高二数学圆锥曲线基础试题(一)

合集下载

高二数学综合训练题一圆锥曲线 (更新)

高二数学综合训练题一圆锥曲线 (更新)

圆锥曲线综合训练题一选择题:每小题5分,共60分1.椭圆221259xy+=上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( ) A .4 B .5 C .6 D .72. 3k >是方裎22131xyk k +=--表示双曲线的( )条件。

A .充分但不必要B .充要C .必要但不充分D .既不充分也不必要3.抛物线24(0)y ax a =<的焦点坐标是( ) A . 1(,0)4aB . 1(0,)16aC . 1(0,)16a-D . 1(,0)16a4.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) A .1条 B .2条 C .3条 D .无数多条5.设12,F F 为双曲线2214xy -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F P F ∆的面积是( ) A .1 B .C .D .26.椭圆221m x ny +=与直线10x y +-=相交于,A B 两点,过A B 中点M 与坐标原点的直线的斜率为2,则m n的值为( )A .2B .3C .1D .27.过抛物线24y x =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,若12y y +=则A B 的值为( ) A .6 B .8 C .10 D .128. 直线143x y+=与椭圆221169xy+=相交于A 、B 两点,该椭圆上点P 使P A B ∆的面积等于6,这样的点P 共有( ) A .1个 B .2个 C .3个 D .4个9.直线l 是双曲线22221(0,0)xya b a b-=>>的右准线,以原点为圆心且过双曲线的焦点的圆,被直线l 分成弧长为2:1的两段圆弧,则该双曲线的离心率是 ( )A .B .C .D . 10.E 、F 是椭圆22142xy+=的左、右焦点, l 是椭圆的一条准线,点P 在l 上, 则E P F ∠的最大值是( ) A . 15B . 30C . 45D . 6011. 1F 、2F 为椭圆的两个焦点,Q 为椭圆上任一点,从任一焦点向12F Q F ∆的顶点Q 的外 角平分线引垂线,垂足为P , 则P 点轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 12.A 、B 分别是椭圆22221x y ab+=的左、右顶点, F 是右焦点,P 是异于A 、B 的一点,直线AP 与BP 分别交右准线于M 、N, 则 M F N ∠= ( ) A . 60 B . 75 C . 90 D . 120二填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上. 13.设(,)P x y 是椭圆22194xy+=上的一点,则2x y -的最大值是14.抛物线24y x =的经过焦点弦的中点轨迹方程是15.x m =+无解,则实数m 的取值范围是16.抛物线C :28y x =,一直线:(2)l y k x =-与抛物线C 相交于A 、B 两点,设,m AB = 则m 的取值范围是三解答题:本大题共6小题,共74分。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

北师大版高二数学选修1-1圆锥曲线方程测试题及答案

北师大版高二数学选修1-1圆锥曲线方程测试题及答案

高二数学选修1-1圆锥曲线方程检测题姓名:_________班级:________ 得分:________一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点()10,3F -,()20,3F ,动点(),P x y 满足条件a PF PF =+21(a>)0,则动点P 的轨迹是( ).A. 椭圆B. 线段C. 不存在D.椭圆或线段或不存在2、抛物线21y x m = 的焦点坐标为( ) . A .⎪⎭⎫ ⎝⎛0,41m B . 10,4m ⎛⎫ ⎪⎝⎭ C . ,04m ⎛⎫ ⎪⎝⎭ D .0,4m ⎛⎫⎪⎝⎭3、双曲线221mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14-B .4-C .4D .144、设双曲线的焦点在x 轴上,两条渐近线为y=±x 21,则该双曲线的离心率e 为( ) (A )5 (B )5 (C )25 (D )45 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2(C )5(D )56、若椭圆13222=++y m x 的焦点在x 轴上,且离心率e=21,则m 的值为( )(A )2(B )2 (C )-2(D )±27、过原点的直线l 与双曲线42x -32y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23,+∞) C.[-23,23] D.(-∞,-23]∪[23,+∞)8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC 与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线B. 抛物线C.双曲线D. 圆9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( )(A )(43π,π) (B )(4π,43π) (C )(2π,π) (D )(2π,43π)10、 F 1、F 2是双曲线116922=-y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32,则∠F 1PF 2是( )(A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能BA 1C 111、与椭圆1251622=+y x 共焦点,且过点(-2,10)的双曲线方程为( )(A )14522=-x y (B )14522=-y x (C )13522=-x y (D )13522=-y x12.若点 到点 的距离比它到直线 的距离小1,则 点的轨迹方程是( )A .B .C .D .二、填空题:本大题共4小题,每小题4分,共16分.13、已知双曲线的渐近线方程为y=±34x,则此双曲线的离心率为________.14.在抛物线 上有一点 ,它到焦点的距离是20,则 点的坐标是_________.15.抛物线上的一点到 轴的距离为12,则与焦点间的距离=______..16、椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a,焦距为2c,静放在点A 的小球(小球的半径忽略不计)从点A 沿直线出发,经椭圆壁反射后第一次回到点A 时,小球经过的路程是_____________.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分15分)椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为3,求此椭圆的标准方程。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。

