电子基础及电路分析方法
电工学-电路及其分析方法

沿顺时针方向列写回路
b + U2 – U1 –
a+
c 的 KVL 方程式,有
–
U3
I+
U1 + U2 – U3 – U4 + U5 = 0 代入数据,有
– U5
+
+R4 U4 – d
(–2)+ 8 – 5 – U4+(–3)= 0 U4 = – 2 V U4 = – IR4
R
–
–
+
图 (a)
图 (b)
图 (c)
欧姆定律:通过电阻的电流与电压成正比。
U 、I 参考方向相同
表达式
U =R I
U、 I 参考方向相反 U = –RI
图 (b) 中若 I = –2 A,R = 3 ,则 U = – 3 ( –2 ) = 6 V
电压与电流参 考方向相反
电流的参考方向 与实际方向相反
最后讨论电路的暂态分析。介绍用经典法和三要素 法分析暂态过程。
1.1 电路模型
实为际了的便电于路分是析由与一计些算按实需际要电起路不,同在作一用定的条元件件下或常器忽 件略所实组际成部,件如的发次电要机因、素变而压突器出、其电主动要机电、磁电性池质、,电把阻它器看 等成,理它想们电的路电元磁件性。质是很复杂的。
R=
R1 R2
R1 + R2
[例 1] 图示为变阻器调节负载电阻 RL 两端电压的 分压电路。 RL = 50 ,U = 220 V 。中间环节是变阻器, 其规格是 100 、3 A。今把它平分为四段,在图上用 a,b,c,d,e 点标出。求滑动点分别在 a,c,d,e 时,负载和变 阻器各段所通过的电流及负载电压,并就流过变阻器的
电路与电子技术基础

放大电路的性能指标
放大倍数、输入电阻、输出电阻、通频带等是衡量放大电路性能的 重要指标。
数字逻辑门电路
逻辑门电路的基本概念
01
逻辑门电路是实现逻辑运算的电子元件,具有真值表、表达式
和逻辑图等描述方法。
基本逻辑门电路
计算机系统中的应用
中央处理器(CPU)
存储器
计算机系统的核心是中央处理器, 它由大量的晶体管组成,电路与 电子技术是实现这些晶体管的关 键技术之一。
存储器是计算机系统中用于存储 数据的元件,电路与电子技术能 够实现高速、大容量的存储器的 设计和制造。
输入输出设备
计算机系统的输入输出设备如鼠 标、键盘、显示器等都离不开电 路与电子技术的应用。这些设备 中的信号传输和处理都需要电路 与电子技术的支持,以确保信号 的稳定性和可靠性。
总结词
电路的基本物理量包括电流、电压、电阻、电容和 电感。
详细描述
电流是指单位时间内通过导体横截面的电荷量,用符号I表示, 单位是安培(A);电压是指电场中两点之间的电位差,用符 号U表示,单位是伏特(V);电阻是指电流在导体中受到的 阻碍作用,用符号R表示,单位是欧姆(Ω);电容是指电容 器存储电荷的能力,用符号C表示,单位是法拉(F);电感是 指线圈在磁场中存储磁场能量的能力,用符号L表示,单位是 亨利(H)。
控制系统设计
电路与电子技术是自动控制系统 设计的基础,能够实现控制系统 的信号采集、处理和控制输出等
功能。
传感器与执行器
传感器和执行器是自动控制系统中 的关键元件,电路与电子技术能够 实现这些元件的设计和制造,提高 系统的精度和稳定性。
电路分析基础

电路分析基础电路分析是电气工程中的重要基础知识,它涉及电路元件、电流、电压等方面的理论和计算。
通过电路分析,我们可以了解电路的性质和特点,为电路的设计与故障排除提供基础。
一、电路基本概念1. 电路:由电源、电路元件以及导线等组成的闭合路径,用于电流的传输与控制。
2. 电源:提供电流与电压的装置,如电池、发电机等。
3. 电路元件:用于改变电流与电压的元件,如电阻、电容、电感等。
二、基本电路定律1. 欧姆定律:描述电流、电压和电阻之间的关系,其数学表达式为V=IR,其中V为电压,I为电流,R为电阻。
