第7章-3 收敛性稳定性
数列的极限与序列的收敛性

金融学
金融学中的数列 收敛性分析可用 于股市走势预测 和投资决策的制
定。
谢谢观看!
在数学的世界里,数列的极限与序列的收敛性是 一个非常重要且精彩的课题。通过深入理解数列 的极限概念和收敛性质,我们可以更好地应用数 学知识解决实际问题,探索数学的奥秘。希望本 次演讲能够带给您新的启发和思考,谢谢!
03 夹逼准则
如果数列an、bn、cn满足an≤bn≤cn且lim an lim cn = L,则lim bn = L。
收敛数列的应用
物理学
在物理学中,收 敛数列可用于描 述物体运动的变 化规律和稳定状
态。
工程学
工程学中的数列 极限理论可应用 于信号处理、控 制系统设计等领
域。
生物学
生物学研究中, 收敛数列可用于 模拟生物体内的 生长发育过程。
数列的极限与序列的收敛性
汇报人:大文豪
2024年X月
目录
第1章 数列与序列的概念 第2章 数列的极限计算 第3章 序列的收敛性判定 第4章 数列与序列收敛的应用 第5章 数列与序列的收敛性分析 第6章 总结与展望 第7章 数列的极限与序列的收敛性
● 01
第一章 数列与序列的概念
数列与序列的定 义
序列极限计算方法
直接计算 夹逼准则 L'Hopital法则
序列极限计算实例 分析
计算极限值 分析收敛性 比较各方法优劣
● 04
第4章 数列与序列收敛的应 用
数列与序列在微积分中的应用
01 数列和序列在微积分中的作用
探讨数列序列的极限对微积分的意义
02 使用数列与序列证明微积分定理
探究数列序列如何证明微积分定理
数列的极限概念
数列的极限是数列中的元素随着序号趋向于某个 常数时所表现出的性质。当数列的极限存在且有 限时,我们称该数列收敛。极限的概念在数学分 析中具有重要意义,能够帮助我们理解数列的变 化趋势和发展规律。
《机械工程控制基础》教案

《机械工程控制基础》教案学时分配总学时:32学时授课学时:28学时实验:4学时。
基础课程先修课:大学物理、理论力学、工程数学、电工学、高等数学、机械原理。
课程性质《机械工程控制基础》是高等工业院校机械类专业普遍开设的一门重要的技术基础课,在整个教学计划中,以主干课程的角色,起着承上启下的作用,具有十分重要的地位。
本课程是一门专业基础理论课程,详述了研究对象的建模方法、系统响应分析方法,系统介绍了单输入单输出线性定常系统的时域性能分析、频域性能分析、系统的稳定性分析方法,介绍系统性能校正方法,为《机电一体化系统设计》、《机电传动控制》、《计算机控制技术》等机械电子工程专业的后续课程打下基础。
课程的主要任务通过本课程的学习,使学生掌握经典控制理论的基本概念和基础知识, 掌握机械工程中的研究对象的建模方法;掌握一阶、二阶系统的时域性能分析和频域性能分析方法;能熟练地根据Nyquist图、Bode图判断系统的稳定性;掌握系统性能校正方法;使学生能分析系统的性能,能改进或设计简单的控制系统。
第一次课第1章绪论1.1机械控制基础的研究对象、课程的基本任务、控制系统的基本要求一、机械控制基础的研究对象:系统、输入、输出2、典型闭环控制系统的框图的构成输入信号输出量给定值偏差控制器执行机构被控对象-测量变送器给定环节:给出与系统输出量希望值相对应的系统输入量。
测量环节:测量系统输出量的实际值,并把输出量的量纲转化成与输入量相同。
比较环节:比较系统的输入量和主反馈信号,并给出两者之间的偏差。
放大环节:对微弱的偏差信号进行放大和变换,使之具有足够的幅值和功率,以适应执行元件动作的要求。
执行环节:根据放大后的偏差信号产生控制、动作,操作系统的输出量,使之按照输入量的变化规律而变化。
二、课程的基本任务研究系统、输入、输出之间的动态关系三、控制系统的基本要求:稳、快、准1.2 控制理论的研究内容、发展、应用、学习方法。
控制理论研究五方面的内容系统分析问题当系统已定、输入(或激励)已知时,求出系统的输出(或响应),并通过输出来研究系统本身的有关问题。
数值分析-第7章 矩阵特征值问题的数值解法n

7
9 11 12
6.104716
6.026349 6.006637 6.003327
(-0.450275, -0.322058, 1.0)