解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。

3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。

利用“点差法”求弦的斜率,由点斜式写出方程。

故选B。

4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。

【考点】本题主要考查抛物线的定义、标准方程、几何性质。

点评:熟记抛物线的标准方程及几何性质。

5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。

【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。

点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。

【数学】第2章《圆锥曲线》测试(苏教版选修1-1)

【数学】第2章《圆锥曲线》测试(苏教版选修1-1)

高二数学同步测试:圆锥曲线综合一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为( )A .45B .25 C .32D .452.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( )A .y x 82=B .y x 82-=C .y x 162=D .y x 162-=3.圆的方程是(x -cos θ)2+(y -sin θ)2= 12 ,当θ从0变化到2π时,动圆所扫过的面积是 ( )A .π22B .πC .π)21(+D .π2)221(+4.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= 5.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍B .5倍C .4倍D .3倍6.以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是( )A .522=+y x B .2522=+y x C .422=+y xD .1622=+y x 7.曲线⎩⎨⎧==θθsin cos 2y x (θ为参数)上的点到原点的最大距离为( )A . 1B .2C .2D .38.如果实数x 、y 满足等式3)2(22=+-y x ,则xy最大值 ( ) A .21B .33 C .23 D .39.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( )F xyABCOA .1条B .2条C .3条D .4条10.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ( )A .x y 232=B .x y 32=C .x y 292=D .x y 92=二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________.12.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .以(),n m 为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有 个. 13.设点P 是双曲线1322=-y x 上一点,焦点F (2,0),点A (3,2),使|PA |+21|PF |有最小值时,则点P 的坐标是________________________________.14.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 .三、解答题(本大题共6小题,共76分)15.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1) 求△21PF F 的面积; (2) 求P 点的坐标.(12分)16.已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)17.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (1)求双曲线C 的方程;(2)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围.(12分)18.如图,过抛物线)0(22>=p px y 上一定点P (x y 00,)(y 00>),作两条直线分别交抛物线于A (x y 11,),B (22,y x ).yPO xAB(1)求该抛物线上纵坐标为p2的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求021y y y +的值,并证明直线AB 的斜率是非零常数.(12分)19.如图,给出定点A(a , 0) (a >0)和直线: x = –1 . B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C . 求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.(14分)ylBCxA20.椭圆C 1:2222by a x +=1(a >b>0)的左右顶点分别为A 、B.点P 双曲线C 2:2222b y a x -=1在第一象限内的图象上一点,直线AP 、BP 与椭圆C 1分别交于C 、D 点.