高二数学圆锥曲线测试题以及详细答案

合集下载

高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案

高二圆锥曲线基础练习题及答案一、选择题1. 下列关于椭圆的说法,正确的是:A. 所有椭圆都是对称图形。

B. 椭圆的离心率大于1。

C. 椭圆的长轴和短轴相等。

D. 椭圆的焦点个数与离心率有关。

答案:D2. 设椭圆的长轴长度为10,短轴长度为6,则该椭圆的离心率为:A. 3/5B. 1/2C. 2/3D. 5/6答案:C3. 下列关于双曲线的说法,正确的是:A. 所有双曲线都是开口向上的图形。

B. 双曲线的离心率等于1。

C. 双曲线的长轴和短轴相等。

D. 双曲线的焦点个数与离心率有关。

答案:D4. 设双曲线的长轴长度为8,短轴长度为4,则该双曲线的离心率为:A. 2B. 3/2C. 4/3D. 5/4答案:B5. 下列关于抛物线的说法,正确的是:A. 抛物线的焦点位于抛物线的顶点上。

B. 抛物线的离心率等于1。

C. 抛物线的长轴和短轴相等。

D. 抛物线的焦点个数与离心率有关。

答案:A二、填空题1. 设椭圆的长轴长度为12,短轴长度为8,则该椭圆的离心率为__________。

答案:2/32. 设直角双曲线的焦点到中心的距离为3,焦点到顶点的距离为5,则该直角双曲线的离心率为__________。

答案:4/53. 设抛物线的焦距为6,顶点到焦点的距离为4,则该抛物线的离心率为__________。

答案:3/2三、解答题1. 某椭圆的长轴长度为10,焦距为6,求离心率和短轴的长度。

解:设椭圆的离心率为e,短轴长度为b。

根据椭圆的定义,焦距的长度为ae,即6 = ae。

由此可以解得椭圆的离心率为e = 6/a。

又已知长轴长度为10,即2a = 10,解得a = 5。

将a = 5代入离心率的公式,可得e = 6/5。

由椭圆的定义可知,离心率e = √(1 - b²/a²),代入已知的离心率和a的值,可得√(1 - b²/25) = 6/5。

将等式两边平方化简,得到1 - b²/25 = 36/25,即1 - b² = 36,解得b = √(1 - 36) = √(-35)。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.点到图形上每一个点的距离的最小值称为点到图形的距离,那么平面内到定圆的距离与到定点的距离相等的点的轨迹不可能是()A.圆B.椭圆C.双曲线的一支D.直线【答案】D【解析】设动点为M,到圆C的距离记为MB,直线MB过圆心,当定点A是圆心C时,MB=MA,M为AB中点轨迹为圆;当定点A在圆内(圆心除外)时,MC+MA=r>AC,轨迹为椭圆;当定点A在圆外时,MC-MA=r<AC,轨迹为双曲线的一支,答案选D。

考点:圆锥曲线的定义2.已知、是椭圆的两个焦点,为椭圆上一点,且,若的面积为9,则的值为()A.1B.2C.3D.4【答案】【解析】根据椭圆定义知①,根据,知②,③,所以,可得.【考点】椭圆定义,直角三角形的面积及勾股定理.3.若存在过点的直线与曲线和都相切,则等于()A.或B.或C.或D.或【答案】A【解析】设直线与曲线相切的切点为,利用导数的几何意义得:, 解得或,当时,直线为轴,与相切,即,解得,当时,直线为,与抛物线联立,整理得:,因为相切,所以,解得,故选A.【考点】1.导数的几何意义;2.求切线方程.4.若是任意实数,则方程所表示的曲线一定不是()A.直线B.双曲线C.抛物线D.圆【答案】C【解析】当时,即时,曲线为直线,当时,曲线为圆,当时,曲线为双曲线.故选C.【考点】圆锥曲线的标准方程.5.若是2和8的等比中项,则圆锥曲线的离心率是()A.B.C.或D.【答案】C【解析】由题可知,则,当时,圆锥曲线为椭圆,则,离心率,当时,圆锥曲线为双曲线,则,离心率.所以选C.【考点】本题主要考查圆锥曲线的标准方程,离心率.6.已知椭圆:的离心率,原点到过点,的直线的距离是.(1)求椭圆的方程;(2)若椭圆上一动点关于直线的对称点为,求的取值范围;(3)如果直线交椭圆于不同的两点,,且,都在以为圆心的圆上,求的值.【答案】(1)(2)(3)【解析】(1)由截距式可得直线的方程,根据点到线的距离公式可得间的关系,又因为,解方程组可得的值。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.点P在正方体ABCD﹣A1B1C1D1的底面ABCD所在平面上,E是A1A的中点,且∠EPA=∠D1PD,则点P的轨迹是()A.直线B.圆C.抛物线D.双曲线【答案】B【解析】由已知得即,在平面ABCD内以AD所在直线为x轴,AD中点为坐标原点建立直角坐标系,设A(1,0),B(-1,0),P(x,y),由建立等式化简得轨迹方程为,是圆的一般方程,所以答案选B。

