个汉字代表一个不同偶数数字,所以“陈=2”,“省=4”“杯=8”;相应的可以确定,“身=6”和“好=0”,所以,246×8+50=2018,所以=246;故答案为:246.15.(2018•陈省身杯)在如图的方框中各填入一个数字,使得乘法竖式成立,则两个乘数之和为130.【分析】第一次乘得的积是三位数,且积的十位数字是1(125×8=1000),所以第一个因数只能是102;又由于最后的积是2千多,第一个因数的最高位是1,所以第二个因数的最高位只能是2,即第二个因数是28;那么乘法算式是102×28=2856;据此填数即可.【解答】解:根据分析可得,乘法算式是102×28=2856;则两个乘数之和为:102+28=130故答案为:130.16.(2018•迎春杯)如图,在每个方框中填入一个数字,使得算式成立,则乘积为26961.【分析】本题考察凑数谜.先从万位上的空格填1还是填2进行讨论,得出只能填2后,即可推出第一个因数的百位是2,十位是0,第二个因数的首位是1,接着依据两个因数的个位相乘,结果是一个比80大的数,得到9×9=81,最后根据209×口=口1口推出第二个因数的十位上为2,至此得出答案209×129=26961.【解答】解:如果万位上的空格填1,则第一个因数为10口,第二个因数为1口口,显然10口×口不可能得到四位数口口8口,所以万位上的空格填2,则第一个因数为20口,第二个因数为1口口,此时,结合20口×口=口口8口,可推出209×9=1818,则209×口=口1口,可推出209×2=418,至此,209×129=26961.故答案为:2696117.(2015•中环杯)如图算式中,最后的乘积为100855.【分析】首先找题中的特殊情况,发现黄金三角,只能是9+1=10.根据首位结果为9的三位数,进行讨论首位的值继续枚举即可.【解答】解:依题意可知:首先题中的特殊情况结果的进位为黄金三角只能是9+1=10.首位数字a×d结果是8加上进位正好是9.组合可是2×4或者1×8.根据竖式计算2+p有进位,那么p的值可以是7,8,9.根据上边两个数字都是0,那么e可以等于f.b可能是0.根据920多是数字必须有进位才行,所以b ≠0.那么就需要有进位才能构成的上面的数字0.当a=2,d=4时,f是小于4不为1的数字只有2和3.不能同时满足已知数字0,0,2的情况.当a=4,d=2时,f只能选择2,不满足进位相加为0.当a=8,d=1时,f只能是1,不满足数字0的情况.当a=1,d=8时,f为奇数,不是1和9,只能是3,5,7,经尝试只有115×877=100855满足条件.故答案为:100855.18.(2015•创新杯)如图所示,在□中填上适当的数,使除法竖式算式成立,那么被除数等于72.【分析】根据竖式的特点,正好能除尽,所以最后两行的积是:4×8=32,说明被除数的个位数字是2;因为被除数是两位数,所以十位数字比3多4,是3+4=7,所以被除数是72.【解答】解:根据分析可得:答:被除数等于72.故答案为:72.19.(2015•创新杯)在图中,分别将1﹣9这九个数字填入九个圆圈内,使两条直线上的五个数字和相等,那么中心处的圆圈内可以填入的数字是1、5、9.【分析】假设中间的数是a,每条叉线上的三个圆圈内的和相等是m,则有4m=1+2+3+4+5+6+7+8+9+3a,4m=45+3a,当a=1时,m=(45+3)÷4=12,1+2+9=1+3+8=1+4+7=1+5+6=12;当a=2、3、4时,m不是整数,无解;当a=5时,m=(45+15)÷4=15,5+1+9=5+2+8=5+3+7=5+4+6=15;当a=6、7、8时,m不是整数,无解;当a=9时,m=(45+27)÷4=18,9+1+8=9+2+7=9+3+6=9+4+5=18;即可得解.一共有3种不同的填法.【解答】解:把1~9填入图中,使每条线上5个数的和相等,有三种填法,如下图所示:所以,中心处的圆圈内可以填入的数字是1、5、9.故答案为:1、5、9.三.解答题(共10小题,满分47分)20.(4分)(2016•春蕾杯)请把0﹣9分别填入下面六个等式中,使等式成立.20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=100.