2. 基尔霍夫定律:分为基尔霍夫电流定律和基尔霍夫电压定律。
前者表示在电路节点处,进入和离开该节点的电流之和为零;后者表示在闭合回路中,电压的代数和为零。
三、电路分析方法1. 等效电路法:将复杂电路化简为等效电路,通过替换与合并元件简化分析过程。
2. 串并联法:将电路中的元件按照串联和并联的方式组合,简化电路分析。
3. 特定电路分析法:对于特定类型的电路,可以采用特定的分析方法,例如交流电路中的复数法、矩阵法等。
四、常见电路元件1. 电阻:用于限制电流的元件,单位为欧姆,常用于控制电流大小。
2. 电容:用于储存电荷的元件,单位为法拉,常用于滤波与储能。
3. 电感:用于储存磁能的元件,单位为亨利,常用于电磁感应与频率选择性。
4. 二极管:一种具有单向导电性质的元件,常用于整流和开关。
5. 晶体管:一种电子器件,具有放大和开关功能,常用于电子电路中。
五、电路分析实例以下是一个简单的电路分析实例:假设有一个由电压源(V)和电阻(R1、R2、R3)串联而成的电路,如图所示。
\[示意图]我们可以根据欧姆定律和基尔霍夫定律来分析该电路。
首先,根据欧姆定律,我们可以得到以下公式:\[V = I \cdot R_1\]\[V = I \cdot R_2 + I \cdot R_3\]接下来,我们可以根据基尔霍夫定律,得到以下公式:\[I = \frac{V}{R_1}\]\[I \cdot R_2 + I \cdot R_3 = V\]将上述两个公式代入前面的欧姆定律公式中,可以得到:\[\frac{V}{R_1} \cdot R_2 + \frac{V}{R_1} \cdot R_3 = V\]整理得到:\[\frac{R_2 \cdot R_3}{R_1} = 1\]通过这样的分析,我们可以获得电路中各个元件之间的关系,为电路设计和故障排除提供参考。
电子技术基础

电子技术基础电子技术基础是现代科技的基础之一,是指电子学的基本理论和电子元器件的基本知识。
电子技术基础的主要内容包括电路分析、数字电路、模拟电路、通信电路、微处理器、数字信号处理、电磁场和波导、量子力学等。
本文将对电子技术基础的主要知识点进行详细的介绍。
一、电路分析电路分析是电子技术基础中的一个重要知识点。
电路分析的主要内容包括基本电路定律、戴维南等效电路、史密斯图和电感等。
在电路分析中,需要掌握基本电路定律,包括欧姆定律、基尔霍夫定律和电压-电流特性等。
戴维南等效电路的内容比较复杂,主要是用一个定电源替换一个电路的一部分,从而简化电路分析。
史密斯图是通信工程中常用的一个图形工具,它可以表示阻抗匹配电路和传输线中的反射现象。
学习电路分析还需要了解电感的性质。
电感是指导体中储存磁能量的物理量,具有阻抗变化、滤波、放大和相移等作用。
通过电路分析的知识,可以更好地了解电子电路设计的基本原理和方法。
二、数字电路数字电路是电子技术基础中的另一个重要知识点。
数字电路的主要内容包括布尔代数、逻辑门、触发器和计数器等。
布尔代数是一种基本数学方法,以一种抽象方式描述逻辑表达式的运算。
逻辑门是实现布尔代数运算的电路元件。
常见的逻辑门包括与门、或门、非门、异或门和与或非门等。
触发器是一种逻辑电路元件,由多个逻辑门构成,可以存储和输出1或0的二进制数字信号。
计数器是能够记录电子数据的设备,可以用来计算时间、频率和速度等信息。
数字电路在电子技术中的应用非常广泛,包括数字信号处理、数字逻辑设计、计算机电路和数字通信系统等。
通过数字电路的知识,可以更好地理解和设计数字电子系统。
三、模拟电路模拟电路是电子技术基础中的另一个重要知识点。
模拟电路的主要内容包括放大器、滤波器、振荡器和功率放大器等。
放大器是模拟电路中最常见的元件,有增益、放大和滤波等作用。
滤波器是对信号进行滤波和去噪的电路,可以减少杂音和干扰等。