【考点】1.直角三角形中的三角函数定义;2.轨迹方程的求解2.已知平面五边形关于直线对称(如图(1)),,,将此图形沿折叠成直二面角,连接、得到几何体(如图(2))(1)证明:平面;(2)求平面与平面的所成角的正切值.【答案】(1)证明详见解析;(2).【解析】(1)先以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立空间直角坐标系,求出各点的坐标以及和的坐标,进而得到两向量共线,即可证明线面平行;(2)先根据条件求出两个半平面的法向量的坐标,再求出这两个法向量所成角的余弦值,再结合同角三角函数的基本关系式可求得结果.试题解析:(1)以B为坐标原点,分别以射线BF、BC、BA为x轴、y轴、z轴的正方向建立如图所示的坐标系.由已知与平面几何知识得,∴,∴,∴AF∥DE,又∥ 6分(2)由(1)得四点共面,,设平面,则不妨令,故,由已知易得平面ABCD的一个法向量为∴,设平面与平面的所成角为∴所求角的正切值为 13分.【考点】1.直线与平面平行的判定;2.用空间向量求二面角.3.抛物线的焦点到准线的距离是 .【答案】【解析】由抛物线的定义知抛物线的焦点到准线的距离是P,又由题可知P=.【考点】抛物线的几何性质.4.如图,已知椭圆:的离心率为,点为其下焦点,点为坐标原点,过的直线:(其中)与椭圆相交于两点,且满足:.(1)试用表示;(2)求的最大值;(3)若,求的取值范围.【答案】(1);(2)离心率的最大值为;(3)的取值范围是.【解析】(1)设,联立椭圆与直线的方程,消去得到,应用二次方程根与系数的关系得到,,然后计算得,将其代入化简即可得到;(2)利用(1)中得到的,即(注意),结合,化简求解即可得出的最大值;(3)利用与先求出的取值范围,最后根据(1)中,求出的取值范围即可.试题解析:(1)联立方程消去,化简得 1分设,则有, 3分∵∴ 5分∴即 6分(2)由(1)知∴,∴ 8分∴∴离心率的最大值为 10分(3)∵∴∴ 12分解得∴即∴的取值范围是 14分.【考点】1.椭圆的标准方程及其性质;2.二次方程根与系数的关系.5.求以椭圆的焦点为焦点,且过点的双曲线的标准方程.【答案】【解析】首先设出双曲线的标准方程,然后利用与椭圆的关系、双曲线过点建立组可求得a,b的值.试题解析:由椭圆的标准方程可知,椭圆的焦点在轴上.设双曲线的标准方程为.根据题意,解得或(不合题意舍去),∴双曲线的标准方程为.【考点】1、椭圆的几何性质;2、双曲线的方程求法.6.已知椭圆的离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()A.B.C.D.【答案】D【解析】根据题意,由于椭圆的离心率为,则可知b:a=1:2,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,可知为正方形边长为4,则可知(2,2)在椭圆上,可知椭圆的方程为,选D.【考点】椭圆和双曲线点评:主要是考查了椭圆与双曲线的性质的运用,属于基础题。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.已知两点和,若直线上存在点P,使,则称该直线为“B型直线”.给出下列直线:①;②;③;④,其中为“B型直线”的是()A.①③B.①②C.③④D.①④【答案】B【解析】∵|PM|-|PN|=6∴点P在以M、N为焦点的双曲线的右支上,即(x>0),①,把y=x+1代入双曲线(x>0)并整理,得7x2-18x-153=0,∵△=(-18)2-4×7×(-153)>0∴y=x+1是“B型直线”.②把y=2代入双曲线(x>0)并整理,得x2=,∴y=2是“B型直线”.③把代入双曲线(x>0)并整理,得144=0,不成立.∴不是“B型直线”。

④把y=2x+1代入双曲线(x>0)并整理,得20x2+36x+153=0,∵△=362-4×20×153<0∴y=2x+1不是“B型直线”.故选B。

【考点】本题主要考查曲线方程的概念,双曲线的定义及标准方程。

点评:创新题型,理解满足。

的点是双曲线右支上的点是关键。

2. P为椭圆上一点,为它的一个焦点,求证:以为直径的圆与以长轴为直径的圆相切.【答案】见解析。

【解析】证明:如图,设的中点为,则两圆圆心之间的距离为,即两圆圆心之间的距离等于两圆半径之差.两圆内切,即以为直径的圆与以长轴为直径的圆相切.【考点】本题主要考查椭圆的定义、标准方程、几何性质。

点评:基础题,分析图形的几何性质,联想定义是关键。

3.抛物线截直线所得弦长等于()A.B.C.D.【答案】A【解析】将y = 2x+1代入前面的得 4- 8x+ 1 = 0;设交点坐标为 (,),(,)则+= 2,=,由弦长公式可得弦长等于,选A。

【考点】本题主要考查直线与抛物线位置关系。

点评:基本题型,圆锥曲线弦长公式要记住。

4.已知圆与抛物线的准线相切,则.【答案】2【解析】抛物线y2=2px(p>0)的准线方程为x=-,因为抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,所以3+=4,p=2。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。

解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。

3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。

利用“点差法”求弦的斜率,由点斜式写出方程。

故选B。

4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。

【考点】本题主要考查抛物线的定义、标准方程、几何性质。

点评:熟记抛物线的标准方程及几何性质。

5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。

【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。

点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】主要考查抛物线的标准方程、几何性质。

易得,焦点坐标为(1, 0),故选A。

2.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -="0"B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】主要考查抛物线的标准方程、几何性质、直线与圆的位置关系。

解:抛物线y 2=2x的准线为,验证圆心坐标适合y 2=2x且圆心到准线距离为半径。

选D。

3.平面内过点A(-2,0),且与直线x=2相切的动圆圆心的轨迹方程是()A.y 2=-2x B.y 2=-4x C.y 2=-8x D.y 2=-16x【答案】C【解析】主要考查抛物线的定义、标准方程。

解:动圆圆心满足到定点A(-2,0)与到定直线x=2距离相等,其轨迹为抛物线,所以其方程为y 2=-8x,故选C。

4.抛物线的顶点在原点,对称轴是x轴,抛物线上点(-5,m)到焦点距离是6,则抛物线的方程是()A.y 2=-2x B.y 2=-4xC.y 2=2x D.y 2=-4x或y 2=-36x【答案】B【解析】主要考查抛物线的定义、标准方程。

解:由已知,抛物线开口向左,设y 2=-2px,则5+=6,所以p=2,y 2=-4x。

故选B。

5.过点M(2,4)作与抛物线y 2=8x只有一个公共点的直线l有()A.0条B.1条C.2条D.3条【答案】C【解析】主要考查抛物线的标准方程及其几何性质、直线与抛物线的位置关系。

解:结合图形分析。

点M在抛物线上,所以抛物线y 2=8x只有一个公共点的直线l有过点M的切线及平行于轴的直线,共两条,故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆梦教育 高二圆锥曲线单元测试
姓名: 得分:
一、选择题:
1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线
B.双曲线
C. 椭圆
D.以上都不对
2.设P 是双曲线192
22=-y a
x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( )
A. 1或5
B. 1或9
C. 1
D. 9
3、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,
则椭圆的离心率是( ).
A.
B. C. 2 D. 1-
4.过点(2,-1)引直线与抛物线2
x y =只有一个公共点,这样的直线共有( )条 A. 1 B.2
C. 3
D.4
5.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆
C .双曲线
D .抛物线
6.如果椭圆
19
362
2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x
7、无论θ为何值,方程1sin 22
2=⋅+y x θ所表示的曲线必不是( )
A. 双曲线
B.抛物线
C. 椭圆
D.以上都不对
8.方程02
=+ny mx 与)02+mx 的曲线在同一坐标系中的示意图应是( )
C
二、填空题:
9.对于椭圆191622=+y x 和双曲线19
72
2=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点;
③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同.其中正确命题的序号是 ; 10.若直线01)1(=+++y x a 与圆022
2
=-+x y x 相切,则a 的值为 ; 11、抛物线2
x y -=上的点到直线0834=-+y x 的距离的最小值是 ; 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 ; 13、椭圆13
122
2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,
那么|PF 1|是|PF 2|的 ;
14.若曲线
15
42
2=++-a y a x 的焦点为定点,则焦点坐标是 。

三、解答题:
15.已知双曲线与椭圆
125922=+y x 共焦点,它们的离心率之和为5
14,求双曲线方程.(12分) 16.P 为椭圆19
252
2=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F (1)求△21PF F 的面积; (2)求P 点的坐标.(14分)
17、求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为
3
3
8的双曲线方程.(14分) 18、知抛物线x y 42
=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M 是FQ 的中点,求点M 的轨迹方程.(12分)
19、某工程要将直线公路l 一侧的土石,通过公路上的两个道口 A 和B ,沿着道路AP 、BP 运往公路另一侧的P 处,PA=100m ,PB=150m ,∠APB=60°,试说明怎样运土石最省工?
20、点A 、B 分别是椭圆
120
362
2=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

(1)求点P 的坐标;
|MB,求椭圆上的点到M的距离d的最小值。

(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|
圆梦教育高二圆锥曲线测试题答题卡
二、填空题(5*6=30)
9. 10.
11. 12.
13. 14.
三、解答题:
16.(14分)
17、(14分)
18、(12分)
19、(14分)
20、(14分)
高二理科数学圆锥曲线测试题答案
一、选择题
ADDCD DBA
二、 填空题:
9.①② 10、-1 11、34 12. (1,4
1
) 13. 7倍 14.(0,±3) 三、解答题: 15.(12分)
解:由于椭圆焦点为F(0,±4),离心率为e=
4
5,所以双曲线的焦点为F(0,±4),离心率为2,从而
所以求双曲线方程为:
22
1412
y x -= 16.[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①
2212
221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t
332
3
122160sin 212121=⨯⨯=︒⋅=
∴∆t t S PF F (2)设P ),(y x ,由||4||22
12
1
y y c S PF F ⋅=⋅⋅=∆得 433||=y 4
3
3||=∴y 4
3

=⇒y ,将4
33
±=y 代
入椭圆方程解得4
135
±=x ,)433,4135
(P ∴或)433,4135(-P 或)433,4135(-P 或)4
33,4135(--P 17、解:设双曲线方程为x 2
-4y 2
=λ.
联立方程组得: 22x -4y =30
x y λ⎧⎨--=⎩,消去y 得,3x 2
-24x+(36+λ)=0
设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么:12122
83632412(36)0
x x x x λλ+=⎧
⎪+⎪
=
⎨⎪∆=-+>⎪⎩ 那么:
==
解得: λ=4,所以,所求双曲线方程是:2
214
x y -= 18 [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)
∵M 是FQ 的中点,∴ ⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点∴ ⎪⎪⎩
⎪⎪⎨
⎧==221
212y y x x ⇒
⎩⎨
⎧==-==y y y x x x 422
422121,
∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为2
12-=x y .
19解析:设直线l 与椭圆交于P 1(x 1,y 1)、P 2(x 2,y 2), 将P 1、P 2两点坐标代入椭圆方程相减得直线l 斜率
k =
=-=-=-=-.
由点斜式可得l 的方程为x +2y -8=0. 答案:x +2y -8=0
解:以直线l 为x 轴,线段AB 的中点为原点对立直角坐标系,则在l 一侧必存在经A 到P 和经B 到P 路程相等的点,设这样的点为M ,则 |MA|+|AP|=|MB|+|BP|, 即 |MA|-|MB|=|BP|-|AP|=50,
750||=AB ,
∴M 在双曲线16
25252
2
22=⨯-y x 的右支上. 故曲线右侧的土石层经道口B 沿BP 运往P 处,曲线左侧的土石层经道口A 沿AP 运往P 处,
按这种方法运土石最省工。

20(14分)解:(1)由已知可得点A(-6,0),F(0,4)
设点P(x ,y ),则AP =(x +6, y ),FP =(x -4, y ),由已知可得
22
213620(6)(4)0x y x x y ⎧+
=⎪⎨⎪+-+=⎩
则22
x +9x -18=0, x =
23或x =-6. 由于y >0,只能x =2
3
,于是y =235.
∴点P 的坐标是(
23,2
3
5) (2) 直线AP 的方程是x -3y +6=0.
设点M(m ,0),则M 到直线AP 的距离是
2
6+m . 于是
2
6+m =6-m ,又-6≤m ≤6,解得m =2.
椭圆上的点(x ,y )到点M 的距离d 有 2
2
2
2
22549
(2)4420()15992
d x y x x x x =-+=-++-=-+, 由于-6≤m ≤6, ∴当x =
2
9
时,d 取得最小值15 说明:在解析几何中求最值:一是建立函数关系,利用代数方法求出相应的最值;再是利用圆锥曲线的几何性质或者曲线的参数方程求最值。

(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档