【分析】首先分析第一个数字是9,第二个数字是6,再分析除以12的结果只能是1.继续推理即可.【解答】解:依题意可知:20×(9﹣8)=206÷2+17=203×8﹣4=20(4+8)÷12=14×5+0=2020×(7﹣2)=10021.(4分)(2014•迎春杯)在下面4个8中间添上适当的运算符号和括号,使等式成立.8 8 8 8=1 8 8 8 8=2.【分析】本题可结合式中的数据根据四则混合运算的运算顺序进行尝试分析,添上适当的运算符号及括号使等式成立.【解答】解:(1)8÷8×8÷8=1(2)8÷8+8÷8=222.(4分)(2012•其他杯赛)在下面竖式中,已知道“数”字代表1,“学”字代表2,“生”字代表0,“赛”字代表5.你知道其他的汉字代表什么数字吗?【分析】多位数乘一位数的竖式计算,十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.此题的关键是有些数字在因数中出现了,在乘积中又以不同的顺序再次出现,这是关键中的关键.【解答】解:由题意知:如图:十位数乘一位数的结果是十一位数,且积的最高位是1,所以小只能是2或者是3,如果是2,竞就是1,那么在积的千位上无乱如何都得不到1,所以小只能是3,竞是6,报的右边一位是1,乘5不进位,所以报是偶数,但是报的左一位是2,和5相乘后个位是2,说明报与5乘积后加上进位的2才得到个位上是2,由此可知,报是4.如图:故答案为:竞=(6)报=(4)小=(3).23.(5分)(2017•华罗庚金杯模拟)把1,2,7,8,9,10,12,13,14,15填入图中的小圆内,使每个大圆圈上的六个数的和是60.【分析】数字之和为91,距120差29,则重复数字为14,15,把14和15填在中间重复计算的两个位置即可.剩下数字之和为62,则左右数字之和各为31.两组分配为:2、7、10、12;1、8、9、13.位置只分左右,顺序无所谓.分组还有几种,例如:1、8,10,12;2、7、9、13等等.【解答】解:填图如下:24.(5分)(2017•华罗庚金杯模拟)在下面16个6之间添上+、﹣、×、÷、(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997.【分析】本题考查填符号组算式.【解答】解:6×(6×6×6+6×6+6×6+6×6+6)+6+6+6﹣6÷6=6×(216+36+36+36+6)+18﹣1=6×330+17=1980+17=1997.25.(5分)(2017•希望杯模拟)在下面的算式里加上一对括号,使算式成立.1×2×3+4×5+6+7+8+9=100.【分析】将3+4括起来,即可得出结论.【解答】解:1×2×(3+4)×5+6+7+8+9=100.26.(5分)(2017•其他模拟)下面竖式中的两个乘数之和为多少.【分析】先根据竖式结构中的abc×4与abc×d积的位数推出d的取值是1、2、3;然后把d分3种情况进行推理(过程见解答),从而得出了两个乘数的具体值,最后把这两个乘数相加即可.【解答】解:为便于书写,用△代□.abc×4=,abc×d=⇒d<4,所以d的取值是1、2、3;若d=2时,和是2倍关系⇒40+2n和的十位数是1⇔2n的进位是7,n取1﹣﹣9的任何值,进位都不能是7,所以这不成立,舍去;若d=3时,和相差一个,即+=⇒b=8或9⇒×3或×3积十位上的数是2,c取1﹣﹣9任何值都无法成立,舍去;若d=1时,可得b是2,c×4进位是3⇒c是8或9⇒28×e或29×e积的十位数是0⇒c=9,e=7;×7积的个位数是3⇒1+f没有进位,m+0+n和个位数是8,n=c=9⇒m=9,即×4=⇒a =7.综上得:=729、=174729+174=903故:竖式中的两个乘数之和是903.27.(5分)(2014•迎春杯)趣味算式谜.【分析】第一题,根据余数是8,即可推出除数是9,再用“除数×商=被除数”便可解出问题;第二题,根据积的个位数是2,即可推出一位数的因数是8,用“积÷一个因数=另一个因数”便可解答;第三题,根据四位数×9积为四位数,没有进位,便可推出:我=1,然后再根据我=1,推出学=9,然后再根据我=1,学=9,则推出爱与数是0、8,即得出了本题的答案.