集成运算放大器应用实验
集成运算放大器的应用实验报告

一、实验目的1. 了解集成运算放大器的基本特性和工作原理。
2. 掌握集成运算放大器的基本应用电路的设计与调试方法。
3. 熟悉集成运算放大器在实际电路中的应用,提高电子电路设计能力。
二、实验原理集成运算放大器(Op-Amp)是一种高增益、低输入阻抗、高输入电阻、低输出阻抗的直接耦合放大器。
它广泛应用于各种模拟信号处理和产生电路中。
本实验主要研究集成运算放大器的基本应用电路,包括反相比例放大电路、同相比例放大电路、加法运算电路、减法运算电路等。
三、实验仪器与设备1. 集成运算放大器:TL0822. 直流稳压电源:±15V3. 数字万用表4. 示波器5. 面包板6. 连接线7. 电阻、电容等元件四、实验内容1. 反相比例放大电路(1)电路连接:将集成运算放大器TL082的输入端分别连接到输入电阻R1和地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到反相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成反相关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成反相关系,放大倍数为-10。
2. 同相比例放大电路(1)电路连接:将集成运算放大器TL082的同相输入端连接到输入电阻R1,反相输入端连接到地,输出端连接到负载电阻R2,反馈电阻Rf与R1并联后连接到同相输入端。
(2)电路调试:将输入电压信号输入到电路中,使用示波器观察输出电压波形,调整R1和Rf的值,使输出电压与输入电压成正比关系。
(3)实验结果:当R1和Rf的值分别为1kΩ和10kΩ时,输出电压与输入电压成正比关系,放大倍数为10。
3. 加法运算电路(1)电路连接:将集成运算放大器TL082的反相输入端连接到地,同相输入端连接到两个输入电阻R1和R2,输出端连接到负载电阻R3,反馈电阻Rf与R1、R2并联后连接到同相输入端。
集成运算放大器的基本应用实验报告

集成运算放大器的基本应用实验报告集成运算放大器的基本应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种广泛应用于电子电路中的重要器件。
它具有高增益、低失调、宽带宽等特点,可以实现信号放大、滤波、积分、微分等功能。
在本次实验中,我们将通过几个基本应用实验,探索集成运算放大器的工作原理和应用场景。
实验一:非反相放大器非反相放大器是Op-Amp最常见的应用之一。
它通过将输入信号与放大倍数相乘,输出一个放大后的信号。
我们在实验中使用了一个标准的非反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度和输入信号的幅度相比,增大了放大倍数倍。
而相位方面,输出信号与输入信号的相位保持一致。
这说明非反相放大器能够有效放大输入信号,并且不改变其相位。
实验二:反相放大器反相放大器是Op-Amp另一种常见的应用。
它与非反相放大器相比,输入信号与放大倍数相乘后取反,输出一个反向的放大信号。
我们在实验中使用了一个反相放大器电路,将一个正弦波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号的幅度与输入信号的幅度相比,同样增大了放大倍数倍。
但是相位方面,输出信号与输入信号相差180度。
这说明反相放大器能够有效放大输入信号,并且改变其相位。
实验三:积分器积分器是Op-Amp的另一个重要应用。
它可以将输入信号进行积分运算,输出一个积分后的信号。
我们在实验中使用了一个积分器电路,将一个方波信号作为输入,观察输出信号的变化。
实验结果显示,输出信号呈现一个斜率逐渐增大的曲线,表明输入信号得到了积分。
这说明积分器能够有效对输入信号进行积分运算,输出一个积分后的信号。
实验四:微分器微分器是Op-Amp的又一个重要应用。
它可以将输入信号进行微分运算,输出一个微分后的信号。
我们在实验中使用了一个微分器电路,将一个正弦波信号作为输入,观察输出信号的变化。
集成运算放大器应用实验报告