振荡器是一种元件,可以产生稳定的交流电信号。
电路分析方法

电路分析方法电路分析是电子学中的基础知识,用于研究电流、电压和功率在电路中的分布和变化。
通过电路分析,我们可以有效地理解和解决复杂电路的问题。
本文将介绍几种常用的电路分析方法,包括基尔霍夫定律、戴维南定理、超节点和超网分析法。
一、基尔霍夫定律基尔霍夫定律是电路分析中最基本的定律之一,它包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,在任意节点处,流入该节点的电流之和等于流出该节点的电流之和。
基尔霍夫电压定律则指出,在任意闭合回路中,电压源的代数和等于电阻元件电压降之和。
通过应用基尔霍夫定律,我们可以通过建立节点电流方程和回路电压方程来解决电路中的问题。
二、戴维南定理戴维南定理是一种基于线性代数的电路分析方法,它可以简化复杂电路的计算。
该定理指出,任意含有电流源和电阻的简单电路,可以用一个等效电阻和等效电压源来代替。
等效电阻等于原电路中的两端电压与两端电流的比值,而等效电压源等于原电路开路时的电压。
通过戴维南定理,我们可以将复杂电路简化为简单的等效电路,从而更方便地进行分析。
三、超节点法超节点法是一种适用于含有电压源的电路分析方法。
它通过将相邻节点的电压差设为一个新的未知数,从而将电压源内部的电流和电压关系纳入计算。
超节点法可以简化复杂电路的计算,并且能够准确地描述电流和电压之间的关系。
四、超网法超网法是一种基于网络拓扑理论的电路分析方法。
它通过将电路中的一些元件和节点合并,从而减少分析的复杂度。
超网法适用于复杂电路的分析,特别是在有大量分支和节点的情况下。
通过合理应用超网法,我们可以将电路简化为一些等效的网络,从而更便于分析电路的性能和特性。
综上所述,电路分析方法是电子学中至关重要的一环。
通过灵活运用基尔霍夫定律、戴维南定理、超节点和超网法等方法,我们可以准确地分析和解决电路中的问题,为电子设计和电路优化提供有效的参考。
同时,熟练掌握这些分析方法也是学习和研究更复杂电路的基础。
因此,深入理解和应用电路分析方法对于电子工程师来说具有重要的意义。
电工电子技术基础第1章 电路的基本理论及基本分析方法

-
电流源模型
实际电源可用一个电流为IS的理想电流源与电阻并 联的电路作为实际电源的电路模型,称为电流源模型。
其中
IS
U0 R0
称为短路电流
实际电源内阻R0越大,越接近于理想电流源。
第1章 电路的基本理论及基本分析方法
3.实际电源模型的等效变换
R0 + US -
等效电压源模型
IS
US R0
US R0IS
2.理想电流源:理想电流源是从实际电流源抽象出来的 理想二端元件,流过它的电流总保持恒定,与其端电压 无关。理想电流源简称电流源。 电流源的两个基本性质
①电流是给定值或给定的时间函数,与电压无关;
②电压是与相连的外电路共同决定的。
IS或iS
+ U或i
-
电流源的图形符号
电流源的伏安关系
i IS
o
u
直流电流源伏安特性
uR( i 关联u ) R( 或 i 非关联)
电阻参数R:表示电阻元件特性的参数。 线性非时变电阻:R为常数;简称为线性电阻。
第1章 电路的基本理论及基本分析方法
应当注意,非线性电阻不满足欧姆定律。
单位:SI单位是欧[姆](Ω)。计量大电阻时,以千欧 (KΩ)、兆欧(MΩ)为单位。
电阻的参数也可以用电导表示,其SI单位是西[门 子](S)。线性电阻用电导表示时,伏安关系为
②箭头,如图(a) i。
参考方向的意义:若电流的参考方向和实际方向一致, 则电流取正值,反之则取负值。如图(a)、(b)所示。
第1章 电路的基本理论及基本分析方法
二、电压、电位、电动势及其参考方向
1. 电压、电位、电动势
⑴电压
电路分析基础