【解答】解:(1)除法的余数是8,说明除数一定大于8;除数又是一位数,所以除数是9.被除数=36×9+8=332.整个解题过程如上图.(2)9乘一位数因数,积的个位是2.这可确定这个一位数的因数是8.因1832÷8=229,可知三位数的因数应是229,整个算式见上图.(3)①由“我爱数学”(四位数)×9(一位数)=学数爱我(四位数),说明式子中的“我”一定是1,如果是大于1的,积就变成五位数了,不符合要求了.②“学”与9的积个位是1,说明“学”一定是9.同时也说明“爱”与9的积不能进位,故“爱”一定小于2,即是1或0两种情况.又因“我”=1,所以“学”=0.③“数”×9+8(进位的)的个位是0,则“数”只能是8了.故综上得:我=1;爱=0;数=8;学=9.28.(5分)(2015•春蕾杯)在下⾯的式⾯中加上适当的括号,使等式成⾯.3×8+48÷8﹣5=163×8+48÷8﹣5=403×8+48÷8﹣5=72【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题.【解答】解:3×(8+48)÷8﹣5=163×8+48÷(8﹣5)=403×[8+48÷(8﹣5)]=7229.(5分)(2016•学而思杯)24点游戏:请用下面的4个数(每个数恰好用一次,可以调换顺序),以及“+、﹣、×、÷和小括号”凑出24.(1)7、12、9、12(2)3、9、5、9.【分析】此题可结合已给的数据,根据四则混合运算的运算顺序进行分析和试算,添上适当的运算符号及括号使等式成立即可.【解答】解:(1)9×12﹣7×12=24(2)(9﹣3)×(9﹣5)。
算式谜.教师版

算式谜一、算式迷加减法1.个位数字分析法2.加减法中的进位与退位3.奇偶性分析法 二、算式谜问题解题技巧1.解题的突破口多在于竖式或横式中的特殊之处,例如首位、个位以及位数的差异;2.要根据不同的情况逐步缩小范围,并进行适当的估算;3.题目中涉及多个字母或汉字时,要注意用不同符号表示不同数字这一条件来排除若干可能性;4.注意结合进位及退位来考虑;模块一、加法类型 【例 1】 在下边的算式中,相同的符号代表相同的数字,不同的符号代表不同的数字,根据这个算式,可以推算出:+++☆=_______.【考点】加法数字谜 【难度】3星 【题型】填空【解析】 比较竖式中百位与十位的加法,如果十位上没有进位,那么百位上两个“□”相加等于一个“□”,得到“□”0=,这与“□”在首位不能为0矛盾,所以十位上的“□+□”肯定进位,那么百位上有“□+□110+=+□”,从而“□”9=,“☆”8=。
再由个位的加法,推知“○+△8=”.从而“+++=☆98825++=”.【答案】+++=☆98825++=【巩固】下面两个算式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么A +B +C +D +E +F +G = 。
【考点】加法数字谜 【难度】3星 【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】 突破口是A=1,所以E=6,B=3或4.若B=3,F=5,C=4,G=9,D=8,满足题目;若B=4,F=4,矛盾,舍.综上,A +B +C +D +E +F +G=1+3+4+8+6+5+9=36.【答案】36【例 2】 下面的算式中不同的汉字表示不同的数字,相同的汉字表示相同的数字.如果巧+解+数+字+谜=30,那么“巧解数字谜”所代表的五位数是多少?【考点】加法数字谜 【难度】3星 【题型】填空【解析】 观察算式的个位,由于谜+谜+谜+谜+谜和的个位还是“谜”,所以“谜”=0或5。
① 若“谜”=0,则十位上字×4的个位是字,字=0,出现重复数字,因此“谜”≠0。
小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。
选手们为争夺冠军,都在舞台上发挥着自己的最好水平。
台下的工作人员小熊和小白兔正在统计着最后的得分。
由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。
观众的情绪也影响着两位分数统计者。
只见分数一到小白兔手中,就像变魔术般地得出了答案。