若△ACD 与△PCD 的面积相等.(1)求P 点的坐标;(2)能否使直线CD 过椭圆C 1的右焦点,若能,求出此时双曲线C 2的离心率,若不能,请说明理由.(14分)参考答案一、选择题(本大题共10小题,每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10 答案BCACABCDCB二、填空题(本大题共4小题,每小题6分,共24分)11.1273622=+y x 12.3022<+<n m , 2 13.)2,321(14. 25yPO xAB三、解答题(本大题共6题,共76分) 15.(12分)[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 16.(12分)[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴ 22122y y x x =+=⇒yy x x 21222=-=,又Q 是OP 的中点∴221212y y x x ==⇒yy y x x x 422422121==-==,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .17.(12分)[解析]:(1)当时,1=a ,2x y =表示焦点为)0,41(的抛物线;(2)当10<<a 时,11)1()1(22222=-+---a a y aa a ax ,表示焦点在x 轴上的椭圆;(3)当a>1时,11)1()1(22222=-----a a y a a a a x ,表示焦点在x 轴上的双曲线. (1设双曲线C 的渐近线方程为y=kx ,则kx-y=0∵该直线与圆1)2(22=-+y x 相切,∴双曲线C 的两条渐近线方程为y=±x .故设双曲线C 的方程为12222=-ay ax .又双曲线C 的一个焦点为)0,2(,∴222=a ,12=a .∴双曲线C 的方程为:122=-y x .(2)由⎩⎨⎧=-+=1122y x mx y 得022)1(22=---mx x m .令22)1()(22---=mx x m x f∵直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根. 因此⎪⎩⎪⎨⎧>--<->∆012012022m m m且,解得21<<m .又AB 中点为)11,1(22mm m --, ∴直线l 的方程为:)2(2212+++-=x m m y . 令x =0,得817)41(2222222+--=++-=m m m b . ∵)2,1(∈m ,∴)1,22(817)41(22+-∈+--m ,∴),2()22,(+∞---∞∈ b .18.(12分)[解析]:(I )当y p =2时,x p=8又抛物线y px 22=的准线方程为x p=-2由抛物线定义得,所求距离为p p p 8258--=() (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=相减得()()()y y y y p x x 1010102-+=-,故k y y x x py y x x PA =--=+≠101010102()同理可得k py y x x PB =+≠22020(),由PA ,PB 倾斜角互补知k k PA PB =-即221020p y y p y y +=-+,所以y y y 1202+=-, 故y y y 122+=- 设直线AB 的斜率为k AB ,由y px 2222=,y px 1212=,相减得()()()y y y y p x x 2121212-+=-所以k y y x x py y x x AB=--=+≠212112122(), 将y y y y 120020+=->()代入得k p y y py AB =+=-2120,所以k AB 是非零常数.19.(14分)[解析]:设B (-1,b ),OA l :y=0, OB l :y=-bx,设C (x ,y ),则有x ≤0<a ,由OC 平分∠BOA ,知点C 到OA ,OB 距离相等,21b bx y y ++=∴①及C 在直线AB: ()a x ab y -+-=1②上,由①②及ax ≠得,得[]0)1(2)1(222=++--y a ax x a y 若y=0,则b=0 满足0)1(2)1(22=++--y a ax x a . 20.(14分)[解析]:(1)设P(x 0,y 0)(x 0>0,y 0>0),又有点A(-a ,0),B(a ,0). ,PCD ACD S S ∆∆=).2,2(,00y a x C AP C -∴∴的中点为得点坐标代入椭圆方程将,C 4)(220220=+-by a a x ,又1220220=-by a x 5)(220220=+-⇒a x a a x ,b y a x a x 3),(2000=∴-==∴舍去,)3,2(b a P ∴. (2),300a b a x y K K PB PD =-== :PD 直线)(3a x a b y -=代入12222=+b y a x 03222=+-⇒a ax x )(2舍去a x ax D D ==∴,)23,2(),2,2(00b a C y a x C 即-∴∴CD 垂直于x 轴.若CD 过椭圆C 1的右焦点,则.27,23,22222=+=∴=∴-=a b a e a b b a a 故可使CD 过椭圆C 1的右焦点,此时C 2的离心率为27.。

高二数学圆锥曲线基础练习题(一)(最新整理)

高二数学圆锥曲线基础练习题(一)(最新整理)

14. 2
15.2. 由抛物线 y ax2 1 的焦点坐标为 (0, 1 1) 为坐标原点得, a 1 ,则 y 1 x2 1 与坐标轴的交点为
4a
4
4
(0, 1), (2, 0), (2, 0) ,则以这三点围成的三角形的面积为 1 41 2 . 2
3
16.0<m2+n2<3, 2. ∵直线 mx+ny-3=0 与圆 x2+y2=3 没有公共点,∴
求出 m 的值;若不存在,请说明理由.
18.如图,椭圆
x2 a2
y2 b
=1(a>b>0)与过点
A(2,0)B(0,1)的直线有且只有一个公共点 T,且椭圆的离心率 e
3
.
2
(I)求椭圆方程;
(II)设 F 1 、F 2 分别为椭圆的左、右焦点,
求证: |
AT
|2
=1 2
|
AF1
||
AF2
|
.
19.已知菱形 ABCD 的顶点 A,C 在椭圆 x2 3y2 4 上,对角线 BD 所在直线的斜率为 1. (Ⅰ)当直线 BD 过点 (0,1) 时,求直线 AC 的方程; (Ⅱ)当 ABC 60 时,求菱形 ABCD 面积的最大值.
(Ⅱ)是否存在实数 k 使 NA NB 0 ,若存在,求 k 的值;若不存在,说明理由.
参考答案
一、选择题
2
1.B.
0
0
2.A.双曲线 mx2
y2
1 的虚轴长是实轴长的 2 倍,∴
m<0,且双曲线方程为 x2 4
8y 2
1
1,∴
m= 1 4
.
3.C.
1

北海七中高二数学圆锥曲线测试题

北海七中高二数学圆锥曲线测试题

高二数学测试题——圆锥曲线一、选择题:(60分)1.1.抛物线2y x =-的焦点坐标为( ) A.1(0,)4 B.1(0,)4- C.1(,0)4D.1(,0)4- 2.双曲线14322=-x y 的渐近线方程是( ) A. x y 23±= B. x y 332±= C. x y 43±= D. x y 34±= 3、.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( ) A .45 B .25 C .32 D .45 4.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条C .3条D .4条 5.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这 样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x7、一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点( )()()()().4,0.2,0.0,2.0,2A B C D -8.已知c 是椭圆)0(12222>>=+b a by a x 的半焦距,则a c b +的取值范围是 ( ) A (1, +∞) B ),2(∞+ C )2,1( D ]2,1(9、若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A.4B.2C.1D.1210、设A 、B 抛物线y 2=8x 两动点,且|AB|=10,M 为AB 的中点,则点M 到直线30x +=的距离的最小值是( )A 5B …6C 7D 811、如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且 901=∠BDB ,则椭圆的离心率为( )A 213-B 215-C 215-D 23 12、设椭圆)0(12222>>b a by a x =+的离心率为e =21,右焦点为F(c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P(x 1,x 2) ( )A .必在圆x 2+y 2=2上B .必在圆x 2+y 2=2外C .必在圆x 2+y 2=2内D .以上三种情形都有可能二、填空题:(20分)13、设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________. 14.若曲线15422=++-a y a x 的焦点为定点,则焦点坐标是 .; 15、椭圆2222143x y +=左右焦点分别为1F 、2F ,P 为椭圆上任意一点,过1F 作12F PF ∠的外角平分线的垂线,垂足为M ,则点M 的轨迹方程是 .16、已知P 为抛物线y 2=4x 上一点,设P 到直线260x y +-=的距离为d 1,P 到准线的距离为d 2,则d 1+d 2的最小值为________.三、解答题:(70分)17、双曲线与椭圆1362722=+y x 有相同焦点,且经过点4),求双曲线的方程18、已知12AF F ∆的周长为6,点12(1,0),(1,0)F F -。

甘肃省天水市第二中学2012-2013学年高二数学(理)寒假作业:圆锥曲线与方程 (1)

甘肃省天水市第二中学2012-2013学年高二数学(理)寒假作业:圆锥曲线与方程 (1)