电路分析基础电路分析是电子工程中的一个重要基础知识点,它涉及到电流、电压、电阻等各种电路元件之间的相互关系以及在电路中的运行规律。
本文将介绍电路分析的基础知识、常见电路模型和分析方法。
一、基本概念在进行电路分析之前,我们需要了解一些基本概念。
1. 电流(I):电流是电子在电路中的流动方向,它的单位是安培(A)。
2. 电压(V):电压是电子在电路中的能量差异,它的单位是伏特(V)。
3. 电阻(R):电阻是电路元件对电流的阻碍程度,它的单位是欧姆(Ω)。
4. 电路:电路由电子器件和电源组成,它是电子设备完成特定功能的基本元件。
二、常见电路模型在电路分析中,有几种常见的电路模型,它们可以帮助我们更好地理解和分析电路。
1. 简单串并联电路简单串并联电路由电阻元件连接而成,其中串联电路是电阻依序连接,而并联电路是电阻同时连接。
2. 直流电路直流电路是指电流方向恒定的电路,其中电流的大小和方向不随时间变化。
3. 交流电路交流电路是指电流方向随时间周期性变化的电路,其中交流电流的频率、幅度和相位等特性是需要考虑的因素。
三、分析方法在电路分析中,我们需要采用一些方法来计算电路中的电压、电流等参数。
1. 基尔霍夫定律基尔霍夫定律是电路分析的重要工具,它分为基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出,在电路的任何一个节点处,进入节点的电流等于离开节点的电流之和。
基尔霍夫电压定律指出,在电路中沿着任意一个回路,从一个节点到达回到该节点所经过的电压是零。
2. 电阻定律电阻定律是用来计算电阻上的电压和电流之间关系的方法,其中存在欧姆定律和功率定律。
欧姆定律指出,电阻上的电压与电阻上的电流成正比,即V = IR,其中V是电压,I是电流,R是电阻。
功率定律指出,电阻上的功率与电阻上的电流平方成正比,即P = I²R,其中P是功率,I是电流,R是电阻。
3. 网孔分析法网孔分析法是一种通过构建回路方程组来解决电路问题的方法,其中回路方程组可以通过基尔霍夫定律得到。
电路设计基础知识

电路设计基础知识第一篇:电路基础知识电路是电子技术的基础,也是我们生活中最常见的电子产品之一。
电路设计是电子工程师必须掌握的基本技能之一。
本文将介绍一些电路设计的基础知识,包括电路的基础理论、电路元件的基本分类、电路的分析方法和主要的电路设计软件。
第一部分:电路基础理论电路基础理论涉及电流、电压、电阻、电源和信号等基本概念。
下面是这些基本概念的简单解释:电流:电子在电路中的移动叫做电流,并且常用单位是安培(A)。
电压:电路中两点之间的电势差叫做电压,并且常用单位是伏特(V)。
电阻:电路元件对电流的阻碍叫做电阻,并且常用单位是欧姆(Ω)。
电源:电路中提供电能的装置叫做电源,比如电池或者交流电源。
信号:在电路中传递信息的电流或电压称为信号,包括模拟信号和数字信号。
第二部分:电路元件的基本分类电路元件是构成电路的基本建筑材料,按照其功能可以分为三类:能量源、信号源和响应元件。
能量源是提供电能的元件,例如电池和发电机。
信号源产生携带信息的信号,例如声音或光信号的源头和信号发生器。
响应元件转换电流、电压和功率等电量的元件,例如电阻、电容和电感等。
第三部分:电路的分析方法电路的分析方法包括基本电路定律、电路简化和电路分析工具。
基本电路定律:欧姆定律,基尔霍夫电压定律和基尔霍夫电流定律是电路分析的基本定律,可以推导出电路元件和节点之间的关系。
电路简化:通过简化电路元件和电路连接关系的方法,使电路更容易理解和分析。
可以采用串联、并联、三角形和四边形等等哈代的定理和简化电路。
电路分析工具:现代电路分析的工具主要包括模拟计算和数字计算方法。
模拟计算是通过模拟基于物理原理的电路行为预测电路性能。