等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。
小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。
于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。
你可以试一试。
”小熊照着小白兔说的去做,果然既快又对。
四年级奥数《算式谜》练习题

第一讲《算式谜》(必做与选做)1.在下面算式□里,填上合适的数字,使算式成立,积是()。
A. 3210B. 2340C. 2350D. 2310解析:6□×5=33□,左边方框可填6或7,而又6□×3=1□8,可以得出6□=66 66×35=2310。
所以选D。
2.在下面算式□里,填上合适的数字,使算式成立。
积是()。
A. 1231B. 1431C. 1531D. 1631 解析:□+5=13(满10进1位,□=8,□1=81,2□×□=81,27×3=81或23×7=81,所以第二个乘数的个位有3或7,(第二个乘数的十位×第一位乘数个位,积的尾数是5)□×□积的尾数是5,可以推出第二个乘数十位是5,讨论27×53=1431与23×57=1311,发现23×57=1311不合题意舍去。
所以选B。
3.在下面算式□里,填上合适的数字,使算式成立。
这个两位数是()。
A. 31B. 32C. 35D. 37解析:285乘一个一位数得到一个四位数,且这个四位数的千位是1,那么满足条件的只有4或5或6或7,再结合这个四位数十位上是2,可知道这个一位数是5,285×5=1425,由285×□积为三位数,□里只能填1或2或3,再由百位上是9,推出□里是3 。
算式为285×35=9975 所以两位数是35。
所以选C。
4.在下面算式□里,填上合适的数字,使算式成立。
这个三位数乘数是()。
A. 787B. 887C. 897D. 987解析:从□8□×5=4□35,80×5=400,而积的最后两位是35,从而推出第一个乘数的个位是7,又因为7×□(第二个乘数十位)的积末尾是4,推出第二个乘数十位是2,即第二个乘数是25,□87×5=4□35,第一个乘数百位是8或9,又因为□87×2=17□4,所以第一个乘数百位只有8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字谜从形式上可以分为横式数字谜与竖式数字谜,从运算法则上可以分为加减乘除四种形式的数字谜。
横式与竖式亦可以互相转换,本讲中将主要介绍数字谜的一般解题技巧。
主要横式数字谜问题,因此,会需要利用数论的简单奇偶性等知识解决数字谜问题。
一、基本概念 填算符:指在一些数之间的适当地方填上适当的运算符号(包括括号),从而使这些数和运算符号构成的算式成为一个等式。
算符:指 +、-、×、÷、()、[]、{}。
二、解决巧填算符的基本方法(1)凑数法:根据所给的数,凑出一个与结果比较接近的数,再对算式中剩下的数字作适当的增加或减少,从而使等式成立。
(2)逆推法:常是从算式的最后一个数字开始,逐步向前推想,从而得到等式。
三、奇数和偶数的简单性质(一)定义:整数可以分为奇数和偶数两类(1)我们把1,3,5,7,9和个位数字是1,3,5,7,9的数叫奇数.(2)把0,2,4,6,8和个位数是0,2,4,6,8的数叫偶数.(二)性质: ①奇数≠偶数.②整数的加法有以下性质:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.③整数的减法有以下性质:奇数-奇数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;偶数-偶数=偶数. ④整数的乘法有以下性质:奇数×奇数=奇数;奇数×偶数=偶数;偶数×偶数=偶数.知识点拨教学目标5-1-1-1.算式谜(一)例题精讲模块一、巧填算符(一)巧填加减运算符号【例1】在下面算式适当的地方添上加号,使算式成立。
88888888=1000【考点】巧填算符之凑数法【难度】3星【题型】填空【解析】要在八个8之间只添加号,使和为1000,可先考虑在加数中凑出一个较接近1000的数,它可以是888,而888+88=976,此时,用去了五个8,剩下的三个8应凑成1000-976=24,这只要三者相加就行了。