I1=1mA I2=0.6mA I=1.6mA If=1.6mA V1=5V V2=3V V0=-8V 2.根据电路元件值,计算 I 1 , I 2 , I 及 I f 。 I1=V1/R3=1mA I2=V2/R4=0.6mA I=I1+I2=1.6mA If=I=1.6mA 3.根据步骤 2 的电流计算值,计算输出电压 V0。另外,用 V1 和 V2 计算 V0。 V0=-IfRf=-8V V0=-(V1+V2)=-8V 4.在 EWB 平台上建立如图 7-3 所示的实验电路,仪器按图设置。单击仿真开关运行动 态分析。在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V1 R1பைடு நூலகம்
由于运放反相输入端虚地,因此加法器的输出电压 Vo 为反馈电阻 Rf 两端电压的负值, 即 对于图 7-3 和图 7-4 所示的电路,输出电压为
四、实验步骤
1.在 EWB 平台上建立如图 7-2 所示的实验电路,万用表按图设置。单击仿真开关运行 电路分析。记录 I1 , I 2 , I , I f ,V1 ,V2 及 V0 。
9.根据电路元件值,用 V1 和 V2 计算输出电压 V0。V0=-V1=-1V
五、思考与分析
1.在步骤 1 中电流 I1,I2,I 及 If 的测量值与计算值比较,情况如何? 完全一样 2.在步骤 1 中输出电压 V0 的测量值与计算值比较,情况如何?为什么 V0 为负值? 完全一样,运放接入的是负极 3.在步骤 1,3 中,输出电压与输入电压之间有何关系? 输出是所有输入电压和的相反数 4.在步骤 5 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 5.在步骤 7 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数 6.在步骤 8 中,输入电压与输出电压之间有何关系? 输出是所有输入电压和的相反数
集成运算放大器应用实验报告

集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。
本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。
实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。
实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。
实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论知识进行对比分析。
2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。
调节输入信号的幅值和频率,观察输出波形的变化。
记录实验结果,并与理论计算值进行对比。
实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。
随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。
2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。
实验结果与理论计算值基本一致,验证了理论知识的正确性。
运算放大器实验报告

竭诚为您提供优质文档/双击可除运算放大器实验报告篇一:5集成运放电路实验报告实验报告姓名:学号:日期:成绩:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。
理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽fbw=∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压uo与输入电压之间满足关系式uo=Aud(u+-u-)由于Aud=∞,而uo为有限值,因此,u+-u-≈0。
即u+≈u-,称为“虚短”。
(2)由于ri=∞,故流进运放两个输入端的电流可视为零,即IIb=0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
基本运算电路1)反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为uo??RFuiR1为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2=R1//RF。
图6-1反相比例运算电路图6-2反相加法运算电路2)反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为uo??(RFRui1?Fui2)R3=R1//R2//RFR1R23)同相比例运算电路图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为uo?(1?RF)uiR2=R1//RFR1当R1→∞时,uo=ui,即得到如图6-3(b)所示的电压跟随器。
实验:集成运算放大器应用(加减运算电路设计)

2021/3/10
讲解:XX
8
图6-3 同相比例放大器
2021/3/10
讲解:XX
9
3.加法器
电路如图6-4所示。当运算放大器开环 增益足够时,运算放大器的输人端为虚地, 三个输入电压可以彼此独立地通过自身的输 入回路电阻转换为电流,能精确地实现代数 相加运算。根据虚断和虚短的概念,有
Ui1 Ui2 Ui3 UO
UO 10Ui
2021/3/10
讲解:XX
14
图6-6 反相比例放大器
2021/3/10
讲解:XX
15
在该比例放大器的输人端加人下列电压值
测出放大器的输出电压值。
2021/3/10
讲解:XX
16
2 同相跟随器 实验电路按图6-7连接,使其满足下列
关系式:
在该放大器的输人端加人下列电压值,
2021/3/10
R1 R2 R3
RF
UOR RF 1Ui1R RF 2Ui2R RF 3Ui3
2021/3/10
讲解:XX
10
4 减法器
电路如图6-5所示。当运算放大器开环 增益足够大时,输出电压Uo为:
在电阻值严格匹配的情况下,电路具有 较高的共模抑制能力。
2021/3/10
讲解:XX
11
图6-5 减法器电路
2021/3/10
讲解:XX
22
4 设计加减法电路
(1)设计一个加法电路,使其满足下列关系式:。
①输入信号Ui1、Ui2都是频率为1kHz的正弦信号,幅度分 别为U1p-p=100mV,U2p-p=200mV,观测输出是否满足 设计要求。
②输入信号Ui1是频率为1kHz,幅度为U1p-p=100mV的正 弦信号,Ui2是直流电压(+0.5V),观测输出是否满足设 计要求(注意输入信号中有直流电压使输出信号中含有直流 分量后与输出为纯交流信号的不同)。
集成运算放大器的应用实验报告