圆锥曲线与方程 1一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( )A .x 2+y 2=3B .x 2+2xy =1(x ≠±1)C .y =1-x 2D .x 2+y 2=9(x ≠0)2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|·|M P →|+M N →·N P→=0,则动点P (x ,y )的轨迹方程为( ) A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π4.已知A (-1,0),B (1,0),且MA →·M B →=0,则动点M 的轨迹方程是( )A .x 2+y 2=1B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.6.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →·A B →=1.求P 点的轨迹方程.8.过点P1(1,5)作一条直线交x轴于点A,过点P2(2,7)作直线P1A的垂线,交y轴于点B,点M在线段AB上,且BM∶MA=1∶2,求动点M的轨迹方程.尖子生题库☆☆☆9.(10分)已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,求OP中点Q 的轨迹方程.(分别用直接法、定义法、代入法求解)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学圆锥曲线基础试题(一)————————————————————————————————作者:————————————————————————————————日期:高二数学圆锥曲线基础练习题(一)一、选择题:1.抛物线x y 42=的焦点坐标为( )A .)1,0(B .)0,1(C . )2,0(D .)0,2(2.双曲线221mx y +=的虚轴长是实轴长的2倍,则m = ( )A .14-B .4-C .4D .143.双曲线221916x y -=的一个焦点到渐近线距离为 ( )A .6B .5C .4D .34.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是 ( )A .2 3B .6C .4 3D .125.已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( )A .4B .5C .7D .86.已知P 是双曲线22219x y a -=右支上的一点,双曲线的一条渐近线方程为30x y -=. 设 12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = ( ) A . 5B .4C .3D .27.将抛物线2(2)1y x =-+按向量a 平移,使顶点与原点重合,则向量a 的坐标是( )A .(2,1)--B .(2,1)C .(2,1)-D .(2,1)-8.已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥, 12||||2PF PF ⋅=,则该双曲线的方程是 ( )A .13222=-y x B .12322=-y x C .1422=-y x D .1422=-y x 9.设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的 ( )A .充要条件B .必要不充分条件C .充分不必要条件D .既非充分也非必要条件22x y积等于 ( )A .24B .36C .48D .9611.已知点P 在抛物线24y x =上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1) B .(14,1) C .(1,2) D .(1,-2)12.设P 是双曲线22221(0,0)x y a b a b-=>>上的一点,1F 、2F 分别是双曲线的左、右焦点,则以线段2PF 为直径的圆与以双曲线的实轴为直径的圆的位置关系是( )A .内切B .外切C .内切或外切D .不相切二、填空题:13.点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是;14.已知P 是椭圆2214x y +=在第一象限内的点,A (2,0),B (0,1),O 为原点,求四边形OAPB 的面积的最大值_________;15.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 ;16.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为_______;以(m,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个。

三、解答题:17.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (I )求椭圆的标准方程;(II )设直线l :m x y +=,是否存在实数m ,使直线l 椭圆有两个不同的交点M 、N ,且AN AM =,若存在,求出 m 的值;若不存在,请说明理由.18.如图,椭圆by a x 222+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T ,且椭圆的离心率23=e .(I )求椭圆方程;(II )设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2AT AF AF =.19.已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1. (Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=o时,求菱形ABCD 面积的最大值.20.已知△OFQ 的面积为26,OF FQ m ⋅=u u u r u u u r.(I )设646m ≤≤,求OFQ ∠正切值的取值范围; (II )设以O 为中心,F 为焦点的双曲线经过点Q (如图),26||,(1)4OF c m c ==-u u u r ,当 ||OQ uuu r 取得最小值时,求此双曲线的方程。

21.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)22.已知抛物线C :22y x =,直线2y kx =+交C 于A B ,两点,M 是线段AB 的中点,过M 作x 轴的垂线交C于点N .(Ⅰ)证明:抛物线C 在点N 处的切线与AB 平行;(Ⅱ)是否存在实数k 使0=⋅NB NA ,若存在,求k 的值;若不存在,说明理由.参考答案一、选择题 1.B.2.A.双曲线221mx y +=的虚轴长是实轴长的2倍,∴ m<0,且双曲线方程为2214x y -+=,∴ m=14-.3.C.4.C. 由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,可得ABC ∆的周长为4a=43.5.D .由题意,得 24c =,2c =.222,10a m b m =-=-,代入222a b c =+,有2104,m m -=-+即 8m =.6.A. 由课本知识,得知双曲线的渐近线方程为30x ay -=,或者30x ay +=.与已知的渐近线方程30x y -=对应,立得正数1a =.显然,由双曲线定义有122PF PF a -=,所以15PF =. 7.A. 将抛物线方程配方,得2(2)1x y -=-.画图,知道a (2,1)=--. 8.C .显然双曲线的特征量5c =.由21PF PF ⊥得,222124PF PF c +=.对于关系122PF PF a -=,两边平方,得22444c a -=,即2214a c =-=,于是21b =.从而双曲线的方程是1422=-y x . 9.A.10.C.∵双曲线22:1916x y C -=中,3,4,5a b c ===, ∴()()125,0,5,0F F - ∵212PF F F =,∴12261016PF a PF =+=+=. 作1PF 边上的高2AF ,则18AF =. ∴2221086AF =-= ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯=. 11.A .将点P到抛物线焦点距离转化为点P到准线距离,容易求得当PQ ∥x 轴时,P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小,令1y =-,得14x =,故点P 为(14,-1),选A. 12.C. 利用双曲线的定义,通过圆心距判断出当点P 分别在左、右两支时,两圆相内切、外切. 二、填空题13.2 .由于x y 42=的准线是1-=x ,所以点p 到1-=x 的距离等于P 到焦点F 的距离,故点P 到点)1,0(-A 的距离与P 到x =1-的距离之和的最小值是2=FA . 14.215.2. 由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=.16.0<m 2+n 2<3, 2. ∵直线mx+ny -3=0与圆x 2+y 2=3没有公共点,∴3m 2+n2>3,解得0<m 2+n 2<3. ∴m 27+n 23< m 23+n 23<1,即点P(m ,n )在椭圆内部,故过P 的直线必与椭圆有两个交点. 三、解答题17.(I )依题意,设椭圆的方程为,1222=+y ax 设右焦点为(c,0),则3222=+c -----------4分2=∴c a 2=b 2+c 2=3----------------------6分 ∴椭圆方程为1322=+y x . (II )设M (x 1,y 1),N(x 2,y 2), 由 22,1,3y x m x y =+⎧⎪⎨+=⎪⎩ 得4x 2+6mx+3m 2-3=0. 当判别式△>0 时,4)1(3,2322121-=⋅-=+∴m x x m x x221my y =+∴ ---------------9分 AN AM =Θ 22222121)1()1(++=++∴y x y x∴)22(23+-=-mm , 故 m=2,但此时判别式0=∆,∴满足条件的m 不存在. ------------------12分18.解:(Ⅰ)过 A 、B 的直线方程为 12xy +=.由题意得22221112x y a b y x ⎧+=⎪⎪+⎨⎪=-+⎪⎩有惟一解.即 2222221()04b a x a x a b +-+=有惟一解,所以 2222(44)0(0),a b a b ab ∆=+-=≠ ------------------3分 故22440a b +-=.因为 32c =,即22234a b a -= , 所以224a b = 从而, 得 2212,,2a b ==故所求的椭圆方程为22212x y +=. ------------------6分 (Ⅱ)由(Ⅰ)得62c =, 所以 1266(,0),(,0)22F F -. 由 22221112x y a b y x ⎧+=⎪⎪+⎨⎪=-+⎪⎩ 解得 121,x x ==, ------------------9分因此1(1,)2T =. 从而 254AT =, 因为1252AF AF ⋅=, 所以21212AT AF AF =⋅. ------------------12分 19.解:(Ⅰ)由题意得直线BD 的方程为1y x =+.因为四边形ABCD 为菱形,所以AC BD ⊥. 于是可设直线AC 的方程为y x n =-+.由2234x y y x n⎧+=⎨=-+⎩,得2246340x nx n -+-=.------------------2分 因为A C ,在椭圆上,所以212640n ∆=-+>,解得434333n -<<. 设A C ,两点坐标分别为1122()()x y x y ,,,,则 1232nx x +=,212344n x x -=,11y x n =-+,22y x n =-+.所以 122ny y +=. ------------------4分 所以AC 的中点坐标为344n n ⎛⎫⎪⎝⎭,.由四边形ABCD 为菱形可知,点344n n ⎛⎫⎪⎝⎭,在直线1y x =+上, 所以3144n n=+,解得2n =-. 所以直线AC 的方程为2y x =--,即20x y ++=. -----------------7分 (Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=o,所以AB BC CA ==.所以菱形ABCD 的面积232S AC =. ------------------9分 由(Ⅰ)可得22221212316()()2n AC x x y y -+=-+-=,所以234343(316)433S n n ⎛⎫=-+-<< ⎪ ⎪⎝⎭. 所以当0n =时,菱形ABCD 的面积取得最大值43.------------------12分 20.解:(I )设OFQ θ∠=, 则||||cos()1||||sin 262OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩u u u r u u u ru u ur u u u r 46tan m θ⇒=- . ---------------3分 646m ≤≤ Q ,4tan 1θ∴-≤≤-. ------------------5分(II )设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b-= >> =-u u u r 则 ∴11||||262OFQ S OF y ∆=⋅=u u ur , ∴146y c=±. 又∵OF FQ m ⋅=u u u r u u u r,∴21116(,0)(,)()(14OF FQ c x c y x c c c ⋅=⋅-=-⋅=- )u u u r u u u r . -----------------9分 22211126963,||12.48c x c OQ x y c ∴= ∴=+=+≥u u u rxA y 1 12M N B O 当且仅当4c =时,||OQ uuu r最小,此时Q 的坐标是(6,6)或(6,6)-22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩, 所求方程为221.412x y -= ------------------12分 21.解:如图,以接报中心为原点O,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020). -----------3分 设P(x ,y)为巨响发生点,由A 、C 同时听到巨响声,得|PA|=|PC|,故P 在AC 的垂直平分线PO 上,PO 的方程为y =-x ,因B 点比A 点晚4s 听到爆炸声,故 |PB|-|PA|=340×4=1360. ------------------6分由双曲线定义知P 点在以A 、B 为焦点的双曲线22221x y a b-=上,依题意得a =680,c =1020,∴b 2=c 2-a 2=10202-6802=5×3402,故双曲线方程为x 26802-y 25×3402=1. -----------9分用y =-x 代入上式,得x =±6805, ∵|PB|>|PA|,∴x =-6805,y =6805, 即P(-6805,6805), 故PO=68010.答:巨响发生在接报中心的西偏北450距中心68010 m 处. ------------------12分22. 解:(Ⅰ)如图,设211(2)A x x ,,222(2)B x x ,, 把2y kx =+代入 22y x =得2220x kx --=, ---------------2分由韦达定理得122kx x +=,121x x =-, ∴1224N M x x kx x +===,∴N 点的坐标为248k k ⎛⎫⎪⎝⎭,.设抛物线在点N 处的切线l 的方程为284k k y m x ⎛⎫-=- ⎪⎝⎭, 将22y x =代入上式得222048mk k x mx -+-=,------------------5分 Q 直线l 与抛物线C 相切,xy O C P A A B2222282()048mk k m m mk k m k ⎛⎫∴∆=--=-+=-= ⎪⎝⎭,m k ∴=.即l AB ∥. ------------------7分(Ⅱ)假设存在实数k ,使0NA NB =u u u r u u u rg ,则NA NB ⊥.又M Q 是AB 的中点,1||||2MN AB ∴=. ------------------9分 由(Ⅰ)知121212111()(22)[()4]222M y y y kx kx k x x =+=+++=++22142224k k ⎛⎫=+=+ ⎪⎝⎭. MN ⊥Q x 轴,22216||||2488M N k k k MN y y +∴=-=+-=. ------------------12分.2,16141816.16121)1(4)2(14)(1||1||2222222212212212±=+⋅+=+∴+⋅+=-⨯-⋅+=-+⋅+=-⋅+=k k k k k k k k x x x x k x x k AB 解得又即存在2k =±,使.0=⋅NB NA ------------------14分。

相关文档
最新文档