(-0.445914, -0.318617, 1.0) (-0.444814, -0.31775, 1.0) (-0.444630, -0.317606, 1.0)
其中i为A的特征值,P的各列为相应于i的特征向量。
P -1 AP D
2
n
2
定理7.1.3 ARnn,1, …, n为A的特征值,则
(1)A的迹数等于特征值之和,即 tr ( A) aii i
i 1 i 1
n
n
(2)A的行列式值等于全体特征值之积,即
1 xi(k +1) / xi(k )
i 1,2,, n
可见,当k充分大时, ( k ) 近似于主特征值, ( k +1) 与x ( k )的对应非零分量的比值 x x 近似于主特征值。
在实际计算中需要对计算结果进行规 , 范化。因为当 1 1时,x (k ) 趋于零, 当1 1时, x ( k )的非零分量趋于无穷。 从而计算时会出现下溢 或上溢。
特征值的范围. 解 我们先分别求出各个圆盘区域。 D1 = {z:|z – 1|£0.6};D2 = {z:|z – 3|£0.8} D3 = {z:|z + 1|£1.8};D4 = {z:|z + 4|£0.6}. 易见D2和D4为 弧立圆盘分别 包含A的两个实 特征值.
7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))

,
使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,
,
故
在
上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有
,
而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】
设
在
点的邻域
存在任意阶导数,则称幂级数
为
在
点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.
在
内存在任意阶导数,则其泰勒级数收
,
其中
.
【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于
,
又级数
与
均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)
设
,则下列命题正确的是 .
(A)若
条件收敛,则
与
都收敛.
【解析】因
当
时,因级数
设
,所以收敛半径
.
及
发散,故收敛域为
武汉大学《数值分析》课件-第7章

,
b
n
a
可知 t [ 0, n] .
由Lagrange插值基函数有
lk
(x)
lk
(a
th)
n i0,ik
x xk
xi xi
n ti i0,ik k i
(1)nk
n
ti
k !(n k )! i0,ik
而 dx hd t b a dt,所以
n
b a
lk
(x)dx
n 0
再用 h/2 代替 h , 使(6)式变为
F*
F2
(h)
1 8
k2h2
3 32
k3h3
(7..).
用4乘(7)式减去(6)式,消去含 h2的项,得
F*
[
F2
(
h 2
)
F2 (h
/
2) 3
F2 (h)]
1 8
(k83)h3
...
同样记
而 I 3( f ) b 6 a (1 4 1) (b a )
有 R ( ,1) 0
I(
f
)
I3(
f
)
R( ,
f
)
b a{ f 6
(a) 4
f
(a
b) 2
f
(b)}
R( ,
f
)
(1)当 f ( x) x时 , I ( f ) b 2 a2 I3( f ) b 6 a ( a 22a 2b b ) b2 2 a2
| R(1, f ) | M n1 hn2 n n (t i)dt
(n 1)!
0 i0
(5)
验证求积公式(3)的代数精确度,不用误差估计的(4)式,
数值分析 第7章 非线性方程求根综述

7.1.2 二分法
原理:若 f C[a, b],且 f (a) ·f (b) < 0,即两个端点值异号, 且f(x)在区间[a,b]上严格单调,则利用闭区间上 连续函数的性质,可知f(x)在 [a, b]上存在唯一的 零点,其几何意义如下图:
f(b) a x* f(a) b a x* f ( b) f(a)
满足此方程的解x, 称为方程的根, 也称x是函数f(x)的零点.