本题的答案是:888+88+8+8+8=1000【答案】888+88+8+8+8=1000【例2】在等号左边9个数字之间填写6个加号或减号组成等式:1 2 3 4 5 6 7 8 9=101 【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】迎春杯,中年级,初赛,第2题【解析】(不唯一)123456789101-+-+++=++++-+=或123456789101【答案】123456789101++++-+=或123456789101-+-+++=【例3】在下面的□中填入“+”、“一”,使算式成立:1110987654210=□□□□□□□□3□□【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【答案】11+10+9-8-7-6-5-4+3-2-1=0.(答案不唯一)【巩固】在下面的□中填入“+”、“一”,使算式成立:11109876321=□□□□□□5□4□□【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】希望杯,六年级,初赛,第2题,6分【解析】11+10+9……3+2=65,所以只要将其中和为32的几项的加号改成减号即11-10-9-8+7+6-5+4+3+2=1【答案】11-10-9-8+7+6-5+4+3+2=1【例4】在下面算式中合适的地方,只添两个加号和两个减号使等式成立。
123456789=100【考点】巧填算符之凑数法【难度】3星【题型】填空【解析】在本题条件中,不仅限制了所使用运算符号的种类,而且还限制了每种运算符号的个数。
由于题目中,一共可以添四个运算符号,所以,应把1 2 3 4 5 6 7 8 9分为五个数,又考虑最后的结果是100,所以应在这五个数中凑出一个较接近100的,这个数可以是123或89。
如果有一个数是123,就要使剩下的后六个数凑出23,且把它们分为四个数,应该是两个两位数,两个一位数.观察发现,45与67相差22,8与9相差1,加起来正巧是23,所以本题的一个答案是:123+45-67+8-9=100。
如果这个数是89,则它的前面一定是加号,等式变为1 2 3 4 5 6 7+89=100,为满足要求,1 2 3 45 6 7=11,在中间要添一个加号和两个减号,且把它变成四个数,观察发现,无论怎样都不能满足要求。
补充说明:一般在解题时,如果没有特别说明,只要得到一个正确的解答就可以了。
这类限制比较多的题目的解决过程中,要时时注意按照题目的要求去做,由于题目的要求比较高,所以解决的方法比较少。
【答案】123+45-67+8-9=100(二)巧填四则混合算符号【例5】请将四个4用四则运算符号、括号组成五个算式,使它们的结果分别等于5、6、7、8、9。
【考点】巧填算符之凑数法【难度】2星【题型】填空【关键词】华杯赛,决赛,第10题,10分【解析】(4×4+4)÷4=5,4+(4+4)÷2=6,4+4-4÷4=7,4+4+4-4=8,4+4+4÷4=9【答案】(4×4+4)÷4=5,4+(4+4)÷2=6,4+4-4÷4=7,4+4+4-4=8,4+4+4÷4=9【例6】在下面式子中的W中选择填入+⨯使等式成立。
1W2W3W4W5W6W7W8W9W10=100【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】学而思杯,4年级,第6题【解析】1⨯2+3⨯4+5+6+7⨯8+9+10=100【答案】1⨯2+3⨯4+5+6+7⨯8+9+10=100【例7】在下面算式合适的地方添上+-⨯、、,使等式成立。
12345678=1【考点】巧填算符之逆推法【难度】3星【题型】填空【解析】这道题的特点是等号左边的数字比较多,而等号右边的得数是最小的自然数1,可以考虑在等号左边最后一个数字8的前面添“-”号。
这时,算式变为:1 2 3 4 5 6 7-8=1只需让1 2 3 4 5 6 7=9就可以了,考虑在7的前面添“+”号,则算式变为1 2 3 4 5 6+7=9,只需让1 2 3 4 5 6=2就可以了,同开始时的想法,在6的前面添“-”号,算式变为1 23 4 5-6=2,这时只要1 2 3 4 5=8即可.同样,在5前面添“+”号,则只需1 2 3 4=3即可.观察发现,只要这样添:1+2×3-4=3就得到本题的一个解为1+2×3-4+5-6+7-8=1。
