2017-2018学年中考数学专题复习 实际生活应用问题(二)习题
中考数学专题实际应用题(解析版)

【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)
2017-2018学年最新陕西省西安市中考数学第二次模拟试题及答案解析一

2018年陕西省西安市中考数学二模试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若一个数的相反数是3,则这个数是()A.﹣B.C.﹣3 D.32.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B. C.D.3.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a64.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.45.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣46.若正比例函数y=kx与y=2x的图象关于x轴对称,则k的值等于()A.B.﹣2 C.﹣D.27.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.8.观察下列图形规律:当n=( )时,图形“•”的个数和“△”的个数相等A .9B .7C .6D .59.如图,F 是正方形ABCD 的边CD 上的一个动点,BF 的垂直平分线交对角线AC 于点E ,连接BE ,FE ,则∠EBF 的度数是( )A .45°B .50°C .60°D .不确定10.已知抛物线y=﹣x 2+x+6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .B .C .D .二、填空题(共4小题,每小题3分,计12分) 11.方程x 2=﹣x 的解是 .12.已知点A (x 1,y 1),点B (x 2,y 2)都在反比例函数y=的图象上,若x 1•x 2=﹣3,求y 1•y 2的值.13.请从以下两个小题中任意选一题作答A .如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当AD=2,BF=3时正方形CDEF 的面积是 .B .比较大小.(填“>”“<”或“=”)14.如图,∠AOB=30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP=6,△PMN 的周长最小值为 .三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.16.先化简,再求值:,其中x=+1.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为度;②课外阅读时间的中位数落在(填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m ,第一次在D 处测得旗杆顶端A 的仰角为60°,第二次向后退12m 到达E 处,又测得旗杆顶端A 的仰角为30°,求旗杆AB 的高度.(结果保留根号)21.在A 、B 两地之间有汽车站C 站(如图1),客车由A 地驶向C 站,货车由B 地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式; (2)客、货两车何时相遇?22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x ,按表格要求确定奖项. 奖项 一等奖 二等奖 三等奖 |x| |x|=4 |x|=3 1≤|x|<3 (1)用列表或画树状图的方法求出甲同学获得一等奖的概率; (2)是否每次抽奖都会获奖,为什么?23.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径的⊙O 交AC 于点D ,过点D 的切线交BC 于E .(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t的值;若不存在,请说明理由.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.若一个数的相反数是3,则这个数是( )A .﹣B .C .﹣3D .3【考点】相反数.【分析】两数互为相反数,它们的和为0. 【解答】解:设3的相反数为x . 则x+3=0, x=﹣3. 故选:C .2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线. 故选A .3.下列计算正确的是( ) A .a+2a=3a 2B .a •a 2=a 3C .(2a )2=2a 2D .(﹣a 2)3=a 6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解. 【解答】解:A 、a+2a=3a ,故本选项错误; B 、a •a 2=a 3,故本选项正确; C 、(2a )2=4a 2,故本选项错误; D 、(﹣a 2)3=﹣a 6,故本选项错误. 故选B .4.如图,在△ABC 中,DE ∥BC ,AD=6,DB=3,AE=4,则EC 的长为( )A .1B .2C .3D .4 【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE ∥BC ,∴,即,解得:EC=2, 故选:B .5.若x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根,则a 的值为( ) A .1或4 B .﹣1或﹣4 C .﹣1或4 D .1或﹣4 【考点】一元二次方程的解.【分析】将x=﹣2代入关于x 的一元二次方程x 2﹣ax+a 2=0,再解关于a 的一元二次方程即可.【解答】解:∵x=﹣2是关于x 的一元二次方程x 2﹣ax+a 2=0的一个根, ∴4+5a+a 2=0, ∴(a+1)(a+4)=0, 解得a 1=﹣1,a 2=﹣4,故选:B .6.若正比例函数y=kx 与y=2x 的图象关于x 轴对称,则k 的值等于( )A .B .﹣2C .﹣D .2【考点】一次函数图象与几何变换.【分析】根据关于x 轴对称的点的坐标特征:横坐标不变,纵坐标互为相反数.则两个解析式的k 值应互为相反数.【解答】解:两个解析式的k 值应互为相反数, 即k=﹣2, 故选B .7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过点D的切线PD与直线AB交于点P,则sin∠ADP的值为()A.B.C.D.【考点】切线的性质;锐角三角函数的定义.【分析】连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.【解答】解:连接BD,∵∠DAB=180°﹣∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°﹣∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,∴sin∠ADP=,故选:D.8.观察下列图形规律:当n=()时,图形“•”的个数和“△”的个数相等A.9 B.7 C.6 D.5【考点】规律型:图形的变化类.【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n个图形中“•”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“•”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“•”的个数是3=3〓1;n=2时,“•”的个数是6=3〓2;n=3时,“•”的个数是9=3〓3;n=4时,“•”的个数是12=3〓4;∴第n个图形中“•”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“•”的个数和“△”的个数相等.故选D.9.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定【考点】全等三角形的判定与性质;正方形的性质.【分析】过E作HI∥BC,分别交AB、CD于点H、I,证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.【解答】解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,∵E 是BF 的垂直平分线EM 上的点, ∴EF=EB ,∵E 是∠BCD 角平分线上一点,∴E 到BC 和CD 的距离相等,即BH=EI ,Rt △BHE 和Rt △EIF 中,,∴Rt △BHE ≌Rt △EIF (HL ), ∴∠HBE=∠IEF ,∵∠HBE+∠HEB=90°, ∴∠IEF+∠HEB=90°, ∴∠BEF=90°, ∵BE=EF ,∴∠EBF=∠EFB=45°. 故选:A .10.已知抛物线y=﹣x 2+x+6与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .B .C .D .【考点】抛物线与x 轴的交点.【分析】令y=0,则﹣x 2+x+6=0,由此得到A 、B 两点坐标,由D 为AB 的中点,知OD 的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD 即可.【解答】解:令y=0,则﹣x 2+x+6=0, 解得:x 1=12,x 2=﹣3∴A 、B 两点坐标分别为(12,0)(﹣3,0) ∵D 为AB 的中点, ∴D (4.5,0), ∴OD=4.5,当x=0时,y=6, ∴OC=6,∴CD==.故选:D .二、填空题(共4小题,每小题3分,计12分) 11.方程x 2=﹣x 的解是 0或﹣1 .【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x ,将原式化为左边是两式相乘,右边是0的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x 2+x=0x (x+1)=0x=0或x=﹣1.12.