如果函数f(x)可以写成
f(x)=(x- x*)mg(x),其中g( x*) ≠0. 当m>1时,称x*为方程(1.1)的m重根或称x*是函数f(x)的m
重零点;
当m=1时,称x*为方程(1.1)的单根或称x*是函数f(x)的 单重零点.
b
一、二分法的具体计算过程
设
f C[a, b] ,现求方程f(x)=0在区间[a,b] 上的根.
设函数f(x)满足 f (a) f (b) 0, 不妨设 f (a) 0, f (b) 0.
ab , 计算区间中点的函数值 第一步: 取区间中点 2 ab ) 0, ①如果 f ( 2 f( ab ), 2
分离区间:许多方程往往有两个以上的根,在某个区间[a,b] 上,如果方程在此区间内只含一个根,我们称此区间为方程的 分离区间。 原理:若 f C[a, b],且 f (a) ·f (b) < 0,即两个端点值异号, 且f(x)在区间[a,b]上严格单调,则利用闭区间上 连续函数的性质,可知f(x)在 [a, b]上存在唯一的 零点,其几何意义如下图: 曲线y=f(x)与 f ( a ) f(b) x轴的交点就是 f(x)的零点.
数理学院
SCHOOL OF MATHEMATICS AND PHYSICS
有限元第7章等参数单元

(1
i
)(1 i )
4 i 1
i xi
4
ii xi
4
4 i xi
i1
4
ii xi
4
4
i 1
i yi
4
ii
4
yi
4 i yi
i1 4
ii yi
4
4 i 1
i xi
4
ii xi
4
4 i xi
i1
4
ii xi
4
4
i 1
i yi
4
ii
4
yi
4 i yi
i1 4
这样可得到局部坐标系下正方形单元的位移插值函数(7-1)可以表示为
4
u Ni ( ,)ui i 1
4
v Ni ( ,)vi i 1
从矩形单元位移插值函数的讨论中可以知道,局部坐标系下的正方形单 元必然满足解的收敛性条件。下面就要看如何实现坐标变换来满足变换 相容性的要求。
采用位移插值函数相同形式的坐标变换式,能满足坐标变换相容性的 要求,即
N1 y
v1
N2 y
v2
N3 y
v3
N4 y
v4
N1
y
u1
N2 y
u2
N3 y
u3
N4 y
u4
N1 x
v1
N2 x
v2
N3 x
v3
N4 x
v4
u1
N1
x
0
0
N1 y
N2 x
0
0
N2 y
N3 x
0
0
N3 y
N4 x
0
0
N4 y
数值分析(颜庆津)第7章 学习小结

第7章 常微分方程初值问题的数值解法--------学习小结一、 本章学习体会本章的主要内容是要掌握如何用数值解代替其精确解,这对于一些特殊的微分方程,特别是一些不好解其通解方程是非常有用的。
对于本章我总结如下几点:1、本章计算量相对较小,重要是其思想。
在做题过程中,要理解各种方法的原理及推导过程。
2、本章对泰勒展开法有一定要求。
无论是求方法的阶数还是推导数值解法的公式经常用到泰勒展开。
因此,我们对于泰勒级数要有很清楚的认识。
3、在求数值解法的公式推导时,经常用到第六章的插值型求积公式。
可见,在整本书中,知识往往是贯通的。
二、 本章知识梳理将初值问题离散化 数值微分法(离散变量法)数值积分法 局部截断误差Taylor 级数法 ]),(,[)()(11h t y t h t y t y R n n n n n ϕ--=++整体截断误差n n n y t y -=)(ε初值问题数值解法的一般形式:k M n k y y y t F k n n n n -==++,,1,0,0),,,,,(1 常微分方程初值问题的数值解法的分类 显式方法隐式方法一般形式 ,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ局部截断误差 ),,(11h y t h y y R n n n n n ϕ--=++整体截断误差 n n n y t y -=)(ε显示单步法 局部截断误差与整体截断误差的关系若)(11++=p n h O R ,则)(1p n h O =+ε若数值方法的局部截断误差为)(1+p h O ,则称这种数值方法的阶数是p显式欧拉公式),,(1n n n n y t h y y ϕ+=+欧拉法隐式欧拉公式),(111++++=n n n n y t h y y ϕ基本思想⎩⎨⎧=≤≤='000)(),,(y t y T t t y t f y等价于10)],(,[)())(,()()(11<<+++=+=⎰++θθθh t y h t hf t y dt t y t f t y t y n n n t t n n n n ),(y x f龙格-库塔法不同点的数值解加权平均代替)](,[h t y h t f n n θθ++而使得截断误差的阶数尽可能高N 级R-K 方法的形式,2,1,0),,,(1=+=+n h y t h y y n n n n ϕ,∑==Ni i i n n k c h y t 1),,(ϕ相容性,收敛性和绝对稳定性1、相容性:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对h 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法至少是一阶的方法2、收敛性;(1)定义:若对任意的0y 及任意的),(0T t t ∈,极限)(lim )0(t y y n tt n h n ==∞→→则称单步法是收敛的(2)单步法的收敛的充要条件:)(0∞→→n n ε(3)收敛与相容的关系:设增量函数),,(h y t ϕ在区域}0,,|),,{(00h h y T t t h y t D ≤≤<∞≤≤=上连续,且对y 满足Lipschitz 条件,则单步法与微分方程相容的充要条件是单步法是收敛的3、稳定性(描述初始值的误差对计算结果的影响)4、绝对稳定性:线性多步法的基本思想线性多步法的一般形式∑∑==--++=r i ri i n i i n i n f h y y 011βα线性多步法 Simpson 公式Admas 公式 基于数值积分方法Milne 公式线性多步法的构造基于泰勒展开的待定系数法∑∑=-=--++'--=r i ri i n i i n i n n x y h x y x y R 0111)()()(βα三、 本章思考题试用数值积分法建立常微分方程的初值问题:),()(00y x f dxdy y x y =⎪⎩⎪⎨⎧=的数值求解公式:)(211n n n n f f h y y ++=++ 解:由),(y x f dxdy =得:dx y x f dy ),(= (1) 对于(1)式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用其求解模型方程(7-32)得到
(7-33)
un1 un hun (1 h)un , n 0, 1, 2L
当un有舍入误差时,其近似解为 u~n ,从而有
u~n1 (1 h)u~n
取 n un u~n ,得到误差传播方程
n1 (1 h) n ,
得 1
1 1 h
,
当
1 h 1 时,1 1 , 故
1 h 1 就是
隐式Euler法的绝对稳定区域。
它是 h平面上以(1,0)为圆心的单位圆外区域。
当Re μ<0时,它位于 h 平面上y轴左侧区域。
当μ<0为实数时,绝对稳定区间为 (-∞,0)。
, 0
1h 1
Re 0
1h 1
h 0, 2
圆内(︱λ︱<1)。 对此有很多判别法,如Schur准则、轨迹法。
k=1~4的隐式Adams类方法的绝对稳定区间(μ<0为实数)。
步
阶
绝对稳定区间
1
2
(-∞,0)
2
3
(-6.0,0)
3
4
(-3.0,0)
4
5
(-1.8,0)
这里我们给出一种简单的、常用的判别法: 实系数二次方程λ2-b λ-c=0的根在单位圆内的充要条件为:
例如
初值问题
u
4tu
1 2
,
0t 2;
u(0) 1
精确解为 u(t) (1 t2 )2。考虑二步三阶显式法:
un2 4un1 5un h(4 fn1 2 fn )
取步长h=0.1,初值u0=1,附加值:u1 (1 h2 )2 (h 0.1) 。
精确解
数值解
数
0
值
0.1
结
0.2
果
0.3
本书中数值方法的稳定性也是如此。前提是求解好条件问题, 其中Re(μ)<0。另外,我们也不考虑h→0时方法的渐近稳定性 。因为实际计算时,h是固定的。 当某一步un有舍入误差时, 若以后的计算中不会逐步扩大,称这种稳定性为绝对稳定性。 此后,若不做特殊说明,都是指绝对稳定性 。
例如,对最简单的Euler法
第7章--2
常微分方程的数值解法的 收敛性、稳定性
以上我们讨论了求解问题(7-1),(7-2)的单步法 和多步法。 对于上述两类方法求近似解(数值解)还 应关注三个问题:误差估计、收敛性和稳定性。
具体说, 一、数值方法的局部截断误差和阶
二、在离散点tn处的数值解un是否收敛到精确解u(tn)
三、数值方法的稳定性
…
…
2.0
25.0000000
-68.639804 +367.26392
… -6.96×108
在开始几步数值解与精确解符合,但再往后算,数值解的 误差急剧增长,完全歪曲了真解.
通常人们都是通过模型方程来讨论方法的数值稳定性。
模型方程为:
u u
(7-32)
而一般形式的一阶微分方程总能化成(7-32)的形式。
对于第一个问题前面我们已经讨论过,而关于数值 方法收敛性问题我们在这里不详细讨论,只给出一些基 本结论性的结果,即:
对单步法,当方法的阶p≥1时,有整体误差
En u(tn ) un O(h p )
故有
lim
h0
E
n
0
,因此方法是收敛的。
对于多步法,若方法是k 步p 阶法,那么(7-24)是
表
0.4
0.5
…
1.0000000 1.0201000 1.0816000 1.1881000 1.3456000 1.5625000
…
1.0000000 1.0201000 1.0812000 1.1892385 1.3388660 1.5929935
…
1.0
4.0000000
1.0
4.8841000
定理7.2 若线性多步法(7-24)的阶p≥1,且满足 根条件,则方法是收敛的。
对于常用的数值方法都是满足收敛性条件的。 下面我们着重讨论第三个问题,即数值方法的稳
定性问题。 用多步法计算时,各种因素如初值
u0 , u1, , uk 1
是有误差的,且这些误差将在计算中传递下去。如果 误差积累无限增长,则会歪曲真解,这样的算法是不 能用的。
平面中的某一区域D中方法都是绝对稳定的,而在区域D外,方法
是不稳定的,则称D是方法的 绝对稳定区间
1
绝对稳定区域; 它与实轴的交称为
绝对稳定区间。
绝
对
例如,显式Euler方法的 稳
定
绝对稳定区域、区间。如图 区
域
2
0
1, 0
1
现在考察多步法(7-24),将它用于解模型方程(7-32)
得到k阶线性差分方程
(7-4)关于 h h (h ) 1, j 1, 2,L , k
例如,对于k=1时,考虑隐式方法中最简单的隐式Euler法
un1 un h f (tn1,un1) n 0 , 1 , L
其特征方程为: () h () (1 h ) 1 0
一个k阶差分方程,引入多步法(7-24)的第一特征多项
式和第二特征多项式: 第一特征多项式
第二特征多项式
k
() j j , j0
k
() j j j0
定义7.1 若(7-24)的第一特征多项式ρ(λ)的所有
根在单位圆内或圆上(︱λ︱≤1),且位于单位圆周上
的根都是单根,称多步法(7-24)满足根条件。
k
k
jun j h jun j
j0
j0
(7-34)
若取h h ,则记(7-34)的特征方程为
其中
() h () 0
k
k
() j j () j j
j0
j0
(7-35)
由k阶线性差分方程的性质我们可以得到如下结论,若特征 方程(7-35)的根都在单位圆内(︱λ︱<1) ,则线性多步法
又如,梯形法
un1
un
1 2 h( fn1
fn)
n 0,1,
其特征方程为:
() h ()
1
h 2
1
h 2
0
1 h
其根
1(h ) 1
2 h
,
2
1 h
当Reμ<0时,
1
2 h
1,
2
故梯形公式
的绝对稳定域是 h 平面的左半平面。绝对稳定区间为(-∞,0)。
这样检验绝对稳定性归结为检验特征方程(7-35)的根是否在单位
记 h h ,只要 1 h 1 ,则显式Euler方法的解和误差
都不会恶性发展,此时方法绝对稳定。 若μ为实数(μ<0),
从 1 h 1, 可得
2
h
0 。即
0
h
2
时(,7-33)绝对稳定,
若μ为复数,在 h h 的复平面上,则 1 h 1 表示为以
(-1,0)为圆心,1为半径的单位圆。
定义7.2 一个数值方法用于求解模型问题(7-32),若在