补充说明:一般逆推法常限于数字不太多(如果太多,推的步骤也会太多),得数也比较小的题目,如例4.在解决这类问题时,常把逆推法和凑数法结合起来使用,我们称之为综合法.所以,在解决这类问题时,把逆推法和凑数法综合考虑更有助于问题的解决。
【答案】1+2×3-4+5-6+7-8=1【巩固】在下列算式中合适的地方添上+-⨯、、,使等式成立。
① 987654321=1993,② 123456789=1993【考点】巧填算符之凑数法【难度】3星【题型】填空【解析】本题的特点是所给的数字比较多,而得数比较大,这种题目一般用凑数法来做,在本题中应注意可使用的运算符号只有+-⨯、、。
①中,654×3=1962,与结果1993比较接近,而1993-1962=31,所以,如果能用9 8 7 2 1凑出31即可,而最后两个数合在一起是21,那么只需用9 8 7凑出10,显然,9+8-7=10,就有:9+8-7+654×3+21=1993②中,与1993比较接近的是345×6=2070.它比1993大77,现在,剩下的数是1 2 7 8 9,如果把7、8写在一起,成为78,则无论怎样,前面的1、2和最后的9都不能凑成1.注意到8×9=72,而7+8×9=79,1×2=2,79-2=77.所以这个问题可以如下解决:1×2+345×6-7-8×9=1993。
【答案】9+8-7+654×3+21=1993;1×2+345×6-7-8×9=1993【例8】在下面算式合适的地方添上+-⨯、、号,使等式成立。
3333333333333333=1992【考点】巧填算符之凑数法【难度】3星【题型】填空【解析】本题等号左边数字比较多,右边得数比较大,仍考虑凑数法,由于数字比较多,在凑数时,应多用去一些数,注意到3333=999⨯⨯,它比1992大6,所以只要用剩下的八个⨯,所以3333+3333=19983凑出6就可以了,事实了,3+3+33+33+33=6---,由于要减去6,则可以这样添:3333+333333+33+33+33=1992⨯⨯-----。
【答案】3333+333333+33+33+33=1992⨯⨯-----【例9】在下面合适的地方添上适当的运算符号使算式成立.(相邻的几个数可以组成一个数) =22222222208【考点】巧填算符之凑数法【难度】3星【题型】填空【关键词】学而思杯,2年级,第2题【解析】 22222222208-+⨯⨯= 【答案】22222222208-+⨯⨯= 【例 10】 利用运符号及括号,把数1、3、7、9连成结果等于5的算式.【考点】填横式数字谜之复杂的横式数字谜 【难度】2星 【题型】填空【关键词】走美杯,3年级,初赛,【解析】 本题属于数字谜问题,经过尝试得到()97315-+⨯=【答案】()97315-+⨯=【例 11】 在方框中添加适当运算符号(不能添加括号),使等式成立.【考点】巧填算符之逆推法 【难度】4星 【题型】填空【关键词】走美杯,3年级,初赛【解析】 9+3+4+19-8-5+4=26【答案】9+3+4+19-8-5+4=26 (三)巧填算符综合【例 12】 在下列算式中合适的地方,添上+、-、×、÷、()等运算符号,使算式成立。
①6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1993 ②2 2 2 2 2 2 2 2 2 2 2 2=1993【考点】巧填算符之凑数法 【难度】4星 【题型】填空【解析】 本题中两道小题的共同特点是:等号左边的数字比较多,且都相同,而等号右边的数是1993,比较大.所以,考虑用凑数法,在等号左边凑出与1993较接近的数.①题中,666+666+666=1998,比1993大5,只要用余下的七个6凑成5就可以了,即6 6 6 6 6 6 6=5.如果把最前面一个6留下来,则只须将剩下的六个6凑成1,即6 6 66 6 6=1,注意到6÷6=1,6-6=0,可以这样凑 6÷6+6-6+6-6=1,或666÷666=1。