集成运算放大器的应用实验报告
比较泵造成的成本和维护成本,以及集成运算放大器带来的成本和维护成本,确定哪种方式可以更有效地实现我们的功能。
本次实验主要目的是探讨集成运算放大器在应用中的作用,分析其在某些特定应用情况下,与比较泵相比,集成运算放大器更有利。
首先,说明实验条件。
本实验所使用的集成运算放大器是TI公司的LM317 IC。
所选择的比较泵是AZ的AZ855端口比较泵。
实验灯是飞利浦灯泡,电压是220V,实验电阻箱参数为1K法拉,实验线路均采用19号铜线。
其次,介绍了实验方法。
首先,以比较泵为基础进行测试,测量比较泵输入电压和灯泡输出电压,分析比较泵的功能。
然后,以集成运算放大器为基础进行实验,通过更改集成运算放大器的电压值,比较出给定电压时,比较泵与集成运算放大器的输出功率值,判断其在应用中的优劣。
最后,对实验结果进行总结:实验表明,采用集成运算放大器,在调节电压控制灯泡输出功率时,可以比采用比较泵更精准地控制,而且购买成本也更低。
因此,在一定的应用场景中,集成运算放大器要比比较泵更具有优势,可以有效地节约成本并且维护成本也很低。
集成运算放大器实验报告总结

集成运算放大器实验报告总结
本次实验通过对集成运算放大器的原理和特性进行研究,掌握了集成运算放大器的基本工作原理、性能特点、应用范围和电路设计方法等方面的知识。
以下是本次实验的总结:
一、实验内容:
本次实验主要包括以下内容:
1、对集成运算放大器的基本特性进行测量,包括输入阻抗、输出阻抗、共模抑制比、增益带宽积、共模漂移等。
2、利用集成运算放大器设计反相放大电路、非反相放大电路、电压跟随器电路,实现对输入信号的放大和处理。
3、利用集成运算放大器设计直流平移电路、带通/陷波滤波电路,实现对输入信号的滤波和分析。
4、利用集成运算放大器设计电路输出交流信号的直流偏置,实现输出直流电平的稳定。
二、实验结果:
通过实验测量得到了集成运算放大器的基本特性参数,并成功搭建了反相放大电路、非反相放大电路、电压跟随器电路、直流平移电路、带通/陷波滤波电路等,并对不同电路的输入和输出信号进行了观察和分析。
三、实验体会:
通过本次实验,我对集成运算放大器的工作原理、特性及其应用有了更深入的了解,同时加强了实验能力和动手能力。
同时,在实验过程中我也深刻体会到了理论知识与实践操作的重要性,只有把理论与实验相结合,才能更好地理解和掌握这门学科的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电路与电子学基础》实验报告
实验名称集成运算放大器应用
班级2013211XXX
学号2013211XXX
姓名XXX
实验7.1 反相比例放大器
一、实验目的
1.测量反相比例运算放大器的电压增益,并比较测量值与计算值。
2.测定反响比例放大器输出与输入电压波形之间的相位差。
3.根据运放的输入失调电压计算直流输出失调电压,并比较测量值与计算值。
4.测定不同电平的输入信号对直流输出失调电压的影响。
二、实验器材
LM 741 运算放大器 1个
信号发生器 1台
示波器 1台
电阻:1kΩ 2个,10kΩ 1个,100kΩ 2个
三、实验步骤
1.在EWB平台上建立如图7-1所示的实验电路,仪器按图设置。
单击仿真开关运行动态分析,记录输入峰值电压
V和输出峰值电压
ip
V,并记录直流输出失调电压of V及输出与输入正弦电压波形之间的op
相位差。
Vip=4.9791mV
Vop=498.9686mV
Vof=99.37mV
相位差π
2.根据步骤1的电压测量值,计算放大器的闭环电压增益Av。
Av=-100.2
3.根据电路元件值,计算反相比例运算放大器的闭环电压增益。
Av=-100
4.根据运放的输入失调电压
V和电压增益Av,计算反相比例运放
if
的直流输出失调电压
V。
of
Vof=100mV
四、思考与分析
1.步骤3中电压增益的计算值与步骤1,2中的测量值比较,情况如何?
计算值为-100,测量值为-100.2,基本相等,略有误差
2.输出与输入正弦电压波形之间的相位差怎样?
相位差为π
3.步骤1中直流输出失调电压的测量值与步骤4中的计算值比较,情况如何?
测量值为99.37mV,计算值为100mV,基本相等,略有误差
4.步骤1中峰值输出电压占直流输出失调电压的百分之几?
500%
5.反馈电阻
R的变化对放大器的闭环电压增益有何影响?
f
在R1一定的条件下,Rf越大,闭环电压增益越大
实验7.2 加法电路
一、实验目的
1.学习运放加法电路的工作原理。
2.分析直流输入加法器。
3.分析交直流输入加法器。
4.分析交流输入加法器。
二、实验器材
LM741 运算放大器 1个直流电源 2个
0~2mA毫安表 4个万用表 1个
信号发生器 1台
示波器 1台
电阻:2.5k Ω 2个,5k Ω 3个,10k Ω1个 三、实验步骤
1.在EWB 平台上建立如图7-2所示的实验电路,万用表按图设置。
单击仿真开关运行电路分析。
记录2121,,,,,V V I I I I f 及0V 。
I1=1.000mA I2=0.5998mA I=1.600mA
If=1.600mA V1=5.000V
V2=3.000V Vo=-7.9971V
2.根据电路元件值,计算I
I
I,
,
2
1及
f
I。
I1=1.000mA
I2=0.600mA
I=1.600mA
If=1.600mA
3.根据步骤2的电流计算值,计算输出电压V0。
另外,用V1和V2计算V0。
Vo=-8.000V
4.在EWB平台上建立如图7-3所示的实验电路,仪器按图设置。
单击仿真开关运行动态分析。
在坐标纸上画出输入及输出波形,并记录直流输出偏移电压。
V0=-996.6mV
5.根据电路元件值,用V1和V2计算V0。
V0=-1V
6.将电阻R2改为2.5kΩ,再次单击仿真开关运行动态分析。
在下面的坐标上画出输入和输出波形,并记录直流输出偏移电压。
V0=-1.9957V
7.根据电路元件值,用V 1和V 2计算输出电压V 0。
V0=1.707V 四、思考与分析
1.在步骤1中电流I 1,I 2,I 及I f 的测量值与计算值比较,情况如何?
基本相等,略有误差
2.在步骤1中输出电压V 0的测量值与计算值比较,情况如何?为什么V 0为负值?
基本相等,略有误差
()()21221121V V R R R R V R V R I I R I V f f f f f o +⎪⎪⎭
⎫ ⎝
⎛-=⎪⎪⎭
⎫ ⎝⎛+
-=+-=-= 3.在步骤1,3中,输出电压与输入电压之间有何关系? 输出电压等于两输入端做加法运算
4.在步骤5中,输入电压与输出电压之间有何关系?
输出电压等于直流输入电压之和
5.在步骤7中,输入电压与输出电压之间有何关系? 输出电压等于直流输入电压之和。