已知点A (x 1,y 1),点B (x 2,y 2)都在反比例函数y=的图象上,若x 1•x 2=﹣3,求y 1•y 2的值.【考点】反比例函数图象上点的坐标特征.【分析】因为A 、B 都在反比例函数的图象上,可知x 1y 1=6,x 2y 2=6,把已知x 1•x 2=﹣3代入可求得y 1•y 2的值.【解答】解:∵A 、B 都在反比例函数的图象上,∴x 1y 1=6,x 2y 2=6,∴x 1y 1x 2y 2=36且x 1•x 2=﹣3,∴y 1•y 2=﹣12.13.请从以下两个小题中任意选一题作答A .如图,正方形CDEF 内接于Rt △ABC ,点D 、E 、F 分别在边AC 、AB 和BC 上,当AD=2,BF=3时正方形CDEF 的面积是 6 .B .比较大小 > .(填“>”“<”或“=”)【考点】正方形的性质;实数大小比较.【分析】A 、首先设正方形CDEF 的边长为x ,易得△ADE ∽△ACB ,然后由相似三角形的对应边成比例,求得答案;B 、首先求得的近似值,继而比较大小,即可求得答案.【解答】解:A 、设正方形CDEF 的边长为x ,则DE=CF=CD=x ,BC=CF+BF=3+x ,AC=AD+CD=2+x ,∴DE ∥BC ,∴△ADE ∽△ACB ,∴,∴,解得:x=〒,∴DE=,∴正方形CDEF的面积是:6;B、∵≈=0.618,=0.5,∴>.故答案为:A、6,B、>.14.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,△PMN的周长最小值为 6 .【考点】轴对称-最短路线问题.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=6,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=6.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=6,故答案为:6三、解答题(共11小题,计78分,解答时写出过程)15.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得x>3,由②得x>1,故不等式组的解集为:x>3.16.先化简,再求值:,其中x=+1.【考点】分式的化简求值.【分析】把括号里式子进行通分,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===x(x﹣1)当x=+1时原式=(+1)(+1﹣1)=3+.17.如图,△ABC是直角三角形,∠ACB=90°.作⊙C,使它与AB相切于点D,与AC 交于点E,保留作图痕迹,不写作法,请标明字母.【考点】作图—复杂作图;切线的性质.【分析】直接过作AB的垂线进而得出D点位置,进而作出⊙C.【解答】解:作AB的垂线,交AB于点D,作⊙C,交AC于点E.18.为了解八年级学生的课外阅读情况,我校语文组从八年级随机抽取了若干名学生,对他们的读书时间进行了调查并将收集的数据绘成了两幅不完整的统计图,请你依据图中提供的信息,解答下列问题:(每组含最小值不含最大值)(1)从八年级抽取了多少名学生?(2)填空(直接把答案填到横线上)①“2﹣2.5小时”的部分对应的扇形圆心角为36°度;②课外阅读时间的中位数落在1~1.5 (填时间段)内.(3)如果八年级共有800名学生,请估算八年级学生课外阅读时间不少于1.5小时的有多少人?【考点】扇形统计图;用样本估计总体;条形统计图;中位数.【分析】(1)根据0.5~1小时的人数及所占的比例可得出抽查的总人数.(2)①根据2至2.5的人数及总人数可求出a%的值,进而根据圆周为1可得出答案.②分别求出各组的人数即可作出判断.(3)首先确定课外阅读时间不少于1.5小时所占的比例,然后根据频数=总数〓频率即可得出答案.【解答】解:(1)总人数=30〔25%=120人;(2)①a%==10%,∴对应的扇形圆心角为360°〓10%=36°;②总共120名学生,中位数为60、61,∴落在1~1.5内.(3)不少于1.5小时所占的比例=10%+20%=30%,∴人数=800〓30%=240人.19.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.【考点】平行四边形的性质;全等三角形的判定与性质;菱形的判定.【分析】(1)由全等三角形的判定定理SAS证得结论;(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH是菱形.【解答】(1)证明:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D.又∵AE=CG,AH=CF,∴BE=DG,BF=DH,在△BEF与△DGH中,∴△BEF≌△DGH(SAS),∴EF=GH.又由(1)知,△AEH≌△CGF,∴EH=GF,∴四边形EFGH是平行四边形,∴HG∥EF,∴∠HGE=∠FEG,∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠HEG=∠HGE ,∴HE=HG ,∴四边形EFGH 是菱形.20.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m ,第一次在D 处测得旗杆顶端A 的仰角为60°,第二次向后退12m 到达E 处,又测得旗杆顶端A 的仰角为30°,求旗杆AB 的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】由∠AFC 为△AFG 的外角,利用外角性质得到∠AGF=∠FAG ,利用等角对等边得到AF=GF=ED ,在直角三角形ACF 中,利用锐角三角函数定义求出AC 的长,由AC+BC 求出AB 的长即可.【解答】解:∵∠AFC=60°,∴∠AFG=120°,∵∠CGA=30°,∴∠GAF=30°,∴FA=FG=ED=12m ,∴AC=AF •sin60°=6(m ),∵BC=FD=1,∴AB=AC+BC=(6+1)m .21.在A 、B 两地之间有汽车站C 站(如图1),客车由A 地驶向C 站,货车由B 地驶向A 地,两车同时出发,匀速行驶.图2是客车、货车离C 站的距离y 1y 2(千米)与行驶时间x (小时)之间的函数关系图象.(1)求两小时后,货车离C 站的路程y 2与行驶时间x 之间的函数关系式;(2)客、货两车何时相遇?【考点】一次函数的应用.【分析】(1)由图2得出点D的坐标,由速度=路程〔时间可得出货车的速度,再由时间=AC两地两地距离〔速度得出货车从C地到A地的时间,设直线DP的解析式为y2=kx+b (k≠0),由D、P点的坐标利用待定系数法即可得出结论;(2)设直线EF的函数解析式为y1=mx+n(m≠0),结合起点终点的坐标利用待定系数法即可求出直线EF的函数解析式,联立直线DP和EF的函数解析式得出方程组,解方程组即可得出结论.【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60〔2=30(千米/时),∴货车行驶360千米所需时间为360〔30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.22.九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”,“5”,“6”的五张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.奖项一等奖二等奖三等奖|x| |x|=4 |x|=3 1≤|x|<3(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;(2)是否每次抽奖都会获奖,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲同学获得一等奖的情况,再利用概率公式即可求得答案;(2)由树状图可得:当两张牌都是3时,|x|=0,不会有奖.【解答】解:(1)画树状图得:∵共有20种等可能的结果,甲同学获得一等奖的有2种情况,∴甲同学获得一等奖的概率为:=;(2)不一定,当两张牌都是3时,|x|=0,不会有奖.23.如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E.(1)求证:DE=BC;(2)若tanC=,DE=2,求AD的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)在直角三角形ABC中,根据锐角三角函数的概念以及勾股定理计算它的三边.再根据相似三角形的判定和性质进行计算.【解答】(1)证明:连接BD,∵AB是直径,∠ABC=90°,∴BC是⊙O的切线,∠BDC=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE.故DE=BC.(2)解:由(1)知,BC=2DE=4.在Rt△ABC中,AB=BCtanC=4〓=2,AC==6.∵∠ADB=∠ABC=90°,∠A=∠A,∴△ABD∽△ACB.∴,∴=.解得AD=.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c过点A(0,4)和C(8,0),P(t,0)是x轴正半轴上的一个动点,M是线段AP的中点,将线段MP绕点P顺时针旋转90°得线段PB,过点B作x轴的垂线,过点A作y轴的垂线,两直线交于点D.(1)求b、c的值;(2)当t为何值时,点D落在抛物线上;(3)是否存在t ,使得以A ,B ,D 为顶点的三角形与△AOP 相似?若存在,求此时t 的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将A 、C 两点坐标代入抛物线y=﹣x 2+bx+c ,运用待定系数法即可求出b ,c 的值;(2)先求得M 的坐标,进而求出点D 的坐标,然后将D (t+2,4)代入(1)中求出的抛物线的解析式,即可求出t 的值;(3)由于t=8时,点B 与点D 重合,△ABD 不存在,所以分0<t <8和t >8两种情况进行讨论,在每一种情况下,当以A 、B 、D 为顶点的三角形与△PEB 相似时,又分两种情况:△BEP ∽△ADB 与△PEB ∽△ADB ,根据相似三角形对应边的比相等列出比例式,求解即可.【解答】解:(1)∵抛物线y=﹣x 2+bx+c 过点A (0,4)和C (8,0),∴,解得.