数字计算是通过数字电路建模和仿真技术模拟数字电路行为,可以实现电路的自动设计和优化。
第四部分:电路设计软件电路设计软件是以计算机为基础的电路设计工具,包括逻辑仿真、PCB布线和电路板布版等工具。
下面是几个常用的电路设计软件:Multisim:适用于模拟电路设计和仿真。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制程中常用术语解释: 制程中常用术语解释:
1.空焊——零件脚或引线脚与锡垫间没有锡或其它因素造成没有接合。 2.假焊——假焊之现象与空焊类似,但其锡垫之锡量太少,低于接合面标准。 3.冷焊——锡或锡膏在回风炉气化后,在锡垫上仍有模糊的粒状附着物。 4.错件——零件放置之规格或种类与作业规定或BOM、ECN不符者,即为错件。 5.缺件——应放置零件之位址,因不正常之缘故而产生空缺。 6.极性反向——极性方位正确性与加工工程样品装配不一样,即为极性错误。 7.零件偏位——SMT所有之零件表面接着焊接点与PD位偏移不可超过1/2面积。
7、晶振(振荡器) 晶振(振荡器) 晶振 电路符号为Y。与晶体相比,振荡器内部除了有晶片外还有电阻、电容,已成 一个振荡电路。所以振荡器的四个脚是极性的。振荡器的外形如上图所示:为一砖 块形,有四个脚。其表面上的标记有振荡频率,第一脚位置,商标或厂家名称或牌 子、编号。在使用中我们只需认准振荡频率和第一脚位置就可以了。第一脚位置用 黑点“· ”表示。 8、常用元件符号归类 电阻 R 无极性 电容 C 有些有 变压器 T 有 保险丝 F 无 开关 S或SM 有 测试点 TP 无 稳压器 VR 有 二极管 CR或D 有 三极管 Q 有 发光二极管 LED或DS 有 变阻器 RV 无 电感器 L 有些有 热敏电阻 RT 无 晶体 Y或OS或X 无 集成电路 U 有 电阻网络 RN 有
黄色按键为功能切换按钮。 (如旋钮打在电阻、二极 管及通断量测档位时,每 按一次此键,量测功能便 会在上述三个功能间进行 切换)
量测电流接口
接表笔(红+、黑-)
(1.2图) 1.2图
2、示波器
2.1 示波器的分类:大致可分为模拟、数字和组合三类。现已数字示波器为例做部分学习; 2.2 什么是数字示波器:能将电信号经过数字化及其他后置处理以后再重建波形的仪器。 2.3 示波器的使用:(已Tektronix 2通道型为例)
二、电路板维修常用设备
1、万用表 1.1 万用表又叫万用电表、多用表、三用表、复用表,是一种多功能、多量程的测 量仪表,一般万用表可测量直流电流、直流电压、交流电压、电阻等,有的还可以 测交流电流、电容量、电感量及半导体的一些参数。 1.2 万用表分为指针式和数字式两种,现已数字式为主做如下介绍:(如1.2图) 1.3 万用表使用时应注意以下几点: a:表笔与接口必须接触良好且红黑表笔连接正确; b:量测电压时应注意交/直流档位的正确选择; c:量测电流时请注意红笔连接,并选择合适的量程,当无法确定量程时,应遵循 先大后小的原则; d:测电阻/电容时,不能带电测量。在量测PCBA之电阻实际阻值时应先将其取下 再量测,至少应一脚悬空。
三、电路板维修方法
1、分析前的准备工作 在有条件的情况的应准备的相应的原理图及治工具设备等; 2、不良现象的确认 在接到某个工位站测功能不良时,应先检查治具或其它外接设备没问题。确定为不良现 象来自线路板本身,再做进一步分析。 3、分析方法 a: 看 当手拿一块待修的电路板,良好的习惯首先是应对其进行目检,必要时还要借助放大镜;主 要是看分力元件如电阻、电容、电感、二极管、三极管等有无空焊、缺件、错料等不良现象, 在有极性的元件还要注意有无反向现象,必要时可以拿一块好的板来作为参考。 b: 量 主要是用万用表量电路板的电压、对地阻值及短开路等现象。 c: 换 换量到异常的元件、IC等进行更换。 d: 先易后难 先将简单的清理下去,再将困难的一个个分析,这样会减少堆积的不良品。