故所求b 的值为,c 的值为4;(2)∵∠AOP=∠PEB=90°,∠OAP=∠EPB=90°﹣∠APO ,∴△AOP ∽△PEB 且相似比为==2, ∵AO=4,∴PE=2,OE=OP+PE=t+2,又∵DE=OA=4,∴点D 的坐标为(t+2,4),∴点D 落在抛物线上时,有﹣(t+2)2+(t+2)+4=4,解得t=3或t=﹣2,∵t >0,∴t=3.故当t 为3时,点D 落在抛物线上;(3)存在t,能够使得以A、B、D为顶点的三角形与△AOP相似,理由如下:①当0<t<8时,如图1.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(4﹣t),整理,得t2+16=0,∴t无解;若△POA∽△BDA,同理,解得t=﹣2〒2(负值舍去);②当t>8时,如图2.若△POA∽△ADB,则PO:AD=AO:BD,即t:(t+2)=4:(t﹣4),解得t=8〒4(负值舍去);若△POA∽△BDA,同理,解得t无解.综上可知,当t=﹣2+2或8+4时,以A、B、D为顶点的三角形与△AOP相似.25.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)①依题意补全图1;②若∠PAB=20°,求∠ADF的度数;(2)若设∠PAB=a,且0°<a<90°,求∠ADF的度数(直接写出结果,结果可用含a 的代数式表示)(3)如图2,若45°<∠PAB<90°,用等式表示线段AB、FE、FD之间的数量关系,并证明.【考点】四边形综合题.【分析】(1)①根据题意直接画出图形得出即可;②利用对称的性质以及等角对等边的性质,进而得出答案;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:,进而利用勾股定理得出答案.【解答】解:(1)①如图1所示:②如图2,连接AE,由对称得,∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(2)如图2,连接AE,由对称得∠PAB=∠PAE=α,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=α,∴∠EAD=90°+2α,∴∠ADF==45°﹣α.(3)如图3,连接AE、BF、BD,由对称可知,EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,在Rt△BDF中,BF2+FD2=BD2,在Rt△ABC中,BD=AB,∴EF2+FD2=2AB2.2016年6月7日。
2017-2018学年中考数学专题复习实际生活应用问题(一)习题.doc

题(一)示范 例 缓解力,市郊某地正在修同步修建地库库坡道入,其中 M N 是, M N ∥AD ,AD ⊥DE ,C F ⊥AB ,垂足分别为D ,F , 坡道 AB 的坡度 i =1:3 ,AD =9 米, C 在 DE 上, C D =0.5 米, C D 是志牌的高志牌上写有: 限高 米).如果 的高度不 C F 该停车 库限高多少≈ 1.73 , 10 ≈ 3.16 ) 3 限高 米 D A C E FM B N【解题要点 】①理解题意,梳理信息将文字信息抽形上; 题的求中求解 C F 度. 类型,建立模型由形和“坡度”,判际用解三角形和 其他几③证 对求解后的数证;是否目中的要求, 再考虑 是否际生活. 程示范】 解:由题意, 在 Rt △ ADE 中,i =1:3 , AD =9,信 息提DE 1 取、∴ ,D E =3,AD 3转化限高 米D 9 A 0.5 C2.5∵C D =0.5 , E FM B N ∴C E =3-0.5=2.5 . 又∵∠ CEF =∠ AED ,∠ADE =∠CFE =90°, ∴△ CEF ∽△ AED ,证明相似∴ EF DE 1 CF AD 3 .转移1:3设E F 的长为x 米, 则CF 为3 x 米 . 在 Rt△CEF 中 ,x 2+(3x ) 2=2.5 2, 勾股定理求解3 10∴C F =3x = ,43 10即 C F = ≈ 2.37 ,4辆高度 h ≤ 2.37 ,限高 2.3 米. 证2巩固练习1.某校有一露天舞台,横断面如图所示,AC 垂直于地面,AB 表示楼梯,A E表示舞台面,楼梯的坡角∠ABC=45°,坡长AB= 2 m .为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)在楼梯口 B 的正前方距离舞台底部 C 点3 m 处有一些设备,根据实际情况,楼梯前需要预留 1 m 作为活动空间,请问这些设备是否需要移走?并说明理由.A ED B C32.某校教学楼邻着一个土坡,坡上面平地所示, BC∥A D ,斜坡20 m,坡角∠AD =60了防止山体滑坡,保障安 全,学校该行改,当坡角45 ,可确保山体不滑坡. (1)求改造与地面的距离BE 果保留根号); (确保安全,划保持坡脚A B 沿 B C到 F BF 至少是多少米?(精确到0.1 m ; 参考数据: ≈ 1.414 , ≈ 1.732 , ≈ 2.449 ) 2 3 6 C F B D E A43.如图所示,一幢楼房AB 背后有一台阶 C D,台阶每层高0.2米,且AC=17.2 米,设太阳光线与水平地面的夹角为α.当α=60°时,测得楼房在地面上的影长AE=10 米,现有一只小猫睡在台阶的MN这层上晒太阳.过了一会儿,当α=45°时,则小猫能否晒到太阳?请说明理由.(取1.73 )3BαM NA E C D54.汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角 F 碰头,设计墙角 F 到楼梯的竖直距离FG 为1.75 m .他量得客厅高AB=2.8 m ,楼梯洞口宽 A F=2 m,阁楼阳台宽EF=3 m.请你帮助汪老师解决下列问题:(1)要使墙角 F 到楼梯的竖直距离FG 为1.75 m ,楼梯底端C 到墙角D 的距离CD是多少米?(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高要小于20 cm ,每个台阶宽要大于20 cm ,则汪老师应该将楼梯建几个台阶?为什么?阁楼阳台2m 3mA F E2.8m客厅GB C D思考小结实际处理测量类应用题时:①知识载体往往不仅仅是利用三角函数解直角三角形,还有可能会用到其他的几何知识,比如勾股定理、相似的应用等.在将条件标注之后,往往把测量类应用题当作一个综合几何题来解决.②将实际问题转化为数学问题时,关键是确定判断标准,判断标准往往要表示为角度(线段长)间的关系.6。
浙教版中考实际应用性问题(含知识要点,例题及练习参考答案)

专题一 实际应用性问题实际应用性问题是指有实际背景或实际意义的数学问题.这些问题充分表达了贴近学生生活、关注社会热点、形式多样等特点,注重考查学生思维的灵活性和深刻性,要求解题者具有较丰富的生活常识和较强的阅读水平以及数学建模水平.实际应用性问题涉及的背景有商品买卖、存款和贷款,最优方案、行程问题、交通运输、图案设计、农业生产和生物繁殖等.实际应用性问题在各地的试卷中成为必考内容,表达了素质教育的要求和新课程标准的理念,由于它们来自生活和生产实践,所以参考条件较多,思维也有一定的深度,解答方法灵活多样.【典型例题】例1. 某饮料厂为了开发新的产品,用A 、B 两种果汁原料各19千克、17.2千克,试制甲、〔1〕假设甲种饮料需配制x 千克.请你写出满足题意的不等式组,并求出其解.〔2〕设甲种饮料每千克本钱为4元,乙种饮料每千克本钱为3元.这两种饮料的本钱总额为y 元,请写出y 与x 的函数表达式.并根据〔1〕的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种的本钱总额最低.分析:根据表格的信息和其他条件知甲种原料用量不大于19千克,乙种原料用量不大于17.2千克,可得出〔1〕的不等式组.〔2〕由“本钱总额=甲种饮料本钱+乙种饮料本钱〞这个关系式,可列出函数表达式.再运用函数的性质,可确定最低总本钱.解:〔1〕由条件得05025019030450172..()..().x x x x +-≤+-≤⎧⎨⎩ 解得2830≤≤x 〔2〕依题意得y x x x x =+-=+≤≤43501502830()()由一次函数性质知:k =1>0,y 随x 的增大而增大.∴当x =28时,甲、乙两种饮料的本钱总额最少.即y =28+150=178〔元〕.例2. 高为12.6米的教学楼ED 前有一棵大树AB 〔如图甲〕.〔1〕某一时刻测得大树AB,教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.〔2〕用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案.要求:a. 在图乙上画出你设计的测量方案示意图,并将应测数据标记在图上.〔长度用字母m、n…表示,角度用希腊字母α、β…表示〕b. 根据你所画的示意图和标注的数据,计算大树AB高度.〔用字母表示〕分析:〔1〕可用同一时刻物高与影长成正比获得大树高度.〔2〕中的设计方案,要求同学们能根据平时的学习体验及解直角三角形的有关知识获得测量大树的方案.注意的是不要无视了测角仪的高度.解:〔1〕连AC、EF∵太阳光线是平行线,∴AC∥EF∴∠ACB=∠EFD∵∠ABC=∠EDF=90°∴△ABC∽△EDF∴ABEDBCDF=∴AB1262472 ...=∴AB=4.2答:大树AB的高是4.2米.〔2〕如图测角仪高度为h米,用皮尺可测得测角仪离树距离为m米,用测角仪测得树顶仰角为α, 即BN=GM=m在Rt△AMG中,AG=m·tanα∴AB=〔m·tanα+h〕米例3. 甲、乙两同学开展“投球进筐〞比赛,双方约定:①比赛分6局进行,每局在指定区域内将球投向筐中,只要投进一次后该局便结束.②假设一次未进可再投第二次,以此类推,但每局最多只能投8次,假设8次投球都未进,该局也结束;③计分规那么如下:a. 得分为正数或0;b. 假设8次都未投进,该局得分为0;c. 投球:次数越多,得分越低;d. 6局比赛的总分高者获胜.〔1〕设某局比赛第n 〔n =1,2,3,4,5,6,7,8〕次将球投进,请你按上述约定,用公式、表格或语言表达等方式,为甲、乙两位同学制定一个把n 换算为得分M 的计分方案.〔2〕假设两人6局比赛的投球情况如下.〔其中的数字表示该局比赛进球时的投球次数,“×〞表示该局比赛8次投球都未进〕.第一局 第二局 第三局 第四局 第五局 第六局 甲 5 × 4 8 1 3 乙 8 2 4 2 6 × 根据上述计分规那么和你制定的计分方案,确定两人谁在这次比赛中获胜.分析:将实际问题中的计分与投球次数之间进行量化的设计方案,只要满足计分规那么的要求即可.因而可获得不同方案.解:〔1〕方案一,如下表:n 〔次〕 1 2 3 4 5 6 7 8 M 〔分〕 8 7 6 5 4 3 2 1 〔未进球计0分〕,显然上述方案符合计分规那么要求.方案二:将球投进筐的次数n 〔次〕与得分M 〔分〕之间用关系式表示为:次未进时计分为M n12080() 显然这一计分方案也符合计分规那么的要求.〔2〕由方案一:可算得甲的得分为:4+0+5+1+8+6=24〔分〕乙的得分为:1+7+5+7+3=23〔分〕由此可知,在这次比赛中甲获胜.由方案二:甲的每局得分分别为:24分、0分、30分、15分、120分、40分;乙的每局得分分别为:15分、60分、30分、60分、20分、0分.∴甲的总得分为229分;乙的总得分为185分.由此知:甲在这次比赛中获胜.例4. 光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A 、B 两地区收割小麦;其中30台派往A 地区,20台派往B 地区. 两地区与该农机租赁公司商定的每天的租赁价格见下表:每台甲型收割机的租金 每台乙型收割机的租金 A 地区 1800元 1600元B 地区 1600元 1200元〔1〕设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 〔元〕,求y 与x 间的函数关系式.并写出x 的取值范围.〔2〕假设使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来.〔3〕如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理的建议.分析:在〔1〕中,由派往A 地乙型收割机为x 台.能够正确地用代数式表示往A 地的甲型收割机,派往B 地的甲、乙型收割机是问题的关键.根据条件可得相应的租赁费用和调运方案.解:〔1〕假设派往A地区的乙型收割机为x台.那么派往A地区的甲型收割机为〔30-x〕台派往B地区的乙型收割机为〔30-x〕台派往B地区的甲型收割机为[20-〔30-x〕]=〔x-10〕台∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10) =200x+74000.由实际问题情境,必有xxx≥-≥-≥⎧⎨⎪⎩⎪0 300100∴1030≤≤x即x的取值范围是:10≤x≤30〔x是正整数〕〔2〕由题意得:200x+74000≥79600解得:x≥28由于10≤x≤30∴x取28、29、30这三个值.∴有3种不同分配方案.①当x=28时,即派往A地区甲型收割机2台,乙型收割机28台,派往B地区甲型收割机18台,乙型收割机2台.②当x=29时,即派往A地区甲型收割机1台,乙型收割机29台,派往B地区甲型收割机19台,乙型收割机1台.③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区.〔3〕由于一次函数y=200x+74000的性质知:y随着x的增大而增大.∴当x=30时,y取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.例5. 如图〔1〕,一个无盖的正方体盒子的棱长为10cm,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙,〔盒壁厚度忽略不计〕〔1〕假设昆虫甲在顶点C1处静止不动,如图〔1〕,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1,昆虫乙如果沿路径A→E→C1爬行,那么可以在最短的时间内捕捉到昆虫甲,仔细体会其中的道理,并在图〔1〕中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.〔请简要说明画法〕.〔2〕如图〔2〕假设昆虫甲从顶点C1以1cm/s的速度在盒子的内部沿棱C1C向下爬行.同时昆虫乙从顶点A以2cm/s的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?〔精确到1s〕.分析:此题难点是两个点是动点,且昆虫乙的路径不惟一,因而确定昆虫乙的几种可能路径是关键;这就必须了解正方体的平面展开图.在〔1〕中,类似地在DD 1、CD 、A 1B 1、A 1D 1或BC 的中点与A,C 1连结的线段上找到由A →C 1的最短路径;在〔2〕中可利用直角三角形的知识获得结论.解:〔1〕略.〔2〕由〔1〕知:当昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙可以沿以下四种路径中的任意一种爬行.可以看出,图〔3〕、〔4〕的路径相等,图〔5〕、〔6〕的路径相等.①设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E →F 爬行捕捉到昆虫甲需x 秒钟.由图〔3〕在Rt △ACF 中()()21020222x x =-+解得x =10设昆虫甲从顶点C 1沿棱C 1C 向顶点C 爬行的同时,昆虫乙从顶点A 按路径A →E 3→F 爬行捕捉昆虫甲需y 秒钟.由图〔5〕,在Rt △ADF 中()()22010222y y =-+解得y ≈8∴昆虫乙从顶点A 爬行捕捉昆虫甲至少需8s.数学应用与实践包含实际问题中的方案设计问题以及依据数学特征进行的活动,操作和用数学知识解决实际问题等,解这类问题时应注重于对生活中的实际问题进行恰当的分析,从中能够找出与之相关的数学模型,并借助数学知识予以解决,其中所涉及的分类讨论思想、实际问题模型化的思想以及转化的思想方法十分重要,是解决这类问题的关键.【模拟试题】〔做题时间:45分钟〕一、填空.1. 一商店把某件商品按九折出售仍可获得20%的利润率,假设该商品的进价是每价30元,那么该件商品的标价是_____________.2. 小明家粉刷房间,雇了5个工人,干了10天完成,用去涂料费为4800元,粉刷的面积为150m2,最后结算工钱时,有以下三种方案:〔1〕按工算,每人每天工资30元;〔2〕按涂料费用算,涂料费用的30%作为工钱.〔3〕按粉面积算,每平方米付工钱12元.请你帮小明家出主意,选择方案_____________付钱最合算.3. 某公司今年5月份的纯利是a万元,如果每个月纯利润的增长率都是x,那么预计7月份的纯利润将到达_____________万元.4. 有一旅客携带了30kg行李从南京国际机场乘飞机去天津,按民航规定,旅客最多可免费携带20kg行李,超过局部每公斤按飞机票价的1.5%购置行李票,现该旅客购置了120元的行李票,那么他的飞机票价格应是_____________.5. 某兴趣小组决定去市场购置A、B、C三种仪器,其单价分别为3元,5元,7元,购置这批仪器需花费62元,后经过讨价还价,最后以每种各下降1元成交,结果只花了50元就买下了这批仪器,那么A种仪器最多可买_____________件.6. 某市近年来经济开展迅速,据统计,该市国内生产总值1990年为8.6亿元,1995年为10.4亿元,2000年为12.9亿元,经论证,上述数据适合一个二次函数关系,请你根据这个函数关系,预测2022年该市国内生产总值将到达_____________亿元.7. 如图1,某公园入口原有三级台阶,每级台阶高为20cm,宽为30cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起点为C,现在斜坡的坡度∠BCA设计为12°,求AC的长度为_____________.图18. 居民楼的采光是人们关心的一个重要问题,冬至是一年中太阳光与地面所成夹角最小的时期,此时只要太阳光在如图2,两楼之间不互相挡住阳光,那么一年四季均不为互相挡住阳光了,设此时太阳光与地面的夹角为30°,两楼高均为30米,问两楼之间的水平距离L至少为_____________米时两楼之间才能不互相挡住阳光照射.图2二、选择题.9. 某商品价格为a 元,降价10%后,又降价10%,销售猛增,商店决定再提价20%,提价后这种商品的价格为〔 〕A. a 元B. 1.08a 元C. 0.972a 元D. 0.96a 元10. 小李买了20本练习本,店主给他八折优惠,结果廉价了32元,那么每本练习本的标价是〔 〕A. 2元B. 4元C. 8元D. 6元11. 小王在一次野外活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块石头的体积,如果他量出玻璃杯的内直径d,把矿石完全浸在水中,测出杯中水面上升了的高度为h,那么小王的这块石头的体积是〔 〕A. π42d h B. π22d h C. πd h 2 D. 42πd h 12. 如图3,边长为12m 的正方形塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB =BC =CD =3m,现在用长为4m 的绳子将一头羊拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在〔 〕图3A. A 处B. B 处C. C 处D. D 处13. 如图4,在正方形铁片上剪下一个圆形和扇形,使之恰好围成一个圆锥模型,设圆的半径为r,扇形的半径为R,那么圆形的半径与扇形半径之间的关系是〔 〕图4A. R r =2B. R r =94C. R r =3D. R r =414. 如图5在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a m,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距离地面的距离NB 为b m,梯子的倾斜为45°,这间房间的宽AB 一定是〔 〕A. a b m +2B. a b m -2C. b mD. a m图5三、15. 某下岗工人在再就业中央的扶持下,创办了“润扬〞报刊零售点,对经营的某种晚报,该工人提供了如下信息:①买进每份0.2元,卖出每份0.3元;②一个月内〔以30天计〕,有20天每天可以卖出200份,其中10天每天只能卖出120份;③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.〔〔2〕设每天从报社买进该晚报x 份〔120200≤≤x 〕时,月利润为y 元,试求出y 与x 的函数关系式,并求月利润的最大值.16. 足球比赛的记分规那么为:胜一场得3分,平一场得1分,输一场得0分,一支球队在某个赛季中共需比赛14场中,现已比赛了8场,输了1场,得17分.请问:〔1〕前8场球比赛中,这支球队共胜了多少场?〔2〕这支球队打满14场赛,最高能得多少分?〔3〕通过比赛情况的分析,这支球队打满14场比赛得分不低于29分,就可以到达预期目标,请你分析一下,在后面的六场赛中这支球队至少要胜几场,才能到达预期目标.17. 某农场为防风沙在一山坡上种植一片树苗,并安装了自动喷灌设备,一瞬间,喷出的水流呈抛物线.如图6所示,建立直角坐标系,喷水头B 高出地面1.5米,喷水管与山坡所成的夹角∠BOA 约为63°,水流最高点C 的坐标为〔2,3.5〕.图6〔1〕求此水流抛物线的解析式;〔2〕求山坡所在的直线OA 的解析式〔解析式中的系数精确到0.1〕;〔3〕计算水喷出后落在山坡上的最远距离OA 〔精确到0.1米〕18. 某生活小区的居民筹集资金1600元,方案一块上、下两底分别为10m 、20m 的梯形空地上种植花木〔如图7〕.图7〔1〕他们在△AMD 和△BMC 地带上种植太阳花,单价为8元/m 2,当△AMD 地带种满花后,〔图7中阴影局部〕共花了160元,请计算种满△BMC 地带所需的费用.〔2〕假设其余地带要种的有玫瑰和茉莉花两种花木可供选择,单价分别为12元/m 2和10元/m 2,应选择种哪种花木,刚好用完所筹集的资金?19. 我市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元那么六折优惠,且甲乙两厂都规定:一次印刷的数量至少是500份.〔1〕分别求两个印刷厂的收费y〔元〕与印刷数量x〔份〕的函数关系,并指出自变量x的取值范围.〔2〕如何根据印刷的数量选择比拟合算的方案?如果这个中学要印制2000份录取通知书,那么应中选择哪一个厂?需要多少费用?请做完之后,再看答案【试题答案】一、填空:1. 402. 应选方案〔2〕3. a x ()12+4. 8005. 56. 16.11亿元7. 约222cm8. 303米≈52米二、选择:9. C 10. C 11. A12. B 13. D 14. D三、解做题:15. 〔1〕300 390〔2〕y x x =+≤≤240120200() 当x =200时,y 最大值为440元16. 〔1〕答:前8场比赛中,这个球队共胜了5场〔2〕最高能得17+〔14-8〕×3=35分〔3〕由题意得:以后的6场比赛中,只要得分不低于12分即可,故胜不少于4场一定能到达目标,而胜3场平3场,正好到达预期目标,所以在以后的比赛中这个球队至少要胜3场17. 〔1〕设y a x n k =-+()2, 由题意得:y a x =-+().2352将B 〔0,1.5〕代入得a =-12∴抛物线的解析式为y x =--+122722() 或y x x =-++122322 〔2〕∠AOX =27°,设坡面所在直线上一点坐标为〔x,y 〕那么tan tan 2727°,°==y xy x 即坡面OA 所在直线方程为y x =12〔3〕由y x y x x ==-++⎧⎨⎪⎪⎩⎪⎪12122322 解得x y ==⎧⎨⎩3819..,∴OA =+381922..≈4.2米 答:略.18. 解:〔1〕∵四边形ABCD 是梯形,∴AD ∥BC,∴△AMD ∽△CMB∴S S AD BC AMDCMB △△==()214∵种植△AMD 地带花费160元,∴1608202=()m ∴S cm CMB △=802, △BMC 地带的花费为80×8=640〔元〕 〔2〕解设△AMD,△BMC 的高分别为h 1,h 2,梯形ABCD 的高为h, ∵S h AMD △==1210201,∴h 14=, 又h h h 122128==,∴ ∴S AD BC h ABCD 梯形××=+==12123012180() ∴S S AMB DMC △△°-+=-=180208080 ∴160+640+80×12=1760〔元〕 160+640+80×10=1600〔元〕∴应种植茉莉花刚好用完所筹资金.19. 解:〔1〕y x 甲×=+1580%900. =+≥12900500.()x x 且为自然数y x 乙×=+1590060%. =+15540.x〔2〕由〔1〕得:y y x 甲乙-=-36003. 当360030-=.x即x =1200时,费用相同当x >1200时,甲廉价,当x <1200时,乙廉价. 那么当x =2000时,应选甲要:1220009003300.×+=〔元〕。
2018年中考数学应用题专题复习及答案

2018年数学中考应用题专题复习1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?2.(本题满分9分)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?4.(本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱3倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府(含冰柜)数量是彩电数量的2补贴分别为多少万元?为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x(6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.8.(本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.2017年数学中考应用题答案1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?解:设去年5月份汽油价格为x 元/升,则今年5月份的汽油价格为1.6x 元/升, ········· 1分 根据题意,得15015018.751.6x x -=. ··································································· 5分整理,得15093.7518.75x -=.解这个方程,得3x =. ·················································································· 8分经检验,3x =是原方程的解. ········································································· 9分所以1.6 4.8x =.答:今年5月份的汽油价格为4.8元/升. ···························································· 10分 2.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)解:(1)由图10可得,当030t ≤≤时,设市场的日销售量y kt =.点(3060),心图象上,6030k ∴=.2k ∴=.即2y t =. ···························· 2分 当3040t ≤≤时,设市场的日销售量1y k t b =+.点(3060),和(400),在图象上,∴116030040k b k b=+⎧⎨=+⎩ 解得16240k b =-=,. 6240y t ∴=-+. ··················································································· 4分综上可知,当030t ≤≤时,市场的日销售量2y t =;当3040t ≤≤时,市场的日销售量6240y t =-+. ······································ 6分(2)方法一:由图10知,当30t =(天)时,市场的日销售量达到最大60万件;又由图11知,当30t =(天)时产品的日销售利润达到最大60万元/件,所以当30t =(天)时,市场的日销售利润最大,最大值为3600万元. ·················································································································· 9分方法二:由图11得,当020t ≤≤时,每件产品的日销售利润为3y t =;当2040t ≤≤时,每件产品的日销售利润为60y =. ①当020t ≤≤时,产品的日销售利润2326y t t t =+=;∴当20t =时,产品的日销售利润y 最大等于2400万元.②当2030t ≤≤时,产品的日销售利润602120y t t =⨯=.∴当30t =时,产品的日销售利润y 最大等于3600万元;③当3040t ≤≤时,产品的日销售利润60(6240)y t =⨯-+;∴当30t =时,产品的日销售利润y 最大等于3600万元. 综合①,②,③可知,当30t =天时,这家公司市场的日销售利润最大为3600万元.(9分)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000. ∴ x =2000. ………………………………………………………………6分把x =2000代入①得:5y =12000.∴ y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分4. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). ……………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分 解得x =88. ………………………………………………………7分∴ 31322x =,53501302x -=. 所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分5. (本题满分10分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?解:(1)由题意可知,当x ≤100时,购买一个需5000元,故15000y x =;-------------------1分当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤1035005000-+100=250. ------------------------2分 即100≤x ≤250时,购买一个需5000-10(x -100)元,故y 1=6000x -10x 2;----------4分当x >250时,购买一个需3500元,故13500y x =; ----------------5分所以,⎪⎩⎪⎨⎧-=x x x x y 3500106000500021 ).250()250100()1000(>≤<≤≤x x x ,, 2500080%4000y x x =⨯=. ---------------------7分(2) 当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x -10x 2=-10(x -300)2+900000<1400000;所以,由35001400000x =,得400x =; -------------------------------8分由40001400000x =,得350x =. -------------------------------9分故选择甲商家,最多能购买400个路灯.-----------------------------10分 6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?(1)设一次函数的关系式为y kx b =+,根据题意得300070100090k b k b =+⎧⎨=+⎩.............................................2分 解得 100,10000k b =-= ∴一次关系式为y = -100x +10000.....................5分(2)由题意得 (x -60)(-100x +10000)=40000.即216064000x x -+=,解得,1280x x ==.答:当定价为80元时,才能使工艺品厂每天的利润为40000元.........................10分7.(本题满分10分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y =198-6x (6≤x <8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y (元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.解:(1)当售价为7元/件时,利润y =198-42=156(元),此时销售7857156=-(件);…2分 (2)据题意,得 ⎩⎨⎧<≤---<≤-=)138)(5)](8(1050[)86(6198x x x x x y =⎩⎨⎧<≤-+-<≤-)138(65018010)86(61982x x x x x .…6分 (3)由(2)得:当6≤x <8时,y =198-6x ,所以当x =6时,y 最大=162;当x ≥8时,y =-10(x -9)2+160,所以当x =9时,y 极大=160;综上可知,当当x =6时,y 最大=162.………………10分8. (本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x +25)天.…………1分根据题意得:3030125x x +=+. ………………………………3分 方程两边同乘以x (x +25),得 30(x +25)+30x = x (x +25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. ………………………………5分经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. …………………6分∴ 当x =50时,x +25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天. ……………………7分(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.………………………………8分所需费用为:2500×50=125000(元).………………………………10分方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).……………………10分其它方案略.。
中考数学专题复习实际应用问题

实际应用问题【专题点拨】实际应用问题是以贴近现实生活中的话题为背景,运用方程与不等式、函数与不等式等来解决的一类实际生活中的问题,这类问题往往文字信息量大,背景复杂,要求学生具有较强的阅读、收集信息及建立模型的能力,从而解决问题.【解题策略】实际应用问题解决的关键是理解题意,从中找出等量关系、不等关系或函数关系,建立数学模型来解决,当信息量较大,可以借助图表等方式帮助理解.【典例解析】类型一:方程或不等式的应用题例题1:(2016·青海西宁·10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【解析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.变式训练1:(2016·山东省济宁市·3分)某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?类型二:方程与函数的应用题例题2:(2016广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?【考点】一次函数的应用;分式方程的应用.【解析】(1)设乙队单独完成这项工程需要x天,根据题意得方程即可得到结论;(2)根据题意得(+)×40=,即可得到a=60m+60,根据一次函数的性质得到=,即可得到结论.【解答】解:(1)设乙队单独完成这项工程需要x天,根据题意得×(30+15)+×15=,解得:x=450,经检验x=450是方程的根,答:乙队单独完成这项工程需要450天;(2)根据题意得(+)×40=,∴a=60m+60,∵60>0,∴a随m的增大增大,∴当m=1时,最大,∴=,∴÷=7.5倍,答:乙队的最大工作效率是原来的7.5倍【点评】此题考查了一次函数的实际应用.分式方程的应用,解题的关键是理解题意,能根据题意求得函数解析式,注意数形结合与方程思想的应用.变式训练2:(2016·浙江省绍兴市·8分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.类型三:方程、不等式和函数的综合应用题例题3:(2016·湖北随州·9分)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【考点】二次函数的应用;一元一次不等式的应用.【解析】(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53, ∵x 为整数, ∴50<x≤53, 53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元. 变式训练3:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:其中a 为常数,且3≤a ≤5.(1) 若产销甲、 乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.类型四:一次函数与反比例函数的综合应用题例题4:(2016·青海西宁·2分)如图,一次函数y=x+m 的图象与反比例函数y=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【解析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.变式训练4:(2016·重庆市B卷·10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.类型五:一次函数与二次函数的综合应用题例题5:(2016·辽宁丹东·12分)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【考点】二次函数综合题.【解析】(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P 是抛物线上一动点,且位于第四象限,设出点P 的坐标(m ,﹣m 2+4m ),利用差表示△ABP 的面积,列式计算求出m 的值,写出点P 的坐标;(4)分别以点C 、M 、N 为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM 或CN 的长,利用面积公式进行计算.【解答】解:(1)把点A (4,0),B (1,3)代入抛物线y=ax 2+bx 中,得解得:,∴抛物线表达式为:y=﹣x 2+4x ; (2)点C 的坐标为(3,3), 又∵点B 的坐标为(1,3), ∴BC=2,∴S △ABC =×2×3=3; (3)过P 点作PD⊥BH 交BH 于点D , 设点P (m ,﹣m 2+4m ),根据题意,得:BH=AH=3,HD=m 2﹣4m ,PD=m ﹣1, ∴S △ABP =S △ABH +S 四边形HAPD ﹣S △BPD ,6=×3×3+(3+m ﹣1)(m 2﹣4m )﹣(m ﹣1)(3+m 2﹣4m ), ∴3m 2﹣15m=0, m 1=0(舍去),m 2=5,∴点P 坐标为(5,﹣5).(4)以点C 、M 、N 为顶点的三角形为等腰直角三角形时,分三类情况讨论: ①以点M 为直角顶点且M 在x 轴上方时,如图2,CM=MN ,∠CMN=90°, 则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1, ∴M(1,2),N (2,0),由勾股定理得:MC==,∴S △CMN =××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt△MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM==,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN==,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.变式训练5:(2016·四川泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.【能力检测】1.(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:2.(2016·浙江省湖州市)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?3.(2016·辽宁丹东·10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?4. (2016·四川内江)(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图14所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.图145. (2016·四川攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【参考答案】变式训练1:(2016·山东省济宁市·3分)某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【解析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.变式训练2:(2016·浙江省绍兴市·8分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.【考点】一次函数的应用.【解析】(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.【解答】解:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050.变式训练3:(2016·湖北武汉·10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如下表:其中a为常数,且3≤a≤5.(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【考点】二次函数的应用,一次函数的应用【答案】(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)当3≤a<3.7时,选择甲产品;当a=3.7时,选择甲乙产品;当3.7<a≤5时,选择乙产品【解析】解:(1)y1=(6-a)x-20(0<x≤200),y2=-0.05x²+10x-40(0<x≤80);(2)甲产品:∵3≤a≤5,∴6-a>0,∴y1随x的增大而增大.∴当x=200时,y1max=1180-200a(3≤a≤5)乙产品:y2=-0.05x²+10x-40(0<x≤80)∴当0<x≤80时,y2随x的增大而增大.当x=80时,y2max=440(万元).∴产销甲种产品的最大年利润为(1180-200a)万元,产销乙种产品的最大年利润为440万元;(3)1180-200>440,解得3≤a<3.7时,此时选择甲产品;1180-200=440,解得a=3.7时,此时选择甲乙产品;1180-200<440,解得3.7<a≤5时,此时选择乙产品.∴当3≤a<3.7时,生产甲产品的利润高;当a=3.7时,生产甲乙两种产品的利润相同;当3.7<a≤5时,上产乙产品的利润高.变式训练4:(2016·重庆市B卷·10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【考点】反比例函数与一次函数的交点问题.【解析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.变式训练5:(2016·四川泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.【考点】二次函数综合题.【解析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△B C N=2S△P M N,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.【解答】解:(1)∵A(1,3),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4x;(2)存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a,则CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF==,∴FN=PF,∴MN=MF+FN=4PF,∵S△B C N=2S△P M N,∴a2=2××4PF2,∴a=2PF,∴NC=a=2PF,∴==,∴MN=NC=×a=a,∴MC=MN+NC=(+)a,∴M点坐标为(4﹣a,(+)a),又M点在抛物线上,代入可得﹣(4﹣a)2+4(4﹣a)=(+)a,解得a=3﹣或a=0(舍去),OC=4﹣a=+1,MC=2+,∴点M的坐标为(+1,2+).【能力检测】1.(2016·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:【解析】(1)设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,先求出m的范围,构建一次函数,利用函数性质解决问题.【解答】解:(1)设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得,解之得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m解之得m≥,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m 的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.【点评】不同考查一次函数的应用、分式方程等知识,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验,学会构建一次函数,利用一次函数性质解决实际问题中的最值问题,属于中考常考题型.2.(2016·浙江省湖州市)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?【考点】一次函数的应用;一元一次方程的应用;一元二次方程的应用.【解析】(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x 的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3=200,解得:t=25.。
2018中考数学专题训练应用题(大全5篇)

2018中考数学专题训练应用题(大全5篇)第一篇:2018中考数学专题训练应用题一次方程(组)、分式方程、不等式组应用题中考数学专题训练:1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?2、3、自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:职工甲乙 200 180 月销售件数(件)1800 1700 月工资(元)(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?4、5、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.6、2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?7、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?8、在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.9、为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过 2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?10、李明到离家2.1千米的学校参加联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否12、某学校将周三“阳光体育”项目定为跳绳活动,为在联欢会开始前赶到学校?11、此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?第二篇:一年级数学应用题专题训练一年级数学应用题专题训练1、同学们要做10个灯笼,已做好8个,还要做多少个?2、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?3、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?4、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?5、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?6、小强家有10个苹果,吃了7个,还有多少个?7、汽车总站有13辆汽车,开走了3辆,还有几辆?8、小朋友做剪纸,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?9、马场上有9匹马,又来了5匹,现在马场上有多少匹?10、商店有15把扇,卖去5把,现在有多少把?11、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?12、小青两次画了17个,第一次画了9个,第二次画了多少个?13、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?14、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?15、家有11棵白菜,吃了5棵,还有几棵?16、一条马路两旁各种上48棵树,一共种树多少棵?17、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?19、学校体育室有6个足球,又买来20个,现在有多少个?20、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅21、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?22、图书室里有20个女同学,有10个男同学,男同学比女同学少多少个?23、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?24、学校有10个足球,16个篮球,足球比篮球少多少个?25、花园里有兰花40盆,菊花60盆,兰花再种多少盆就和菊花同样多?26、妈妈买红扣子18个,白扣子10个,黑扣子8个。
中考数学实际应用问题及答案

中考实际应用题1. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m-3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过164万元,问最多购买A型污水处理器多少台?并求购买A型最多时每月处理污水量的吨数.2. 某厂家生产甲、乙两种零部件,已知甲种零部件每件的成本比乙种零部件每件的成本多1500元,且投入40000元生产甲种零部件的件数和投入28000元生产乙种的件数相同.(1)求甲、乙两种零部件每件成本各是多少元?(2)如果两种零部件共生产70件,该集团至少要投入290000元,那么,甲种零部件至少生产多少件?3. 某家电商场今年1月份开始销售一批某品牌液晶电视,1月份每台按所标价格销售,售出40台,2月份商场搞降价促销活动,每台降价400元销售,这样2月份比1月份多售出10台,销售款比1月份多40000元.(1)求这批电视1月份每台标价是多少元?(2)进入3月份,公司又按1月份所标价格的九折销售,将这批电视全部售出,销售款总量超过568600元,求这批电视最少有多少台?4. 为了解决农民工子女入学难的问题,哈市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”。
据统计,2013年秋季有5000名农民工子女进入主城区中小学学习,预测2014年秋季进入主城区中小学学习的农民工子女将比2013年有所增加,其中小学增加20%,中学增加30%,这样,2014年秋季将新增1160名农民工子女在主城区中小学学习。
(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算,求2014年新增的1160名中小学生共免收多少“借读费”?(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2014年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?5. 冰雪大世界决定在寒假期间举办学生专场游园会,入场券分为团体票和零售票,其中团体票占总票数的23,已知一张团体票比一张零售票少20元,买20张团体票和买15张零售票所花的钱是相同的.(1)求每张团体票和零售票各为多少元钱?(2)在第一周内,共售出团体票的35,售出零售票的一半;如果在第二周内,团体票按每张80元出售,并计划在该周内售出全部余票,那么零售票应按每张多少元定价才能使第二周的票款与第一周的票款收入持平?(3)在(2)的条件下,若该专场的入场卷共发行了1500张,主办方准备拿出全部票款的10%进行“为贫困山区的孩子购买学习用具”的慈善公益活动.已知每套A型图书50元,每套B型图书40元.该地区需要两种图书共260套.则最多可以购买多少套A型图书?6. 丑小鸭电器超市购进A、B两种型号的电风扇进行销售,若一台A种型号的进价比一台B 种型号的进价多30元,用2000元购进A种型号的数量是用3400元购进B种型号的数量的一半.(1)求每台A种型号和B种型号的电风扇进价分别是多少元?(2)该超市A种型号电风扇每台售价260元,B种型号电风扇每件售价l90元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A种型号的电风扇至少是多少台?7.在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?8. 电动自行车已成为市民日常出行的首选工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
A
D
B
实际生活应用问题(二)
例题示范
例 1:如图,排球运动员甲站在点O 处练习发球,将球从O 点正上方的A 处发出,把球看成点,其运行路线是抛物线
y
1
(x 6)2 2.6 的一部分,点D 为球运动的最高点.球60
网BC 离O 点的水平距离为 9 米,以O 为坐标原点建立如图所示的坐
标系,乙站立地点M 的坐标为(m,0)(m>9).乙原地起跳可接球的
最大高度为 2.4 米(2.4 米时能接到球),若乙因为接球高度不够
而失球,求m 的取值范围.
O C M x
1
2
3
【思路分析】
①理解题意,梳理信息
读题标注,将题目中的数据转化为图象中对应的线段长以及关键点坐标.如: D (6,2.6),C (9,0),M (m ,0) .
②辨识类型,建立函数图象模型
题目条件和判断标准均与函数图象相关,判断为实际生活应用问题.利用二次函数图象求解,首先要明确目标及判断标准.
由题意,若排球高度(y )大于 2.4 米,则乙会因接球高度不够而接不到球;若排球高度(y )小于等于 2.4 米,则乙可以接到球.即当 y >
2.4 时,符合题目要求.
所求目标即为当 y >2.4 时,对应的 x 的取值范围,即 m 的取值范围.
③求解验证,回归实际
【过程示范】 解:由题意得 y >2.4,即
1
(x 6) 2 2.6 2.4 ,
60
解得, 6 2 ∵m >9, ∴ 9 m 6 2 x 6 2 3 ,即 6 2
.
m 6
2 ∴乙因为接球高度不够而失球,m 的取值范围是 9 m 6 2 .
3 3 3 3
巩固练习
1.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B
处,其身体(看成一点)的路线是抛物线
y
3
x2 3x 1 的一部分,如图. 5
(1)求演员弹跳离地面的最大高度;
(2)已知人梯高BC=3.4 米,在一次表演中,人梯到起跳点
A 的水平距离是 4 米,则这次表演是否成功?请说明理由.
y(米)
B
A
O C x(米)
3
2.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,
用总长为 80 m 的围网在水库中围成了如图所示的①
②③三块矩形区域,而且这三块矩形区域的面积相等.设BC
的长度为x m,矩形区域ABCD 的面积为y m2.
(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围;
(2)当x 为何值时,y 有最大值?最大值是多少?
岸
堤
4
B s(m)
A
3.小明的爸爸和妈妈分别驾车从家同时出发去上班.爸爸行驶到甲处时
,看到前面路口是红灯,他立即刹车减速并在乙处停车等待.爸爸驾车从家到乙处的过程中,速度v(m / s)与时间t(s)的关系如图 1 中的实线所示,行驶路程s(m)与时
t s)的关系如图 2 所示,在加速过程中,s与t 满足表达式
s=at2.
12
180
h C
48
O s)O 8 17 21 t)
图1 图2
(1)根据图中的信息,写出小明家到乙处的路程,并求a
的值;
(2)求图 2 中A 点的纵坐标h,并说明它的实际意义;
(3)爸爸在乙处等待了 7 s 后绿灯亮起继续前行.为了节约能源,
减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/ s)与时间
t(s)的关系如图 1 中的折线O—B—C 所示,加速过程中行驶路程s
(m)与时间t(s)的关系也满足表达式
s=at2.当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的
行驶速度.
5
4.我市某风景区门票价格如图所示,某旅游公司有甲、乙两个旅行团队
,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和
为 120 人,乙团队人数不超过 50 人.设甲团队人数为x 人,如果甲
、乙两团队分别购买门票,两团队门票款之和为W 元.
(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围.
(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别
购票最多可节约多少钱.
(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数
不超过 50 人时,门票价格不变;人数超过 50 人但不超过 100 人时,
每张门票降价a 元;人数超过 100 人时,每张门票降价 2a 元.在(2
)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最
多可节约 3 400 元,求
a 的值.
门票价(元/人)
80
70
60
O 50100 人数(人)
思考小结
图象类问题的关键是能够把实际场景与数学模型结合起来进行思考分
析.
在读图时,要考虑三个方面:
①x 轴、y 轴代表的意义.
②每个点坐标在实际场景中的意义.
③每两个转折点间的线段(曲线)代表实际场景的变化趋势.
6
【参考答案】
1.(1)演员弹跳离地面的最大高度是19 米;
4 (2)这次表演能够成功,理由略.
2. (1)y
3
x2 30x(0 x 40);4
(2)当x=20 时y 有最大值,最大值为 300.
3. (1)a
3
;4
(2)h=156,它的实际意义是小明家距离甲处的距离为156 米;
(3)此时妈妈的驾车速度是 6 m/s .
4. (1)W 10x 9 600 (70 ≤x ≤100)
20x 9 600 (100 x 120
;
)
(2)最多节约 1 700 元;
(3)a=10.
7。