10uf 16v
10 + -
3、电感
3.1 电感用“L”表示,在电路图中用“ ”; 3.2 电感单位及换算方法: 单位:最基本的为亨利(H)﹐常用的有毫亨(MH)、微亨(UH); 换算方法: 1H=103mH 1mH=103uH 3.3 电感的作用: 电感也是组成电路的基本元器件之一,他能储存能量.在电路中作高頻濾波、振荡等作用.他能 通高頻阻低頻。
目
录
一、常用电子元件认识 二、电路板维修常用设备 三、电路板维修方法
一、常用电子元件认识
1、电阻
1.1 电阻用“R”表示,在电路图中用“ ”或“ ”; 1.2 电阻常用单位及换算方法: 常用单位:Ω (欧姆)、KΩ (千欧) 、MΩ (兆欧) 换算方法:1MΩ = 1000KΩ = 106Ω 1Ω = 10-3 KΩ = 10-6 MΩ 1.3 电阻的分类:根据电阻器的制作材料不同,有水泥电阻,碳膜电阻,金属膜电阻以及金属 氧化膜电阻等等; 1.4 电阻的作用:主要有分压、分流、阻流等; 1.5 数字表示法﹕此表示法常用于CHIP元件中,辨认时数字之前两位为有效数字﹐而第三位为倍 率。 例如: 334 表示﹕ 33×104Ω=330 KΩ 表示﹕ 27×105Ω=2.7 MΩ 275 1.6 字母表示法:(如图1.6)
电解电容 钽质电容 独石电容 陶瓷电容
有极性 无极性
2.4 电容的作用: 电容器是由两个中间隔以绝缘材料(介质)的电极组成的,具有存储电荷功能的电子元件。 在电路中,它有阻止直流电流通过,允许交流电流通过的性能,在电路中可起到旁路、耦合、滤 波、隔直流、储存电能、振荡和调谐等作用。反映电容器物理性能的主要参数为容量和耐压,这 在电容器的外观标记中有标明,有的直接标明,有的采用工程编码。有得电容器是有极性的,电 容器上还会标明极性的方向。如下图中的电解电容器左脚上面有负号“-”号,就表示该脚是负极, 钽质电容器左脚上面有一个正号“+”,就表示该脚是正极。其它的电容器没有正负极,但有时为 了外观的整齐一致,规定有字的一面必须朝着一个方向。
+
-
+
- ”
c b NPN 型 e b
c
PNP型 e
5.2 三极管的极性﹕基极(b) 、发射极(e) 、集电极(c); 5.电路 IC
6.1 集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电 容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。与分立元器 件组成的电路相比,具有体积小、重量轻、引线短、焊点少、可靠性高、功率低、使用方便和成 本低等特点。 6.2 IC的电路符号是:U IC是有极性的元件。 6.2 IC封装形式: BGA(球形触点陈列,表面贴装型封装),QFP(四方扁平封裝),TQFP(薄型方形平脚封裝 ), SOP(小型外引脚封裝), TSOP 、SSOP(收缩型小外形封裝)等。(如下图所示)
2、电容
2.1 电容用“C”表示,在电路图中用“ ” 为有极性电容、“ 容。 2.2 电容的单位及换算方法: 单位:電容的單位是法拉 F,換算單位有uF(微法),nF(拉法),pF(皮法) 换算方法: 1F=106uF=109nF=1012pF ” 为无极性电
图1.6
2.3 电容分类 四种类型:
4、二极管
4.1 二极管用“D”表示,在电路图中用“ ”整流二极管“ 稳压二极管; 4.2 二极管类型分为:整流二极管(D) 、稳压二极管 (ZD)、 发光二极管(LED) 4.3 二极管特性:二极管分为正极和負极,具有单向导电性。 5、三极管 5.1 三极管用“Q”表示,在电路图中有以下两类表示符号: