北师大高二数学选修圆锥曲线方程测试题及答案
(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)(1)

一、选择题1.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( )A .25B .45C .15D .232.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34y x C .35y x =± D .53y x =± 3.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞ 4.已知1F 、2F 分别是双曲线22221(0,0)x y a b a b-=>>的左右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若260AF B ∠<,则双曲线的离心率的范围是( )A .B .)+∞C .⎛⎝ D .5.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A B .C .2 D .46.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .2B 1C 1D .2+7.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( )A .910+B .926+C .712612+D .832612+ 8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+= 9.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切;②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( )A .1B .2C .3D .410.已知点P 是椭圆22:110064x y C +=上一点,M ,N 分别是圆22(6)1x y -+=和圆22(6)4x y ++=上的点,那么||||PM PN +的最小值为( )A .15B .16C .17D .1811.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( )A .45πB .34πC .(625)π-D .54π 12.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x =的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A BC D .2二、填空题13.点()8,1P 平分双曲线2244x y -=的一条弦,则这条弦所在直线的方程一般式为_________________.14.设12,F F 为双曲线22212x y a -=的两个焦点,已知点P 在此双曲线上,且123F PF π∠=,若此双曲线的离心率等于2,则点P 到y 轴的距离等于__________. 15.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.16.曲线412x xy y-=上的点到直线y 的距离的最大值是________.17.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PF PA的最小值为 ________. 18.动点P 在曲线221y x =+上运动,则点P 与定点(0,1)M -连线的中点N 的轨迹方程为_______.19.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF FB λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值. 22.已知长轴长为222222:1(0)x y C a b a b +=>>过点21,2P ⎛⎫ ⎪ ⎪⎝⎭,点F 是椭圆C 的右焦点.(1)求椭圆C 的方程;(2)是否存在x 轴上的定点D ,使得过点D 的直线l 交椭圆C 于,A B 两点,设E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.23.已知椭圆()2222:10x y C a b a b+=>>的离心率6e =,一条准线方程为36x (1)求椭圆C 的方程;(2)设,G H 为椭圆上的两个动点,G 在第一象限,O 为坐标原点,若OG OH ⊥,GOH 的面积为3155,求OG 的斜率. 24.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为83 (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.25.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点相同,1F 、2F 分别为椭圆C 的左、右焦点,M 为C 上任意一点,12MF F S 的最大值为1.(1)求椭圆C 的方程;(2)不过点F 2的直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点.①若k 2=12,且S △AOB 2m 的值; ②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证:直线l 过定点,并求出该定点的坐标.26.已知椭圆E :22154x y +=. (1)求与方程E 焦点相同,且过62,Q ⎭的椭圆方程C . (2)若直线12y x m =+交椭圆C 于()11,A x y ,()22,B x y 两点,且1212340x x y y +=,试求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF =+.【详解】 由题意,双曲线22:13y C x -=中,2221,3,4a b c ===, 设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+, 联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭,过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+. 故选:B.【点睛】 本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.2.A解析:A【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程.【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥,取线段2PF 的中点N ,连接1NF ,由于1122PF F F c ==,则122,NF PF NP NF ⊥=, 由于O 是12F F 的中点,所以122NF OM a ==, 则22442NP c a b =-=,即有24PF b =,由双曲线的定义可得212PF PF a -=,即422b c a -=,即2,2b c a c b a =+=-,所以()2222b a a b -=+, 化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.3.D解析:D【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22b c a<,即可由此求出离心率. 【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2b y a=±, ∴以AB 为直径的圆的半径为2b AF a=, 双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->, 两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞.故选:D.【点睛】 本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a<. 4.A解析:A【分析】求出||AB ,根据212||2tan 2||AB AF B F F ∠=tan 30<可得2330e --<,再结合1e >可解得结果.【详解】因为1(,0)F c -,由22221x c x y a b=-⎧⎪⎨-=⎪⎩解得2b y a =±,所以22||b AB a =, 因为260AF B ∠<,所以212||2tan 2||AB AF B F F ∠=tan 30<,所以223b ac <,所以2223c a ac -<,所以2123e e -<,即2330e --<,解得e <<1e >,所以1e < 故选:A【点睛】关键点点睛:求离心率的取值范围的关键是得到,,a b c 的不等式,根据212||2tan 2||AB AF B F F ∠=tan 30<可得所要的不等式. 5.C 解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a .【详解】椭圆22183x y +=的半焦距为835c =-=, ∴双曲线中215a +=,∴2a =(∵0a >).故选:C .【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.6.D解析:D【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,则22211PQ PF QF +=,即()222434a t t t -+=, 即有433a t t -=,解得33t =+,则12PF F △与12QF F的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D.【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.7.B解析:B【分析】 根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求.【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭, 又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244B B y x ==,所以()4,4B -, 又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,BM == 所以ABM的周长为:2511944AB AM BM ++=++=+ 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =()()2221x y x ++-=,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以1118021802180AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p,因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设()00,2A x px ,则0022AT px k x =,则直线002:x AT x y x p =-,代入抛物线方程化简得0202220x y px py p +=-, 则0020228x p ppx ⎛⎫∆=- ⎪ -⎪⎭=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.C解析:C 【分析】由题意画出图形,数形结合以及椭圆的定义转化求解即可. 【详解】解:如图,椭圆22:110064x y C +=的10a =,8b =,所以6c =,圆22(6)1x y -+=和圆22(6)4x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,||||PM PN +的最小值为2(21)17a -+=. 故选:C . 【点睛】本题考查椭圆的简单性质,考查了椭圆定义的应用,考查数形结合的解题思想方法,属于中档题.11.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C 的半径最小值为1122O l d -==,圆C 面积的最小值为2455ππ⎛= ⎝⎭.故本题的正确选项为A. 考点:抛物线定义.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=,则22444c a -=,所以a = 故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.【分析】设弦的两端点分别为A (x1y1)B (x2y2)由AB 的中点是P (81)知x1+x2=16y1+y2=2利用点差法能求出这条弦所在的直线方程【详解】设弦的两个端点分别为则两式相减得因为线段的中 解析:2150x y --=【分析】设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由AB 的中点是P (8,1),知x 1+x 2=16,y 1+y 2=2,利用点差法能求出这条弦所在的直线方程. 【详解】设弦的两个端点分别为()11,A x y ,()22,B x y ,则221144x y -=,222244x y -=, 两式相减得()()()()1212121240x x x x y y y y +--+-=,因为线段AB 的中点为()8,1P ,所以1216x x +=,122y y +=,所以()1212121224y y x xx x y y -+==-+, 所以直线AB 的方程为()128y x -=-代入2244x y -=满足0∆>,即直线方程为2150x y --=.故答案为:2150x y --=. 【点睛】本题考查弦的中点问题及直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.14.【解析】依题意由解得根据双曲线焦点三角形面积公式有解得代入双曲线方程解得解析:【解析】依题意,由222{b c a c a b ===+,解得2,a c =,根据双曲线焦点三角形面积公式有212F F 21b cotπ22tan6P S y∠===⋅,解得y =,代入双曲线方程解得x =15.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=,∴24tan tan 21()b b b a a BOA BOF b a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.16.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的解析:3【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y x y x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:222y x -故两平行线222y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =的距离的最大值是263.故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.17.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线 2【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(包含答案解析)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121 D .13或1202.若圆锥曲线C :221x my +=的离心率为2,则m =( )A .3-B .3C .13-D .133.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .24.已知椭圆C 的方程为22221(0,0)x y a b a b+=>>,过右焦点F 且倾斜角为4π的直线与椭圆C 交于A ,B 两点,线段AB 的垂直平分线分别交直线2a x c=和AB 于点P 和M ,若3||4||AB PM =,则椭圆C 的离心率为( )A .5B .3C .3D .25.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .47.过原点O 的直线交双曲线E :22221x y a b-=(0,0a b >>)于A ,C 两点,A 在第一象限,12,F F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若222,23OA OF CF BF ==,则双曲线E 的离心率为( )A.5BCD8.已知双曲线221(0,0)x y m n m n-=>>和椭圆22174x y +=有相同的焦点,则11m n +的最小值为( )A .12B .32C .43D .99.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( ) A .4BC.D .210.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q 两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .411.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOBp =( ) A .1B .32C .2D .312.12,F F 为双曲线2214x y -=-的两个焦点,点P 在双曲线上,且1290F PF ︒∠=,则12F PF △的面积是( )A .2B .4C .8D .16二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.15.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点与抛物线24y x =的焦点重合,且焦点到渐近线的距离为2________16.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.17.已知点P 为双曲线22221(0,0)x y a b a b-=>>右支上的一点,12,F F 分别为双曲线的左、右焦点,I 为12PF F △的内心,若1212IPF IPF IF F S S S △△△成立,则λ的值为__________.18.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2C 在此正方形区域内(含边界).其中,正确结论的序号是________.19.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 在双曲线上,且不与顶点重合,过2F 作12F PF ∠的平分线的垂线,垂足为A ,若||2OA b =,则该双曲线的渐近线方程为_____________.20.已知圆22:4440C x y x y +--+=,抛物线2:2(0)E y px p =>过点C ,其焦点为F ,则直线CF 被抛物线截得的弦长为________________.三、解答题21.已知双曲线22:145x y C 的左、右顶点分别为A ,B ,过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点(点P 在x 轴上方). (1)若3PF FQ =,求直线l 的方程; (2)设直线,AP BQ 的斜率分别为12,k k ,证明:12k k 为定值. 22.已知()1,0F c -是椭圆()2222:10x y C a b a b +=>>的左焦点,离心率5e =,2c a b =+.(1)求椭圆C 的方程;(2)求过点()1,1A 且被A 点平分的弦所在直线的方程.23.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B ,离心率为32,且直线AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.24.已知椭圆222:1(1)x C y m m+=>,点P 是C 上的动点,M 是右顶点,定点A 的坐标为(2,0).(1)若3m =,求PA 的最大值与最小值;(2)已知直线:5l y x =-,如果P 到直线l 的最小值为2,求m 的值.25.如图,椭圆1C :22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率为32,过抛物线2C :24x by =焦点F 的直线交抛物线于,M N 两点,当7||4MF =时,M 点在x 轴上的射影为1F ,连接,NO MO 并延长分别交1C 于,A B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △,OAB S ,设λ=OMNOABS S .(1)求椭圆1C 和抛物线2C 的方程;(2)设ON ,OM 所在直线的斜率为,OM ON k k ,求证OM ON k k ⋅为定值; (3)求λ的取值范围.26.已知椭圆E :22154x y +=.(1)求与方程E焦点相同,且过Q ⎭的椭圆方程C . (2)若直线12y x m =+交椭圆C 于()11,A x y ,()22,B x y 两点,且1212340x x y y +=,试求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.C解析:C 【详解】因为圆锥曲线C :221x my +=的离心率为2, 所以,该曲线是双曲线,2222111y x my x m+=⇒-=-,123m =⇒=-, 故选C.3.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】联立直线AB 与椭圆方程,表示出弦长AB ,求出中点M 的横坐标,即可表示出PM 的长,利用已知等量关系即可求出离心率.【详解】设()()1122,,,A x y B x y ,易得直线AB 的方程为y x c =-,联立直线与椭圆方程22221y x c x y ab =-⎧⎪⎨+=⎪⎩,可得()()222222220a b x a cx a c b +-+-=,则212222a cx x a b +=+,()2221222a cb x x a b -=+,2224ab AB a b ∴==+, 212222M x x a cx a b +==+,直线PM 的斜率为1-,P MPM x x c a b ∴=-=+ 3||4||AB PM =,即222434aba b c a b ⨯=++,解得3c e a ==. 故选:B. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y ,则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==.故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 7.D解析:D 【分析】根据题意得1F A AB ⊥,设22BF m =,则23CF m =,13AF m =,再结合双曲线的定义得1222,32BF a m AF m a =+-=,故在1Rt FAB 中由勾股定理得1514m a =,在12Rt F AF △中结合勾股定理和1514m a =,得222553c a =,进而得答案..【详解】设1F 为双曲线E 的左焦点,连接112,,AFBF CF , 取2AF 的中点M ,由2=OA OF ,得OM AB ⊥,又O 为12F F 的中点,故1F A AB ⊥,设22BF m =,则23CF m =,由1211||||||22OM AF CF ==得13AF m =. 根据双曲线的定义得1222,32BF a m AF m a =+-=, 在1Rt F AB 中,有()()()22235222=m m a m a -++, 化简得1514m a =,在12Rt F AF △中,有()()()2223322m m a c +-=, 结合1514m a =,得222553c a =,所以535e =. 故选:D. 【点睛】本题考查双曲线的离心率的求解,解题的关键在于根据已知得1F A AB ⊥,同时注意到该题构成了焦点三角形,故借助定义,利用三角形的边角关系即可222553c a =,进而求解.考查运算求解能力,是中档题.8.C解析:C 【分析】本题首先可根据双曲线和椭圆有相同的焦点得出3m n +=,然后将11m n+转化为123m n n m ⎛⎫++ ⎪⎝⎭,最后利用基本不等式即可求出最小值. 【详解】因为双曲线221x y m n-=和椭圆22174x y +=有相同的焦点,所以743m n ,则()111111233m n m n m n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 142233m n n m,当且仅当m n =时取等号, 故11m n+的最小值为43,故选:C. 【点睛】关键点点睛:本题考查双曲线与椭圆焦点的相关性质的应用,双曲线有222+=a b c ,椭圆有222a b c =+,考查利用基本不等式求最值,是中档题.9.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)yx =-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-,所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===, 故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.10.B解析:B设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选:B. 【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.11.C解析:C求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOBp 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-, 故A ,B 两点的纵坐标分别是2pb y a=±, 又由双曲线的离心率为2,所以2c a =2=,则b a = A ,B两点的纵坐标分别是2=±y , 又AOB=,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.12.B解析:B 【分析】先求出双曲线的a,b,c ,再利用12Rt PF F 中三边关系求出128PF PF =,再由直角三角形面积公式即得结果. 【详解】由2214x y -=-得标准方程为2214x y -=得221,4a b ==,2145c ∴=+=c ∴= 故12Rt PF F 中,()222212121212121222=2F F PF PF PF PFPF PF PF PF F F c ⎧==+⎪⎪=⎨+-=-⎪⎪⎩128PF PF ∴=所以12118422S PF PF =⋅=⨯=.【点睛】本题考查了双曲线的定义和几何性质,考查了直角三角形的边长关系和面积公式,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示 连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为2243tan 23AF B r MT TF ∠===. 故答案为:433.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.15.【分析】由题意画出图形再由抛物线方程求出焦点坐标得到双曲线的焦点坐标由焦点到双曲线一条渐近线的距离列式求解离心率即可【详解】如图由抛物线方程得抛物线的焦点坐标即双曲线的右焦点坐标为双曲线的渐近线方程 解析:2【分析】由题意画出图形,再由抛物线方程求出焦点坐标,得到双曲线的焦点坐标,由焦点到双曲线一条渐近线的距离列式,求解离心率即可. 【详解】 如图,由抛物线方程24y x =,得抛物线的焦点坐标(1,0)F ,即双曲线22221(0,0)x y a b a b-=>>的右焦点坐标为(1,0)F ,双曲线的渐近线方程为by x a=±. 不妨取by x a=,化为一般式:0bx ay -=. 223a b =+,即222433b a b =+, 又221a b =-,联立解得:214a =,12a ∴=.则双曲线的离心率为:1212c e a === 故答案为:2. 【点睛】本题考查双曲线及抛物线的几何性质,考查双曲线的离心率与渐近线,还考查了点到直线的距离公式的应用,是基础题.16.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,26b =49245c =-,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===,∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.17.【分析】根据Ⅰ为的内心及可得再由双曲线的定义得两式联立求解【详解】由Ⅰ为的内心及得即又由双曲线的定义得则故故答案为:【点睛】本题主要考查双曲线的定义和三角形内切圆的应用还考查了数形结合的思想和运算求【分析】根据Ⅰ为12PF F △的内心及1212IPF IPF IF F S S S △△△,可得1212||PF PF F F λ=+,再由双曲线的定义得122PF PF a -=,两式联立求解. 【详解】由Ⅰ为12PF F △的内心及1212IPF IPF IF F S S S △△△,得1212||PF PF F F λ=+, 即1212PF PF F F λ-=,又由双曲线的定义得122PF PF a -=, 则22a c λ=⨯, 故a c λ==【点睛】本题主要考查双曲线的定义和三角形内切圆的应用,还考查了数形结合的思想和运算求解的能力,属于基础题.18.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y =±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y =±⎧⎨+=⎩得2212x y ==,从而可得四个交点(,22A ,()22B -,(22C --,(22D -, 依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.19.【分析】延长交于点连接由角平分线及垂直可知由双曲线的定义可知结合三角形的中位线性质可求出即进而可求渐近线的方程【详解】解:延长交于点连接由知由双曲线的定义知由可知则所以故答案为:【点睛】本题考查了双解析:12y x =±. 【分析】延长2F A 交1PF 于点Q ,连接OA ,由角平分线及垂直可知,2PF PQ =,由双曲线的定义可知12FQ a =,结合三角形的中位线性质,可求出1224FQ a OA b ===,即2a b =,进而可求渐近线的方程.【详解】解:延长2F A 交1PF 于点Q ,连接OA .由2,QPA F PA PA PA ∠=∠=知2PF PQ =. 由双曲线的定义知,12112PF PF PF PQ QF a -=-==,由122,FO F O QA F A ==,可知1242FQ OA b a === 则2a b =,所以12b y x x a =±=±. 故答案为: 12y x =±.【点睛】本题考查了双曲线的渐近线求解.难点在于构造辅助线,推出,a b 的关系.20.【分析】根据圆心坐标求出抛物线方程和焦点坐标求出直线联立抛物线方程和直线方程根据弦长公式即可得解【详解】圆所以抛物线过点即其焦点为则直线联立直线与抛物线方程:整理得直线设其两根为弦长所以被抛物线截得 解析:258【分析】根据圆心坐标求出抛物线方程和焦点坐标,求出直线42:33CF y x =-,联立抛物线方程和直线方程根据弦长公式即可得解. 【详解】圆22:4440C x y x y +--+=,所以()2,2C ,抛物线2:2(0)E y px p =>过点C ,即44,1p p ==,其焦点为1,02F ⎛⎫ ⎪⎝⎭,2041322CF k -==-则直线42:33CF y x =-,联立直线与抛物线方程:242332y x y x ⎧=-⎪⎨⎪=⎩,整理得281720x x -+=, 直线217640∆=->,设其两根为12,x x 弦长121725188x x p ++=+= 所以被抛物线截得的弦长为258. 故答案为:258【点睛】此题考查根据抛物线经过的点求抛物线方程和焦点坐标,根据直线与抛物线形成弦长公式求解弦长,关键在于熟练掌握直线与抛物线问题常见处理办法.三、解答题21.(1)0y --=;(2)证明见解析. 【分析】(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y,根据条件得出0m <<,分别求出P Q ,的纵坐标,由条件可得12PF yFQ y =可得答案. (2)由()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154APPBk k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,由()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++,可得答案. 【详解】解:(1)设直线PQ 方程为3x my =+,()11,P x y ,()22,Q x y222235(3)4205420x my my y x y =+⎧⇒+-=⎨-=⎩ ()225430250m y my ⇒-++=由过右焦点F 的直线l 与双曲线C 的右支交于P ,Q 两点,则()()22222540300542505*********m m m m m m ⎧-≠⎪-⎪>⎪-⎪⎨⎪<-⎪⎪∆=-⨯⨯->⎪⎩,0m ⇒<<由点P 在x 轴上方,则12y y ==33PF m FQ ==-=⇒== ∴直线l方程为304x y y =+⇒--=(2)由方程可得()()2,0,2,0A B -,设()11,P x y ,()22,Q x y 则()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---, 所以154AP PBk k k ==,所以1225544PB PB PQ k k k k k k =⋅⋅= 要证12k k 为定值,只需证54PB BQ k k ⋅为定值由(1)可知1223054my y m -+-=,1222554y y m =- ()()121212122211BP BQ y y y y k k x x my my ⋅=⋅=--++ ()2222121222252554542530115454m m mm y y m y y m m m m --==-+++⋅+⋅+--22225252530544m m m ==--+- ∴125414255k k ⎛⎫=⋅-=- ⎪⎝⎭为定值. 【点睛】关键点睛:本题考查直线与双曲线的位置关系求直线方程和考查定值问题,解答本题的关键是先得出()221111221111545422444PAPBx y y y kk x x x x -⋅=⨯===+---,所以154APPBk k k == ,所以1225544PB PB PQ k k k k k k =⋅⋅=,要证12k k 为定值,只需证54PB BQ k k ⋅为定值,属于中档题. 22.(1)22194x y +=;(2)49130.x y +-=【分析】(1)由已知建立关于,,a b c 的方程,解之可求得椭圆C 的方程;(2)设弦的端点为112212(,),(,)()P x y Q x y x x ≠,运用点差法求得直线的斜率,由直线的点斜式方程可求得所求的直线方程. 【详解】(1)因为222c a b a b =+=-,所以1a b -=,又c e a ==,所以2259c a =,所以23b a =,解得3,2a b ==, 所以椭圆C 的方程为:22194x y +=;(2)设弦的端点为112212(,),(,)()P x y Q x y x x ≠,中点(1,1)A ,则12122,2,x y x y +=+=,由于点P 、Q 在椭圆上,所以221122221?941?94x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得211221214()49()9y y x x x x y y -+=-=--+,即49PQ k =-, 因此所求的直线方程为4()911y x --=-,即49130.x y +-= 【点睛】方法点睛:在解决直线与椭圆相交时的中点弦的问题时,常运用点差法求得直线的斜率,得以求出中点弦的直线方程.23.(1)2214x y +=;(2)是定值,定值为2.【分析】(1)由题意可得2==,从而可求出,a b 的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y <<从而可表示出直线PA 的方程,然后求出点M 的坐标,得到BM 的值,同理可得到AN 的值,进而可求得四边形ABNM 的面积,得到结论 【详解】(1)解:由题意知直线:AB bx ay ab +=,所以⎧=⎪⎪=2a =,1b =,所以椭圆C 的方程为2214x y +=,(2)证明:设()()22000000,0,0,44P x y x y x y <<+=.因为()()2,0,0,1A B ,所以直线PA 的方程为()0022y y x x =--,令0x =,得0022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-. 所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积.24.(1)min ||PA =;max ||5PA =;(2)m =. 【分析】(1)设(,)P x y ,利用两点间的距离公式,将问题转化为二次函数求最值.(2)根据图形可知,当直线l 平移与椭圆第一次相切时,切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题,设与l 平行的直线方程为y x t =+,将直线与椭圆方程联立,则0∆=,可得t =,根据图形观察可知,当t =时,直线l 与其平行线距离最小,根据最小值即可求解. 【详解】解:(1)3m =,椭圆方程为2219x y +=,设(,)P x y ,则22222||(2)(2)19x PA x y x =-+=-+-2891(33)942x x ⎛⎫=-+-≤≤ ⎪⎝⎭,∴94x =时min 22PA =; 3x =-时max 5PA =.(2)根据图形可知,当直线l 平移与椭圆第一次相切时, 切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题. 设与l 平行的直线方程为y x t =+,显然5t ≥-. 联立方程y x t =+和22220x m y m +-= 得:()222222120mxm tx m t m +++-=,由()()4222224410m t mm tm ∆=-+-=,得:22222210m t t m t m -+-+=, 即221t m =+,所以21t m =±+. 根据图形观察可知,当21t m =-+时,直线l 与其平行线距离最小.25122m -++=5t ≥-. 215m +≤,所以2512m +=, 213m +=,因此28m =, 故22m =±22m =. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是求出21t m =±+5t ≥-,考查了计算求解能力.25.(1)曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)证明见解析;(3)[)2,+∞. 【分析】(1)根据抛物线的定义,以及双曲线的离心率公式可求出答案;(2)设直线MN 的方程为1y kx =+,与抛物线方程联立,设11,)Mx y (,()2,2N x y ,根据韦达定理可得答案;(3)根据弦长公式求出|OM |,|ON |,|OA |,|OB |的长,再根据三角形的面积公式和基本不等式即可求出λ的取值范围. 【详解】(1)由抛物线定义可得7,4M c b ⎛⎫-- ⎪⎝⎭, M 在抛物线24x by =上,∴2744c b b ⎛⎫=- ⎪⎝⎭,即2274c b b =-①又由c a =223c b =将上式代入①,得277b b =解得1,b =∴2c a =∴=,所以曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)设直线MN 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 整理得2440x kx --=, 设11,)Mx y (,()22,N x y , 则124x x =-, 设221212121221111144164ON OMx xy y kkx x x x x x =⋅=⋅==-; (3)设,ON OM k k m m '==,则有14m m'=-,② 设直线ON 的方程为(0)y mx m =>,由24y mxx y=⎧⎨=⎩,解得4N x m =,所以4N ON ==由②可知,用14m -代替m,可得M OM ==, 由2214y mx x y =⎧⎪⎨+=⎪⎩,解得A x =,所以A OA ==用14m-代替m,可得B OB ==所以=OMN OABON OM S S OA OB λ⋅====⋅1222m m=+≥,当且仅当1m =时等号成立. 所以λ的取值范围为[)2,+∞. 【点睛】圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.26.(1)22143x y +=;(2【分析】(1)设出椭圆方程,可得出222212312a b ab ⎧-=⎪⎨+=⎪⎩,求出,a b 即可; (2)联立直线与椭圆,利用韦达定理求出22m =,再利用弦长公式求出AB ,利用点到直线距离公式求出O 到直线的距离,即可得出面积. 【详解】解:(1)由题意得:椭圆E 的焦点为()1,0-和()1,0,设椭圆C 的方程为22221x y a b +=,且过2Q ⎭,可建立方程组 222212312a b a b ⎧-=⎪⎨+=⎪⎩,解得2243a b ⎧=⎨=⎩或2212102a b ⎧=⎪⎪⎨⎪=-<⎪⎩(舍). ∴椭圆C 的方程为22143x y +=.(2)联立直线与椭圆C 的方程,得2212143y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消y 得2230x mx m ++-=, 由韦达定理得122123x x mx x m +=-⎧⎨=-⎩, 1212121111343422x x y y x x x m x m ⎛⎫⎛⎫+=+++ ⎪⎪⎝⎭⎝⎭()()221212424620x x m x x m m =+++=-=.解得22m =满足0∆>,则12x x AB =-=∴12AOBSAB d ===【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.。
(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(含答案解析)(4)

一、选择题1.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =2.设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左.右支交于点P Q 、,若2,60PQ QF PQF =∠=︒,则该双曲线的离心率为( ) A .13B 3C .23D .423+3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △3,则C 的离心率的取值范围是( )A .3⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .311,212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭4.人们已经证明,抛物线有一条重要性质:从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴.探照灯、手电筒也是利用这个原理设计的.已知抛物线()220y px p =>的焦点为F ,从点F 出发的光线第一象限内抛物线上一点P 反射后的光线所在直线方程为2y =,若入射光线FP 的斜率为43,则抛物线方程为 ( ) A .28y x =B .26y x =C .24y x =D .22y x =5.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( ) A .4B 2C .42D .26.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( ) A .22B .2C 3D 27.设抛物线24y x =的焦点为F ,以F 为端点的射线与抛物线相交于A ,与抛物线的准线相交于B ,若4FB FA =,则FA FB ⋅=( ) A .9B .8C .6D .48.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .39.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1210.在平面直角坐标系xOy 中,设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支上一点,M 是1PF 的中点,且1OM PF ⊥,122PF PF =,则双曲线的离心率为A B .2C D 11.双曲线2214x y -=的离心率为( )A B C D 12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B C .13D 二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.已知抛物线2:4E x y =,过点(2,1)P -作E 的两条切线,切点分别为,A B ,则AB =________.15.已知椭圆22221(0)x y a b a b+=>>与直线11:2l y x =,21:2l y x =-,过椭圆上一点P作12,l l 的平行线,分别交12,l l 于,M N 两点,若||MN 为定值,则ab=__________. 16.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b +取最大值时,双曲线C 的方程为________.17.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为 ________. 18.我们知道:用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于__________.19.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为35p 的值为______.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.已知圆22:12O x y +=,P 为圆O 上的动点,点M 在x 轴上,且M 与P 的横坐标相等,且()21PN NM =-,点N 的轨迹记为C .(1)求C 的方程;(2)设()2,2A ,()4,0B ,过B 的直线(斜率不为±1)与C 交于,D E 两点,试问直线AD 与AE 的斜率之和∑是否为定值?若是,求出该定值;若不是,求∑的取值范围.22.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8 (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.23.已知椭圆()2222:10x y M a b a b +=>>的一个顶点坐标为()2,0-线y x m =-+交椭圆于不同的两点A 、B . (1)求椭圆M 的方程;(2)设点()2,2C -,是否存在实数m ,使得ABC 的面积为1?若存在,求出实数m 的值;若不存在,说明理由.24.双曲线C :2213y x -=,过点()2,1P ,作一直线交双曲线于A 、B 两点,若P 为AB的中点.(1)求直线AB 的方程;(2)求弦AB 的长25.双曲线C :22221(0,0)x y a b a b-=>>的左焦点为(,0)F c -,点F 到双曲线C 的一条渐近线的距离等于a .(1)求双曲线C 的离心率;(2)若c =(2,1)P -的直线l 与双曲线C 交于A ,B 两点,且P 为线段AB 的中点,试求直线l 的方程.26.已知椭圆E :22154x y +=.(1)求与方程E 焦点相同,且过Q ⎭的椭圆方程C . (2)若直线12y x m =+交椭圆C 于()11,A x y ,()22,B x y 两点,且1212340x x y y +=,试求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.2.A解析:A 【解析】∵|PQ |=2|QF |,∠PQF =60°,∴∠PFQ =90°, 设双曲线的左焦点为F 1,连接F 1P ,F 1Q ,由对称性可知,F 1PFQ 为矩形,且|F 1F |=2|QF |,13QF QF =, 不妨设()1220F F m m =>,则13,QF m QF m ==,故12123123F F c e a QF QF m m====--. 本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.C【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据r >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C4.D解析:D 【分析】由抛物线方程可得焦点坐标,设出P 点坐标,由性质求出P 点坐标,表示出FP 的斜率,解出p ,即可得抛物线方程. 【详解】,02p F ⎛⎫⎪⎝⎭,设()00,P x y 由题意有02y =将02y =代入()220y px p =>得02x p=2,2P p ⎛⎫∴ ⎪⎝⎭,又,02p F ⎛⎫⎪⎝⎭,且FP 的斜率为43,有204232p p -=-解得:1p =故抛物线方程为:22y x = 故选:D抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p等于焦点到抛物线顶点的距离.牢记它对解题非常有益.5.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)y x=-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-, 所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===, 故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.6.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭,因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭,3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.7.A解析:A 【分析】根据平行关系可证明N 点,A 点分别是线段BF ,NF 的中点,再根据比列关系求A 点横坐标即可求解. 【详解】设FB 交y 轴于N 点,如图,由准线与y 轴平行,且O 为中点, 所以N 是BF 中点,因为4FB FA =, 所以A 是NF 的中点,设A 的横坐标为m ,则由抛物线的定义,||||(1)1AF AC m m ==--=+,由AC 与x 轴平行, 可得1342m +=, 解得12m = ∴334622FA FB ==⨯=,, ∴⋅=FA FB |FA ||FB |=9, 故选:A 【点睛】关键点点睛:利用抛物线的定义及平行关系,建立比列关系求出||AF 的长,是解题的关键所在,属于中档题.8.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥, 圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.9.C解析:C 【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可. 【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B -,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a +==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.10.C解析:C 【分析】运用双曲线的定义和△PF 1F 2为直角三角形,则|PF 2|2+|PF 1|2 =|F 1F 2|2,由离心率公式,计算即可得到离心率的范围. 【详解】因为M 是1PF 的中点,O 为12F F 的中点,所以OM 为三角形F 1PF 2的中位线. 因为1OM PF ⊥,所以21PF PF ⊥.又因为212PF PF a -=,122PF PF =,122F F c =, 所以122,4PF a PF a ==.在△F 1PF 2中,21PF PF ⊥,所以2221212PF PF F F +=,代入得()()()222242a a c +=,所以225c a =,即e =故选C. 【点睛】本题考查了平面几何知识在圆锥曲线中的基本应用,根据边长关系求得离心率,属于基础题.根据各个边长关系,判断出21PF PF ⊥,再根据勾股定理求出离心率.11.C解析:C 【解析】双曲线2214x y -=中,222224,1,5,2a b c a b e ==∴=+=∴== 本题选择C 选项.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b --+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-,所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a+-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以c e a ===, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭,又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.8【分析】设切线方程为即代入利用判别式为0求出两条切线的斜率进一步求出两个切点坐标利用两点间的距离公式可求得结果【详解】切线的斜率显然存在设切线方程为即联立消去得所以即则或设切线的斜率分别为则将代入解析:8 【分析】设切线方程为1(2)y k x +=-,即21y kx k =--,代入24x y =,利用判别式为0,求出两条切线的斜率,进一步求出两个切点坐标,利用两点间的距离公式可求得结果. 【详解】切线的斜率显然存在,设切线方程为1(2)y k x +=-,即21y kx k =--, 联立2214y kx k x y=--⎧⎨=⎩消去y 得24840x kx k -++=, 所以2(4)4(84)0k k ∆=--+=,即2210--=k k,则1k =1k = 设切线,PA PB 的斜率分别为12,k k ,1122(,),(,)A x y B x y ,则11k =21k =,将11k =24840x kx k -++=得24(18(140x x -++=,即2(20x -+=,得2x =-12x =-2211(244x y -===3-(2A --,同理可得(2B ++,所以||AB =8=.故答案为:8. 【点睛】本题考查了直线与抛物线相切的位置关系,考查了运算求解能力,属于中档题.15.4【解析】当点时过椭圆上点作的平行线分别为联立可得同理可得所以当点时过椭圆上点作的平行线分别为联立可得同理可得所以所以为定值则所以点睛:本题考查了直线与椭圆的位置关系此类问题的解答中主要特例法的应用解析:4 【解析】当点(0,)P b 时,过椭圆上点P 作12,l l 的平行线分别为11,22y x b y x b =+=-+, 联立1212y x b y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)2b M b ,同理可得(,)2b N b -,所以2MN b =,当点(,0)P a 时,过椭圆上点P 作12,l l 的平行线分别为11,2222a ay x y x =-=-+,联立12212a y x y x⎧=-+⎪⎪⎨⎪=⎪⎩,可得(,)24a a M ,同理可得(,)24a a N -,所以2a MN =,所以MN 为定值,则22ab =,所以4a b=. 点睛:本题考查了直线与椭圆的位置关系,此类问题的解答中主要特例法的应用,是解答选择题的一种方法,本题的解答中取点P 分别为长轴和短轴的端点,联立方程组,求得MN ,得出,a b 的关系式是解答关键,平时应注意特殊值等方法在选择题解答中的应用. 16.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得a 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M处的切线与直线y =垂直,则(012x ⨯=-,解得03x =,则200143x y ==,所以,点M的坐标为133⎛⎫ ⎪ ⎪⎝⎭, 抛物线24x y =的焦点为()0,1F ,直线MF的斜率为113MFk -==-所以,直线l的方程为1y x =+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<,当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==, 因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.17.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测题(含答案解析)(3)

一、选择题1.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =2.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,23M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .233.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( ) A 23B 3C 2D .24.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .75.若点)30,到双曲线C :22221x y a b-=(0a >,0b >)2的离心率为( )A 3B 6C 36D 36.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠7.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12FPF ∠的角平分线的垂线,垂足为H ,则OH =( )A .1B .2C .3D .48.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .39.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .7y x =±B .y =C .5y x =±D .y =10.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .611.设P 是椭圆221259x y +=上一点,M 、N 分别是两圆:()2241x y ++=和()2241x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .9,12B .8,11C .8,12D .10,1212.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 2,则双曲线的渐近线方程为( )A .12y x =±B .2y x =±C .y x =D .y =二、填空题13.直线l 过抛物线28y x =的焦点F ,且与抛物线交于A ,B 两点,若线段AB 的中点到y 轴的距离是2,则AB =______.14.点()8,1P 平分双曲线2244x y -=的一条弦,则这条弦所在直线的方程一般式为_________________.15.过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),则以AB 为直径的圆与该抛物线准线的公共点的坐标为____________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.17.双曲线22221(00)x y C a b a b-=>>:,的左、右焦点分别为1F ,2F ,过2F 的直线交曲线C 右支于P 、Q 两点,且1PQ PF ⊥,若3PQ =14PF ,则C 的离心率等于________.18.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为 ________. 19.已知圆22:4440C x y x y +--+=,抛物线2:2(0)E y px p =>过点C ,其焦点为F ,则直线CF 被抛物线截得的弦长为________________.20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为2(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆22221x y a b+= (a >b >0)的右焦点为F 2(3,0),离心率为e .(1)若e (2)设直线y =kx 与椭圆相交于A ,B 两点,M ,N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以MN 为直径的圆上,且2<e ≤2,求k 的取值范围. 23.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.24.已知椭圆C :22221x y a b += (0a b >>3,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)斜率为2的直线与椭圆交于P 、Q 两点OP OQ ⊥,求直线l 的方程;25.已知椭圆E :22154x y +=.(1)求与方程E 焦点相同,且过62,Q ⎭的椭圆方程C . (2)若直线12y x m =+交椭圆C 于()11,A x y ,()22,B x y 两点,且1212340x x y y +=,试求AOB 的面积.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数; (2)若||35AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.2.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则()222324MF =+=,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.3.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bcy a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得3e =3 故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.4.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.5.A解析:A 【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)30,到双曲线C 的渐近线2223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)30,到双曲线C 222332bb b a ==+2232b c =,即222332c a c -=,即223c a =,所以3==ce a3 故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).6.D解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.7.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 8.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF F F =,A 为1PF 中点,21AF PF ∴⊥,圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.9.C解析:C【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b,得渐近线方程.【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c=渐近线方程为by xa=±,其中一条为0bx ay-=,1==,1b=,∴a=∴渐近线方程为y x=.故选:C.【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b.解题时要注意椭圆中222a b c=+,双曲线中222+=a b c.两者不能混淆.10.A解析:A【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标.【详解】由抛物线方程可知(1,0)F,假设,A B横坐标分别为12,x x,由抛物线的准线的性质可知1212||264AB x x x x=++=⇒+=,AB中点的横坐标为121()22x x+=.故选;A【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.11.C解析:C【分析】先依题意判断椭圆焦点与圆心重合,再利用椭圆定义以及圆的性质得到最大值和最小值即可.【详解】如图,由椭圆及圆的方程可知两圆圆心分别为()()4,0,4,0A B-,恰好是椭圆的两个焦点,由椭圆定义知210PA PB a+==,连接PA ,PB 分别与圆相交于M ,N 两点,此时PM PN +最小,最小值为28PA PB R +-=;连接PA ,PB 并延长,分别与圆相交于M ,N 两点,此时PM PN +最大,最大值为212PA PB R ++=.故选:C . 【点睛】本题考查了椭圆的定义,考查了圆外的点到圆上的点的距离最值问题,属于中档题.12.D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin12032m n a c m n mn mn a⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c a b =+,所以2224,3ba ab a=+= 所以双曲线的渐近线方程为3y x =±. 故选:D【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.二、填空题13.【分析】设再表达出的坐标再利用抛物线的弦长公式求解即可【详解】设则利用中点坐标公式知又点M 到y 轴的距离为2故即又故利用过抛物线焦点的弦长公式故答案为:8【点睛】方法点睛:本题主要考查了过抛物线焦点的解析:【分析】设()()1122,,,A x y B x y ,再表达出M 的坐标,再利用抛物线的弦长公式求解即可. 【详解】设()()1122,,,A x y B x y ,则利用中点坐标公式知1212,22x x y y M ++⎛⎫⎪⎝⎭, 又点M 到y 轴的距离为2,故1222x x +=,即124x x +=, 又28,4p p ==,故利用过抛物线焦点的弦长公式12448AB x x p =++=+=. 故答案为:8 【点睛】方法点睛:本题主要考查了过抛物线焦点的弦长公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式12AB x x p =++,若不过焦点,则必须用一般弦长公式,考查学生的运算能力与转化思想,属于一般题.14.【分析】设弦的两端点分别为A (x1y1)B (x2y2)由AB 的中点是P (81)知x1+x2=16y1+y2=2利用点差法能求出这条弦所在的直线方程【详解】设弦的两个端点分别为则两式相减得因为线段的中解析:2150x y --=【分析】设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由AB 的中点是P (8,1),知x 1+x 2=16,y 1+y 2=2,利用点差法能求出这条弦所在的直线方程. 【详解】设弦的两个端点分别为()11,A x y ,()22,B x y ,则221144x y -=,222244x y -=, 两式相减得()()()()1212121240x x x x y y y y +--+-=,因为线段AB 的中点为()8,1P ,所以1216x x +=,122y y +=,所以()1212121224y y x xx x y y -+==-+, 所以直线AB 的方程为()128y x -=-代入2244x y -=满足0∆>,即直线方程为2150x y --=.故答案为:2150x y --=. 【点睛】本题考查弦的中点问题及直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.15.【分析】如图先利用辅助线确定公共点位置再联立方程得到其坐标即可【详解】如图所示取AB 中点M 分别过ABM 作准线的垂线垂足依次为CDN 则AC//MN//CDMN 是梯形ABDC 中位线根据抛物线定义得即N 在解析:231,3⎛⎫- ⎪ ⎪⎝⎭【分析】如图先利用辅助线确定公共点位置,再联立方程得到其坐标即可. 【详解】如图所示,取AB 中点M ,分别过A ,B ,M 作准线的垂线,垂足依次为C ,D ,N , 则AC //MN //CD ,MN 是梯形ABDC 中位线,根据抛物线定义得,2AB AF BF AC BD MN =+=+=,即N 在以AB 为直径的圆上, 即N 即是以AB 为直径的圆与该抛物线准线的公共点,易见直线AB 不平行x 轴,方程可设为1x my =+,设()()1122,,,A x y B x y联立方程214x my y x=+⎧⎨=⎩得2440y my --=, 则12124,4y y m y y +==-,又依题意3AF FB =(点A 在x 轴上方),故1120,3y y y >=-,解得12y y ==,故3m =-.易见N 点坐标为121,2y y +⎛⎫- ⎪⎝⎭,即()1,2m -,即公共点的坐标为⎛- ⎝⎭.故答案为:⎛- ⎝⎭. 【点睛】本题考查了抛物线的定义及直线与抛物线的综合应用,属于中档题.16.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b c b ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.17.【分析】设则再利用双曲线的定义可得分别在中利用勾股定理即可获解【详解】如图设由=可得由双曲线定义有所以又所以因为所以即①②由②解得代入①得即所以故答案为:【点睛】本题考查双曲线的离心率的求法解题关键解析:2【分析】设||4(0)PQ t t =>,则13PF t =,再利用双曲线的定义可得232PF t a =-,1||4QF t a =+,分别在12PF F △,1PFQ 中利用勾股定理即可获解. 【详解】如图,设||4(0)PQ t t =>,由3PQ =14PF 可得13PF t =, 由双曲线定义,有12||||2PF PF a -=,所以232PF t a =-,21||||2QF PQ PF t a =-=+,又12||||2QF QF a -=,所以1||4QF t a =+,因为1PQ PF ⊥,所以22212||||4PF PF c +=,22211||||||PF PQ QF +=, 即222(3)(32)4t t a c +-=①,222(3)(4)(4)t t t a +=+②,由②解得t a =,代入①,得222(3)(32)4a a a c +-=,即22104a c =,所以c e a ===【点睛】本题考查双曲线的离心率的求法,解题关键是建立关于,,a b c 的方程,考查学生的数学运算能力,是一道中档题.18.【分析】过P 做准线的垂线根据定义可得将所求最小转化为的最小结合图像分析出当PA 与抛物线相切时最小联立直线与抛物线方程根据判别式求出PA 斜率k 进而可得的值代入所求即可【详解】由题意可得抛物线的焦点准线 解析:22【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PMPAM PA=∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
(常考题)北师大版高中数学选修1-1第二章《圆锥曲线与方程》检测卷(包含答案解析)

一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B .15 C .23D .222.已知点()P m n ,是抛物线214y x =-上一动点,则2222(1)(4)(5)m n m n +++-++的最小值为A .4B .5C .30D .63.设直线l 与圆C :22(2)3x y -+=相切于N ,与抛物线22(0)y px p =>交于,A B 两点,且N 是线段AB 的中点,若直线l 有且只有4条,则p 的取值范围是( ) A .(1,3)B .(1,3)C .(0,3)D .(0,3)4.过抛物线()2:20C y px p =>的焦点F 且倾斜角为锐角的直线l 与C 交于,A B 两点,过线段AB 的中点N 且垂直于l 的直线与C 的准线交于点M ,若3AB MN =,则直线l 的倾斜角为( ) A .15︒B .30C .45︒D .60︒5.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .22B 2C .322D .326.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( ) A .1B 2C .2D .47.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( )A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =-8.已知抛物线22(0)y px p =>的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点,若4AF =,1BF =,则p =( ) A .165B .2C .85D .19.设抛物线2:4C y x =的焦点为F ,M 为抛物线上异于顶点的一点,且M 在直线1x =-上的射影为N ,若MNF 的垂心在抛物线C 上,则MNF 的面积为( ) A .1 B .2 C .3 D .410.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S SB .122S S =C .1232S S =D .1243S S =11.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线by x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A .12+ B C 1 D 112.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .8二、填空题13.F 是抛物线22y px =(0p >)的焦点,过点F 的直线与抛物线的一个交点为A ,交抛物线的准线于B ,若2BA AF =,且4BA =,则P =______.14.已知抛物线22y px =上三点(2,2),,A B C ,直线,AB AC 是圆22(2)1x y -+=的两条切线,则直线BC 的方程为___________.15.设P 是抛物线28y x =上的一个动点,若点B 为()3,2,则PB PF +的最小值为________________.16.设1A 、2A 为椭圆()222210x y a b a b+=>>的左、右顶点,若在椭圆上存在异于1A 、2A的点P ,使得10PO PA ⋅=,其中O 为坐标原点,则椭圆的离心率e 的取值范围是_____. 17.设1F ,2F 为双曲线()2222:10,0x yC a b ab-=>>的左、右焦点,过2F 的直线l 交双曲线C 的右支于A 、B 两点,且120AF AF ⋅=,2212AF BF =,则双曲线C 的离心率为___________.18.设椭圆()2222:10x y C a b a b+=>>的左焦点为F ,直线x m =与椭圆C 相交于A ,B两点.当ABF 的周长最大时,ABF 的面积为2b ,则椭圆C 的离心率e =________. 19.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.20.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.三、解答题21.设动点(),M x y (0x ≥)到定点()2,0F 的距离比它到y 轴的距离大2. (Ⅰ)求动点M 的轨迹方程C ;(Ⅱ)设过点F 的直线l 交曲线C 于A ,B 两点,O 为坐标原点,求AOB 面积的最小值.22.已知直线y x b =+与抛物线22x y =交于A ,B 两点,且OA OB ⊥(O 为坐标原点).(Ⅰ)求b 的值; (Ⅱ)求AOB 的面积.23.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点和右焦点F 的距离与右焦点F 到椭圆C的右准线的距离相等,且椭圆C 的通径(过椭圆的焦点,且与长轴垂直的弦)长为3. (1)求椭圆C 的方程;(2)设直线l 过点F ,且与坐标轴不垂直,与椭圆C 相交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点B . ①当67BF =时,求直线l 的方程; ②求证:PQBF为定值. 24.已知抛物线22(0)x py p =>的焦点在圆221x y +=上.(1)求抛物线的方程;(2)圆上一点00,x y 处的切线交抛物线于两点,A B ,且满足2AOB π∠=(O 为坐标原点),求0y 的值.25.已知点(-在椭圆2222:1(0)x y E a b a b +=>>上,E (1)求E 的方程;(2)设过定点(0,2)A 的直线l 与E 交于不同的两点,B C ,且COB ∠为锐角,求l 的斜率的取值范围.26.已知点1F 、2F 分别是椭圆C ,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=.(1)求椭圆C 的标准方程;(2)设斜率为k 的直线l (不过焦点)交椭圆于M ,N 两点,若x 轴上任意一点到直线1MF 与1NF 的距离均相等,求证:直线l 恒过定点,并求出该定点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.2.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n ++-++.【详解】由214yx =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.3.B解析:B 【分析】根据l 有且只有4条,易知直线l 的斜率不存在时,有两条,得到直线l 斜率存在时,有两条,根据N 是线段AB 的中点,利用点差法得到0ky p =,再根据直线l 与圆C :22(2)3x y -+=相切于N ,得到012y x k=--,结合得到02x p =-,2203y p =-再根据点N 在抛物线内部求解. 【详解】设()()()112200,,,,,A x y B x y N x y ,因为l 有且只有4条,当直线l的斜率不存在时,有两条,即2=±x 所以直线l 斜率存在时,有两条, 因为AB 在抛物线上,所以21122222y px y px ⎧=⎨=⎩,两式相减得()2212122y y p x x -=-,因为N 是线段AB 的中点, 所以1202y y y +=, 所以12121202y y p pk x x y y y -===-+, 即0ky p =,因为直线l 与圆C :22(2)3x y -+=相切于N , 所以0012y x k=--,即002x ky p -=-=-, 所以02x p =-,代入抛物线22y px =,得()222y p p =-,因为点N 在抛物线内部,所以()2022y p p <-,因为点N 在圆上,所以2200(2)3x y -+=,即2203p y +=, 所以2203y p =-,所以()220322y p p p =-<-,即2430p p -+<,解得13p <<, 故选:B 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.4.D解析:D 【分析】设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,代入抛物线方程应用韦达定理得12x x +,12AB x x p =++, 求出AB 中点N 的坐标,写出MN的方程,由MN =MN ,然后由己知条件可求得斜率k ,得倾斜角.【详解】 由题意(,0)2p F ,设直线l 的斜率为k (0k >),直线方程为()2y k x π=-,1122(,),(,)A x y B x y ,由22()2y pxp y k x ⎧=⎪⎨=-⎪⎩得22222(2)04k p k x p k x -++=, 2122(2)p k x x k ++=,2124p x x =, 221222(2)2(1)++=++=+=p k p k AB x x p p k k , 2122(2)22N x x p k x k ++==,22()22N N p p y k x k =-=,即222(2)2,22p k p N kk ⎛⎫+ ⎪⎝⎭, 直线MN 的方程为1()N N y y x x k-=--,MN ==23(12p k k +=,∵AB =,∴222(1)p k k += 整理得23k =,∵0k >,∴k =∴倾斜角为60︒.故选:D . 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求的思想方法,设交点坐标,设直线方程代入抛物线方程应用韦达定理,求得中点坐标及焦点弦长,写出直线l 垂线方程,求得MN ,然后由已知条件求得结论.5.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB的斜率为21=-∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OF y =+=+=⨯⨯⨯. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.6.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.7.C解析:C 【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程. 【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0, 设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y , 联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-,故选:C . 【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.8.C解析:C 【分析】直接设出直线方程,用“设而不求法”表示出AF ,BF ,利用性质可解. 【详解】由题意可知直线AB 的斜率一定存在,设为k ,联立2,22,p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩消去y 可得()22222204k p k x k px -++=,设()11,A x y ,()22,B x y ,所以2124p x x =.又根据抛物线的定142p x +=,212p x +=,所以241224p p p ⎫⎫⎛⎛--= ⎪⎪⎝⎝⎭⎭,解得85p =.故选:C 【点睛】"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.9.B解析:B 【分析】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,求出MNF 的垂心H 的坐标,再由MH FN ⊥可求得0y 的值,进而可求得MNF 的面积. 【详解】设点200,4y M y ⎛⎫⎪⎝⎭,则点()01,N y -,设点M 在第一象限, 抛物线C 的焦点为()1,0F ,设MNF 的垂心为H , 由于FHMN ⊥,则点H 的横坐标为1,可得点()1,2H ,MH FN ⊥,则0HM FN ⋅=,2001,24y HM y ⎛⎫=-- ⎪⎝⎭,()02,FN y =-,()()22200000012122220422y y HM FN y y y y ⎛⎫⋅=--+-=-+=-= ⎪⎝⎭,解得02y =,所以,点M 的坐标为()1,2,所以,2MN =,12222MNF S =⨯⨯=△. 故选:B. 【点睛】关键点点睛:解决本题的关键在于利用已知条件求出点M 的坐标,本题特殊的地方在于MN y ⊥轴,可得出垂心与焦点的连线垂直于x 轴,再结合垂心在抛物线求出垂心的坐标.10.D解析:D 【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S SF F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=,所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D 【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 11.A解析:A 【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e . 【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y bx a x y c ⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A . 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.12.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.二、填空题13.3【分析】设过的直线为与抛物线交于点过两点作垂直准线于点根据抛物线的定义可得即可求出再联立直线与抛物线方程消元列出韦达定理即可得到再由焦半径公式计算可得;【详解】解:因为是抛物线的焦点所以准线为设过解析:3 【分析】设过F 的直线为2p y k x ⎛⎫=-⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN 垂直准线于M ,N 点,根据抛物线的定义可得CN CF =,AM AF =,即可求出30ABM ∠=︒,6CN CF ==,再联立直线与抛物线方程,消元、列出韦达定理即可得到2124p x x =,再由焦半径公式计算可得;【详解】解:因为F 是抛物线22y px =的焦点,所以,02p F ⎛⎫⎪⎝⎭,准线为2p x =-,设过F 的直线为2p y k x ⎛⎫=- ⎪⎝⎭,与抛物线交于点()11,A x y ,()22,C x y ,过A 、B 两点作AM ,CN垂直准线于M,N 点,所以CN CF =,AM AF =,因为2BA AF =,所以2BA AF =,所以2BA AM =,所以30ABM ∠=︒,又因为4BA =,所以2AM AF ==,且2CN CB BA AF FC BA AM CN ==--=--,所以26CN CN =+,所以6CN CF ==,联立直线与抛物线222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,消去y 得22224p k x px px ⎛⎫ ⎪⎭=⎝-+,所以()22222204k p k x k p p x -++=,所以21222k p px x k++=-,2124p x x =,又因为1>0x ,20x >,且122p x AM +==,262p x CN +==,所以2212261242244p p p p x x p ⎛⎫⎛⎫=--=-+= ⎪⎪⎝⎭⎝⎭,所以3p =故答案为:3【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.【分析】先利用点求抛物线方程利用相切关系求切线再分别联立直线和抛物线求出点即求出直线方程【详解】在抛物线上故即抛物线方程为设过点与圆相切的直线的方程为:即则圆心到切线的距离解得如图直线直线联立得故由 解析:3640x y ++=【分析】先利用点(2,2)A 求抛物线方程,利用相切关系求切线,AB AC ,再分别联立直线和抛物线求出点,B C ,即求出直线BC 方程. 【详解】(2,2)A 在抛物线22y px =上,故2222p =⨯,即1p =,抛物线方程为22y x =,设过点(2,2)A 与圆22(2)1x y -+=相切的直线的方程为:()22y k x -=-,即220kx y k -+-=,则圆心()2,0到切线的距离2202211k kd k -+-==+,解得3k =±,如图,直线():232AB y x -=-,直线():232AC y x -=--.联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x ++-=,故16833A B x x -=,由2A x =得8433B x -=,故363B y =, 联立)22322y x y x⎧-=-⎪⎨=⎪⎩,得()23431416830x x -++=, 故1683A C x x +=2A x =得843C x +=,故236C y --=, 故236236433B C y y -+=+=-,又由,B C 在抛物线上可知, 直线BC 的斜率为22221114222B C B C BC B C B C B C y y y y k x x y y y y --=====--+--,故直线BC 的方程为23618432y x ⎛⎫---=-- ⎪ ⎪⎝⎭,即3640x y ++=. 故答案为:3640x y ++=15.5【分析】求出抛物线的准线方程把到焦点距离转化为它到准线的距离然后利用三点共线得最小值【详解】如图过作与准线垂直垂足为则∴易知当三点共线时最小最小值为∴的最小值为5故答案为:5【点睛】本题考查抛物线解析:5 【分析】求出抛物线的准线方程,把P 到焦点F 距离转化为它到准线的距离,然后利用三点共线得最小值. 【详解】如图,过P 作PM 与准线2x =-垂直,垂足为M ,则PF PM =,∴PF PB PM PB +=+,易知当,,B P M 三点共线时,PM PB +最小,最小值为3(2)5--=.∴PB PF +的最小值为5.故答案为:5.【点睛】本题考查抛物线的定义,考查抛物线上的点到焦点和到定点距离之和的最小值,解题方法是利用抛物线的定义把点到焦点的距离转化为点到准线距离.16.【分析】设点由可得出求出函数在区间上的零点为化简得出进而可解得的取值范围【详解】设点则可知点设则函数在区间上存在零点则为方程的一根设函数在区间内的零点为由韦达定理可得所以即整理可得即解得因此椭圆的离解析:22⎛⎫⎪ ⎪⎝⎭【分析】设点(),P x y ,由10PO PA ⋅=可得出2220e x ax b ++=,求出函数()f x 在区间(),0a -上的零点为22ab c-,化简得出2201b c <<,进而可解得e 的取值范围.【详解】设点(),P x y ,则22222b y b x a=-,可知点()1,0A a -,(),PO x y =--,()1,PA a x y =---,()()22222222221220b c PO PA x a x y x y ax x b x ax x ax b a a⋅=---+-=++=+-+=++=,设()222f x e x ax b =++,则函数()f x 在区间(),0a -上存在零点,()2220f a c a b -=-+=,则a -为方程2220e x ax b ++=的一根,设函数()f x 在区间(),0a -内的零点为1x ,由韦达定理可得222122b a b ax e c -==,212ab x c∴=-,所以,220ab a c -<-<,即2201b c<<,整理可得2222a c b c -=<,222a c ∴<,即221e >,01e <<,解得12e <<.因此,椭圆的离心率e 的取值范围是2⎛⎫⎪ ⎪⎝⎭.故答案为:,12⎛⎫⎪ ⎪⎝⎭. 【点睛】方法点睛:椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a 、c ,代入公式c e a=; ②只需要根据一个条件得到关于a 、b 、c 的齐次式,结合222b a c =-转化为a 、c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(或不等式),解方程(或不等式)即可得e (e 的取值范围).17.【分析】利用双曲线的定义分别表示再利用勾股定义和双曲线的定义建立等量关系求双曲线的离心率【详解】设根据双曲线的定义可知即得得中即得根据双曲线的定义即得所以得故答案为:【点睛】方法点睛:本题考查直线与解析:3【分析】利用双曲线的定义分别表示1212,,,AF AF BF BF ,再利用勾股定义和双曲线的定义建立等量关系,求双曲线的离心率. 【详解】设2AF x =,22BF x =,1AF y =,根据双曲线的定义可知1212AF AF BF BF -=-, 即12y x BF x -=-,得1BF y x =+,120AF AF ⋅=,12AF AF ∴⊥,()()2223y x y x ∴+=+,得4y x =,12Rt AF F △中,222124AF AF c +=,即22174x c =,得x =,根据双曲线的定义122AF AF a -=,即32x a =,得23x a =,所以2173a c =,得3c e a ==.【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】首先根据椭圆定义分析分析当的周长最大时直线的位置再求的面积得到椭圆的离心率【详解】设椭圆的右焦点为当直线过右焦点时等号成立的周长此时直线过右焦点得故答案为:【点睛】关键点点睛:本题考查椭圆内 解析:12【分析】首先根据椭圆定义分析,分析当ABF 的周长最大时,直线AB 的位置,再求ABF 的面积,得到椭圆的离心率. 【详解】设椭圆的右焦点为F ',AF BF AB ''+≥,当直线AB 过右焦点F '时,等号成立,∴ABF 的周长4l AF BF AB AF BF AF BF a ''=++≤+++=,此时直线AB 过右焦点,22b AB a =,221222ABFb Sc b a=⨯⨯=,得12c e a ==.故答案为:12【点睛】关键点点睛:本题考查椭圆内的线段和的最值问题,关键是利用两边和大于第三边,只有三点共线时,两边和等于第三边,再结合椭圆的定义,求周长的最值.19.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题 解析:224【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入221be a=+即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故222214b e a =+=. 故答案为:22.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.20.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN ENy y k k k x x ===-,又1190,MN yNMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a bx x x x y y y y ab x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).三、解答题21.(Ⅰ)28y x =;(Ⅱ)8. 【分析】(Ⅰ)根据M 的几何性质可得)20x x +=≥,化简后可得抛物线的方程.(Ⅱ)设:2l x ty =+,联立直线方程和抛物线方程,消元后可得面积的表达式,从而可求面积的最小值. 【详解】(Ⅰ)由题设可得)20x x +=≥,整理可得()280y x x =≥.(Ⅱ)设:2l x ty =+,由228x ty y x=+⎧⎨=⎩可得28160y ty --=,故12y y -==又1282OAB S =⨯⨯=≥,当且仅当0t =时等号成立,故AOB 面积的最小值为8. 【点睛】方法点睛:圆锥曲线中的最值问题,往往需要利用韦达定理构建目标的函数关系式,自变量可以斜率、斜率的倒数或点的横、纵坐标等.而目标函数的最值可以通过常见函数的性质、基本不等式或导数等求得.22.(Ⅰ)2;(Ⅱ) 【分析】 (Ⅰ)联立22y x bx y =+⎧⎨=⎩,根据12120x x y y +=利用韦达定理列方程求解即可; (Ⅱ)利用弦长公式求出AB 的值,再利用点到直线距离公式求出三角形的高,进而可得答案 【详解】(Ⅰ)由题意可知,设()()1122,,,A x y B x y ,联立22y x bx y=+⎧⎨=⎩, 消去y 得,2220x x b ,12122,2x x x x b ∴+==-,又1,480,2OA OB b b ⊥∆=+>∴>-且0b ≠,()()11220,,,,OA OB OA x y OB x y ∴⋅===, 12120x x y y ∴+=,()()()21212121220x x x b x b x x b x x b ∴+++=+++=,2420b b b ∴-++=,220b b ∴-=,0b ∴=或2b =,又12b >-且0b ≠,2b ∴=;(Ⅱ)由(Ⅰ)知2b =,则有122x x +=,124x x =-,12AB x x =-===直线A ,B 为2y x =+,O 到直线AB的距离d ==1122AOBAB Sd ∴=⨯⨯== 【点睛】方法点睛:求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可. 23.(1)22143x y +=;(2)①1y x =-或1y x =-+,②证明见解析.【分析】(1)依题意得到方程组解得即可;(2)设直线l 的方程为()()10y k x k =-≠,()11,P x y ,()22,Q x y ,设线段PQ 的中点为M ,联立直线与椭圆,消元、列出韦达定理,即可表示出线段PQ 的中点M 的坐标,从而得到线段PQ 的垂直平分线方程,表示出B 点坐标,再根据①、②分别计算可得; 【详解】解:(1)由条件得,22,23,a a c c cb a⎧+=-⎪⎪⎨⎪=⎪⎩又222b a c =-,解得2a=,b =1c =,所以椭圆C 的方程为22143x y +=.(2)因为直线l 过点()1,0F ,且与坐标轴不垂直,所以设直线l 的方程为()()10y k x k =-≠,()11,P x y ,()22,Q x y , 设线段PQ 的中点为M ,由()221,1,43y k x x y ⎧=-⎪⎨+=⎪⎩得()22223484120k x k x k +-+-=,所以2122834kx x k +=+,212241234k x x k -=+所以线段PQ 的中点22243,3434k k M k k ⎛⎫- ⎪++⎝⎭, 所以线段PQ 的垂直平分线方程为2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 令0y =,得2234k x k =+,即22,034k B k ⎛⎫ ⎪+⎝⎭①当67BF =时,则2261347k k -=+, 解得1k =±,所以直线l 的方程为1y x =-或1y x =-+.②因为()212212134k PQ x k+=-==+,22223313434k k BF k k+=-=++, 所以4PQBF =为定值. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24x y =;(2)014y =. 【分析】(1)求出221x y +=与y 轴交点,得出抛物线22(0)x py p =>的焦点,求出p(2)设出直线AB ,与抛物线联立,利用12120x x y y +=求出直线的参数m ,再利用AB 为切线,求出直线方程.再与圆方程联立求出交点纵坐标即可. 【详解】(1)∵抛物线22(0)x py p =>的焦点为0,2p F ⎛⎫ ⎪⎝⎭, 圆221x y +=与y 轴交点为(0,1),122pp ∴=⇒=, 即24x y =.(2)设直线AB 为y kx m =+(k 一定存在),224404y kx m x kx m x y=+⎧∴⇒--=⎨=⎩, 2221212124,44x x x x m y y m ∴=-=⋅=,又21212,04042AOB x x y y m m m π∠=∴+=⇒-=⇒=,即直线AB为24,115y kx k =+=⇒=,2202215(40161y x x x y ⎧=⎪∴=⇒=⎨+=⎪⎩, 20116y ∴=,即014y =.【点睛】解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为()11,A x y ,()22,B x y ;(2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.25.(1)22:14x E y +=;(2)32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【分析】(1)由点在椭圆上及椭圆离心率的定义列方程可得21a b c ⎧=⎪=⎨⎪=⎩,即可得解;(2)设直线方程,与椭圆方程联立,结合韦达定理,转化条件为0OCOB ⋅>,运算即可得解. 【详解】 (1)点⎛- ⎝⎭在椭圆22221(0)x y a b ab+=>>上,∴221314a b+=, ∴ce a ==由222a b c =+解得21a b c ⎧=⎪=⎨⎪=⎩,∴轨迹22:14x E y +=;(2)依题意可知,直线l 的斜率存在且不为零,∴设:2l y kx =+,1122(,),(,)B x y C x y ,∴22214y kx x y =+⎧⎪⎨+=⎪⎩,化简整理有:()221416120k x kx +++=, ∴()221648(14)0k k ∆=-+>得2k >2k <-, 且1221614kx x k +=-+,1221214x x k ⋅=+, 由COB ∠为锐角, ∴2121212122122()414OC OB x x y y k x x k x x k⋅=+=+++++ 22222121232=+40141414k k k k k -+>+++, ∴222212+12324161640k k k k -++=->, ∴22k -<<,∴2k -<<2k <<,∴直线l的斜率的范围是32,,222⎛⎛⎫--⎪⎝⎭⎝⎭. 【点睛】关键点点睛:解决本题的关键是由平面数量积的定义转化COB ∠为锐角为0OC OB ⋅>,结合韦达定理运算即可得解.26.(1)22121x y +=;(2)证明见解析,(-2,0).【分析】(1)根据离心率为2,点P 是以坐标原点O 为圆心的单位圆上的一点,且120PF PF ⋅=,可用待定系数法求椭圆的标准方程;(2)先用设而不求法表示出1212,x x x x +,然后分析得到110MF NF k k +=,代入,求出2m k =,即可证明直线过定点(-2,0). 【详解】(1)设椭圆的标准方程为()22221,,x y P x y a b+=由题意可得2222221(,)(,)0c a x y x c y x c y b c a⎧=⎪⎪⎪+=⎨⎪-⋅+=⎪+=⎪⎩解得:222211a b c ⎧=⎪=⎨⎪=⎩即椭圆C 的标准方程:22121x y +=.(2)设直线l :1122,(,),(,)y kx m M x y N x y =+ 则1111221122,1111MF NF y kx m y kx mk k x x x x ++====++++ 有22121x y y kx m ⎧+=⎪⎨⎪=+⎩,消去 y 得:222(12)4220k x mkx m +++-=, 所以2221222122168(1)(12)04122212k m m k mk x x k m x x k ⎧⎪∆=--+>⎪-⎪+=⎨+⎪⎪-=⎪+⎩因为x 轴上任意一点到直线1MF 与1NF 的距离均相等, 所以x 轴为直线1MF 与1NF 的角平分线, 所以111212011MF NF kx m kx mk k x x +++=+=++,即 12122()()20kx x m k x x m ++++= 所以2222242()201212m mkk m k m k k --+++=++整理化简得:2m k =即直线l :2(2)y kx m kx k k x =+=+=+ 故直线恒过定点(-2,0). 【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.。
北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(含答案解析)

一、选择题1.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .532.设F 为双曲线()2222:10,0x y C a b a b-=>>的右焦点,过坐标原点的直线依次与双曲线C 的左.右支交于点P Q 、,若2,60PQ QF PQF =∠=︒,则该双曲线的离心率为( ) A.1BC.2D.4+3.已知F 1、F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,点A 在双曲线上,且∠F 1AF 2=60°,若∠F 1AF 2的角平分线经过线段OF 2(O 为坐标原点)的中点,则双曲线的离心率为( ) AB.2CD.24.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A.8+B.8C.16D.165.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A.⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C.11,212⎫⎪⎢⎣⎭D .11,112⎛⎫ ⎪⎝⎭6.点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .47.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .528.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .410.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满足0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ) A .25[23B .5[3C .2[31]2D .[31,1)11.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 12.双曲线2214x y -=的离心率为( )A B C D 二、填空题13.若ABC ∆的两个顶点坐标()4,0A -、()4,0B ,ABC ∆的周长为18,则顶点C 轨迹方程为 _____________14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.16.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.17.已知抛物线C :24y x =,点N 在C 上,点()(),00M a a ->,若点M ,N 关于直线)1y x =-对称,则a =_____.18.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.19.动圆M 与圆221:(1)1C x y ++=外切,与圆222:(1)25C x y -+=内切,则动圆圆心M 的轨迹方程是__________.20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.过椭圆)(2222:10x y C a b a b+=>>右焦点2F 的直线交椭圆于A ,B 两点,1F 为其左焦点,已知1AF B △的周长为8,椭圆的离心率为32. (1)求椭圆C 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥?若存在,求出该圆的方程;若不存在,请说明理由.23.已知F 是抛物线()2:20C y px p =>的焦点,()1,M t 是抛物线上一点,且32MF. (1)求抛物线C 的方程;(2)已知斜率存在的直线l 与抛物线C 交于A ,B 两点,若直线AF ,BF 的倾斜角互补,则直线l 是否会过某个定点?若是,求出该定点坐标,若不是,说明理由. 24.在平面直角坐标系中,()10,2C -,圆()222:212C x y +-=,动圆P 过1C 且与圆2C 相切.(1)求动点P 的轨迹C 的标准方程;(2)若直线l 过点()0,1,且与曲线C 交于A 、B ,已知AB 的中点在直线14x =-上,求直线l 的方程.25.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.26.在平面直角坐标系中,动点M 到点(2,0)F 的距离和它到直线52x =的距离的比是常(1)求动点M 的轨迹方程;(2)若过点F 作与坐标轴不垂直的直线l 交动点M 的轨迹于,A B 两点,设点A 关于x 轴的对称点为P ,当直线l 绕着点F 转动时,试探究:是否存在定点Q ,使得,,B P Q 三点共线?若存在,求出点Q 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==.故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.2.A解析:A 【解析】∵|PQ |=2|QF |,∠PQF =60°,∴∠PFQ =90°, 设双曲线的左焦点为F 1,连接F 1P ,F 1Q ,由对称性可知,F 1PFQ 为矩形,且|F 1F |=2|QF |,13QF QF =, 不妨设()1220F F m m =>,则13,QF m QF m ==, 故12123123F F c e a QF QF m m====--. 本题选择A 选项.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.B解析:B 【分析】首先根据角平分线定理和双曲线的定义求得1AF 和2AF 的值,再结合余弦定理计算离心率. 【详解】不妨设点A 在第一象限,12F AF ∠的角平分线交x 轴于点M ,因为点M 是线段2OF 的中点,所以12:3:1FM MF =,根据角平分线定理可知1231AF AF =,又因为122AF AF a -=,所以13AF a =,2AF a =,由余弦定理可得22221492372c a a a a a =+-⨯⨯⨯=,所以2274c a =,所以72c e a ==.故选:B 【点睛】本题考查双曲线的离心率,双曲线的定义,三角形角平分线定理,重点考查转化思想,计算能力,属于中档题型.4.A解析:A 【分析】将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=-所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有1228882CM CC CM CC MC +-+=+<=+ 当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.5.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径3()r a c =-,然后根据3r >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =. 由等面积法可得)22211(22)4sin120322a c rb ac ︒+=⨯⨯=-, 整理得3()r a c =-,又312r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C6.B解析:B 【分析】设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆的方程联立,列出韦达定理,计算出12k k 的值,利用基本不等式可求得21221k k +的最小值. 【详解】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-,所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立, 因此,21221k k +的最小值为12. 故选:B. 【点睛】关键点点睛:解本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.7.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =,即()()2221x y x ++-=,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(0A x,则0AT k =,则直线0:AT x x =-,代入抛物线方程化简得02220px y +=-, 则02028px ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.A解析:A 【分析】设椭圆的左焦点'F ,由椭圆的对称性结合0FA FB ⋅=,得到四边形'AFBF 为矩形,设'AF n =,AF m =,在直角ABF 中,利用椭圆的定义和勾股定理化简得到222m n c n m b+=,再根据2FB FA FB ≤≤,得到m n 的范围,然后利用双勾函数的值域得到22b a 的范围,然后由c e a ==.【详解】 如图所示:设椭圆的左焦点'F ,由椭圆的对称性可知,四边形'AFBF 为平行四边形, 又0FA FB ⋅=,即FA FB ⊥, 所以平行四边形'AFBF 为矩形, 所以'2AB FF c ==, 设'AF n =,AF m =,在直角ABF 中,2m n a +=,2224m n c +=,得22mn b =,所以222m n c n m b +=,令m t n =,得2212t c t b+=, 又由2FB FA FB ≤≤,得[]1,2mt n=∈, 所以221252,2c t t b ⎡⎤+=∈⎢⎥⎣⎦,所以 2251,4c b ⎡⎤∈⎢⎥⎣⎦ ,即2241,92b a ⎡⎤∈⎢⎥⎣⎦,所以2225123c b e a a ==-⎣⎦,所以离心率的取值范围是25⎣⎦, 故选:A. 【点睛】本题主要考查椭圆的定义,对称性,离心率的范围的求法以及函数值域的应用,还考查了转化求解问题的能力,属于中档题.11.B解析:B 【分析】令2MA MC =,则12MA MC=,所以()()22221212x y MAMCx m y n ⎛⎫++ ⎪⎝⎭==-+-,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n ,则()()22221212x y MAMCx m y n ⎛⎫++ ⎪⎝⎭==-+-,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.12.C解析:C 【解析】双曲线2214x y -=中,222222254,1,5,c a b c a b e a ==∴=+=∴==本题选择C 选项.二、填空题13.【分析】根据三角形的周长为定值得到点到两个定点的距离之和等于定值即点的轨迹是椭圆椭圆的焦点在轴上写出椭圆方程去掉不合题意的点【详解】的两个顶点坐标周长为点到两个定点的距离之和等于定值点的轨迹是以为焦解析:221259x y +=(0)y ≠【分析】根据三角形的周长为定值,,得到点C 到两个定点的距离之和等于定值,即点C 的轨迹是椭圆,椭圆的焦点在x 轴上,写出椭圆方程,去掉不合题意的点 【详解】ABC ∆的两个顶点坐标()40A -,、()40B ,,周长为18 810AB BC AC ∴=+=,108>,∴点C 到两个定点的距离之和等于定值,∴点C 的轨迹是以A 、B 为焦点的椭圆 210283a c b ==∴=,,∴椭圆的标准方程是221259x y += ()0y ≠故答案为221259x y += ()0y ≠【点睛】本题主要考查了轨迹方程,椭圆的标准方程,解题的关键是掌握椭圆的定义及其求法.14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】 抛物线焦点为3,04⎛⎫⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小, 将34x =代入23y x =,解得32y =±,故133922428OABS=⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFB OFA SSS OF y y =+=-,故可得当直线的斜率不存在时,即和x 轴垂直时,12y y -的值最大,即面积最大.15.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.16.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题 213+ 【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.故答案为:23+ 【点睛】本题考查双曲线的离心率的求解,是中档题.17.3【分析】设MN 关于直线对称等价于MN 中点在直线上且MN 与直线斜率相乘为联立方程可用表示再利用在抛物线上将点代入抛物线方程即可求出【详解】设因为点MN 关于直线对称所以中点在直线上且与直线垂直则中点为解析:3 【分析】设()00,N x y ,M ,N 关于直线)1y x =-对称等价于MN 中点在直线上,且MN 与直线斜率相乘为1-,联立方程,可用a 表示00,x y ,再利用()00,N x y 在抛物线上,将点代入抛物线方程,即可求出a . 【详解】设()00,N x y ,因为点M ,N 关于直线)1y x =-对称, 所以MN 中点在直线上,且MN 与直线垂直,则MN 中点为00,22x a y , 003122y x a, 且MN 与直线垂直,0031y x a,联立方程可得00333,22a a x y ,点N 在抛物线上,2333422a a ,解得3a =或73a =-(舍去),3a ∴=.故答案为:3 【点睛】本题考查点与点关于直线的对称问题,知道中点在直线上且两点间连线与直线垂直是解决问题的关键.18.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取A y =,11135332ACE ABC S S p p ∆∆∴===,解得p =.故答案为【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.19.【分析】首先根据圆与圆的位置关系确定出该动圆是椭圆然后根据相关的两求出椭圆的方程【详解】解:设动圆的圆心为:半径为动圆与圆外切与圆内切因此该动圆是以原点为中心焦点在轴上的椭圆且解得∴椭圆的方程为:故解析:22198x y【分析】首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程. 【详解】解:设动圆的圆心为:(,)M x y ,半径为R ,动圆与圆221:(1)1M x y ++=外切,与圆222:(1)25M x y -+=内切, 12||||156MM MM R R ∴+=++-=, 1212||||||MM MM M M +>,因此该动圆是以原点为中心,焦点在x 轴上的椭圆,且26a =,1c =, 解得3a =, ∴2228b a c =-=,∴椭圆的方程为:22198x y ,故答案为:22198x y .【点睛】本题主要考查椭圆的方程及圆与圆的位置关系,属于中档题.20.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.三、解答题21.2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以2e ====(2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0. 设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my n x y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)2214x y +=;(2)存在圆心在原点的圆2245x y +=满足条件.【分析】(1)先利用椭圆定义得到48a =,结合离心率求得参数a ,c ,再解得b ,即得到方程;(2)先假设圆存在,设方程)(22201x y r r +=<<,讨论直线PQ 斜率存在时与椭圆有两个交点满足题意,结合直线PQ 是圆的切线,解得半径,再验证斜率不存在该圆也满足题意,即得结果. 【详解】解:(1)结合椭圆的定义可知,1AF B △的周长为4a,故48a c a =⎧⎪⎨=⎪⎩,解得2a c =⎧⎪⎨=⎪⎩ ∴2221b a c =-=,故椭圆C 的方程为2214x y +=;(2)假设满足条件的圆存在,其方程为)(22201x y r r +=<<,当直线PQ 的斜率存在时,设其方程为y kx t =+,由2214y kx t x y =+⎧⎪⎨+=⎪⎩,消去y 整理得)(222148440k x ktx t +++-=. 设)(11,P x y ,)(22,Q x y , 则())()(2228414440kt kt∆=-+->,即2214<+t k ,122814kt x x k +=-+,21224414t x x k-=+.① ∵OP OQ ⊥,∴12120x x y y +=.又11y kx t =+,22y kx t =+.∴)()(12120x x kx t kx t +++=,即)()(22121210k x x kt x x t ++++=.②将①代入②得)()(2222222144801414k t k t t kk+--+=++,即)(2224115t k k =+<+. ∵直线PQ 与圆222x y r +=相切,∴圆心()0,0到直线y kx t =+的距离d 等于半径r ,即)(0,15r d ====, ∴存在圆2245x y +=满足条件. 当直线PQ 的斜率不存在时,圆2245x y +=也满足条件. 综上所述,存在圆心在原点的圆2245x y +=使得该圆的任意一条切线与椭圆C 恒有两个交点P ,Q ,且OP OQ ⊥. 【点睛】 思路点睛:圆锥曲线中求与直线相关的问题,通常需要联立方程,得到二次方程后利用韦达定理、结合题中条件(比如斜率关系,向量关系,距离关系,面积等)直接计算,即可求出结果,运算量较大.23.(1)22y x =;(2)过定点,定点为1,02⎛⎫- ⎪⎝⎭. 【分析】(1)根据抛物线的定义可知3122p MF =+=,求出p 后可得抛物线方程. (2) 设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,由条件可得0AF BF k k +=,化简即得()()1212121202kx x m x x y y ++-+=,联立直线与抛物线方程,利用韦达定理代入可得2k m =,从而得出答案. 【详解】(1)根据抛物线的定义,31122p MF p =+=⇒=, 抛物线的方程为22y x =,(2)设直线l 的方程为y kx m =+,设()11,A x y ,()22,B x y ,直线l 与抛物线的方程联立得()22222202y kx mk x km x m y x=+⎧⇒+-+=⎨=⎩, 12222km x x k -+=,2122m x x k=,则122y y k +=,122m y y k =, 又0AF BF k k +=,即121201122y y x x --+=--, ()122112102x y x y y y +-+=,()()1212121202kx x m x x y y ++-+=, 即22222120m km k m k k k-⋅+⋅-=,整理得:2k m =,所以直线的方程为()21y m x =+, 即直线经过定点1,02⎛⎫- ⎪⎝⎭. 【点睛】关键点睛:本题考查求抛物线的方程和直线与抛物线的位置关系,考查直线过定点问题,解答本题的关键是由0AF BF k k +=,得到()()1212121202kx x m x x y y ++-+=,然后由方程联立韦达定理代入,属于中档题.24.(1)2213y x +=;(2)1y x =+或31yx .【分析】(1)由题意可知,圆P 内切于圆2C ,根据椭圆的定义可知,P 点的轨迹是以1C 、2C 为焦点的椭圆,计算出a 、b 的值,结合焦点的位置可求得轨迹C 的标准方程; (2)由题意可知,直线l 的斜率存在,设直线l 的方程为1y kx =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与曲线C 的方程联立,列出韦达定理,根据12124x x +=-可得出关于k 的方程,求出k 的值,即可求得直线l 的方程. 【详解】(1)设动圆P 的半径为r ,由于1C 在圆2C 内,所以,圆P 内切于圆2C , 由题意知:1PC r =,223PC r =-所以121232PC PC C C +=>=, 所以P 点的轨迹是以1C 、2C 为焦点的椭圆.其长轴长223a =222c =221b a c =-=,所以曲线C 的标准方程为:2213y x +=;(2)若直线l 的斜率不存在,则A 、B 关于x 轴对称,不合题意;若直线l 的斜率存在,设其方程为1y kx =+,设点()11,A x y 、()22,B x y ,将1y kx =+代入2213y x +=得:()223220k x kx ++-=,()()2224831220k k k ∆=++=+>,所以12223kx x k +=-+,所以1221=234x x k k +=--+ 所以2430k k -+=,解得1k =或3k =, 所以,直线l 的方程为:1y x =+或31y x .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.25.(1)22142x y +=;(2)10x y --=.【分析】(1)已知条件得2b c ==,再求得a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程. 【详解】(1)由已知得2b c ==.又2224a b c =+=,所以椭圆的方程为22142x y +=.(2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y +=,整理得22(2)230m y my ++-=.则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++. 令41t m =+,则122324225t k k t t ⋅=+-+32254()2t t=++-1≤所以当且仅当5t =,即1m =时,取等号. 由①②得,直线l 的方程为10x y --=.【点睛】关键点点睛:本题考查求椭圆标准方程,考查椭圆中的最值问题.解题方法是设而不求的思想方法,即设交点坐标11(,)A x y ,22(,)B x y ,设直线l 的方程为1x my =+,直线方程代入椭圆方程整理后应用韦达定理得1212,y y y y +,然后代入12k k ,化为m 的函数,用换元法求得最值.26.(1)2215x y +=;(2)存在定点5,02Q ⎛⎫ ⎪⎝⎭,使得,,P B Q 三点共线.【分析】(1)设(,)M x y5=化简可得结果;(2)联立直线l 与椭圆方程,根据韦达定理得1212,x x x x +,椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上,设(,0)Q t ,根据//PB PQ 列式,结合1212,x x x x +可求出52t =. 【详解】(1)设(,)M x y=,化简得2215x y +=故动点M 的轨迹方程为2215x y +=.(2)由题知(2,0)F 且直线l 斜率存在,设为k ,则直线l 方程为(2)y k x =-由22(2)15y k x x y =-⎧⎪⎨+=⎪⎩得2222(51)202050k x k x k +-+-= 设1122(,),(,)A x y B x y ,则2212122220205,5151k k x x x x k k -+==++, 由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上故假设存在定点(,0)Q t ,使得,,P B Q 三点共线,则//PB PQ 且11(,)P x y - 又212111(,),(,).PB x x y y PQ t x y =-+=-211211()()()x x y y y t x ∴-=+-,即211121()(2)(4)()x x k x k x x t x --=+-- 化简得12122(2)()40x x t x x t -+++=将2212122220205,5151k k x x x x k k -+==++式代入上式得2222205202(2)405151k k t t k k -⨯-+⨯+=++ 化简得52t =故存在定点5(,0)2Q ,使得,,P B Q 三点共线. 【点睛】关键点点睛:由椭圆的对称性知,若存在定点Q ,则点Q 必在x 轴上是解题关键.。
新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测卷(含答案解析)(1)

一、选择题1.已知P 为抛物线24y x =上任意一点,抛物线的焦点为F ,点(2,1)A 是平面内一点,则||||PA PF +的最小值为( ) A .1B .3C .2D .32.如图,已知1F 、2F 双曲线()222210,0x y a b a b-=>>的左、右焦点,A 、B 为双曲线上关于原点对称的两点,且满足11AF BF ⊥,112ABF π∠=,则双曲线的离心率为( )A 2B 3C 6D 4233.已知离心率为2的双曲线22221(0,0)x y a b a b-=>>,过右焦点且垂直于x 轴的直线与双曲线交于A 、B 两点,设A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且124d d +=,则双曲线的方程为( )A .223144x y -=B .224134x y -=C .221124x y -=D .221412x y -=4.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .82B .82C .162+D .1625.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为22[]42,,则线段AB 的长度的取值范围是( ) A .[2,22]B .[1 , 2]C .[4 8],D .[42,82]6.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于A B 、两点,若||1AB =,则C 的离心率为( ) A .154B .41515C .14D .47.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )A .6B .23C .2D .48.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,AOB 的面积为3,则p =( ) A .1B .32C .2D .39.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PF F △与12QF F 的面积之比为( )A .23-B .21-C .21+D .23+10.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91611.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A .212-B .22 C .33D .31-12.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭二、填空题13.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.14.已知双曲线2219x y m-=(m ∈R , m ≠0)的离心率为2,则m 的值为_________15.已知抛物线24y x =的焦点为F ,P 为抛物线上一动点,定点()1,1A ,则PAF △周长最小值为______.16.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 17.数学中有许多寓意美好的曲线,曲线22322:()4C x y x y +=被称为“四叶玫瑰线”(如图所示).给出下列三个结论:①曲线C 关于直线y x =对称;②曲线C 上任意一点到原点的距离都不超过1;③2的正方形,使得曲线C 在此正方形区域内(含边界).其中,正确结论的序号是________.18.已知12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,点P 在双曲线上,且不与顶点重合,过2F 作12F PF ∠的平分线的垂线,垂足为A ,若||2OA b =,则该双曲线的渐近线方程为_____________.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF F B λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值.22.已知抛物线C :()220y px p =>的焦点为F ,倾斜角为45°的直线l 过点F 与抛物线C 交于A ,B 两点,且8AB =. (1)求抛物线C 方程; (2)设点E 为直线2px =与抛物线C 在第一象限的交点,过点E 作C 的斜率分别为1k ,2k 的两条弦EM ,EN ,如果121k k +=-,证明:直线MN 过定点,并求定点坐标.23.已知圆22:12O x y +=,P 为圆O 上的动点,点M 在x 轴上,且M 与P 的横坐标相等,且()21PN NM =-,点N 的轨迹记为C .(1)求C 的方程;(2)设()2,2A ,()4,0B ,过B 的直线(斜率不为±1)与C 交于,D E 两点,试问直线AD 与AE 的斜率之和∑是否为定值?若是,求出该定值;若不是,求∑的取值范围.24.如图,已知抛物线22(0)y px p =>上一点(4,)(0)M a a >到抛物线焦点F 的距离为5.(1)求抛物线的方程及实数a 的值;(2)过点M 作抛物线的两条弦MA ,MB ,若MA ,MB 的斜率分别为1k ,2k ,且123k k +=,求证:直线AB 过定点,并求出这个定点的坐标.25.已知抛物线C :2y x =,过点1,0A 的直线交抛物线C 于()11,P x y ,()22,Q x y 两点,O 为坐标原点. (1)证明:OP OQ ⊥;(2)点()3,0B -,设直线PB ,QB 分别与抛物线C 交于另一点M ,N ,过点O 向直线MN 作垂线,垂足为D .是否存在定点E ,使得DE 为定值?若存在,求出点E 的坐标及DE ;若不存在,请说明理由.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数; (2)若||35AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,∴要求PA PF+取得最小值,即求PA PD +取得最小,当,,D P A 三点共线时PA PD +最小,为213--=(),故选D.2.A解析:A 【分析】连接22,AF BF ,得矩形12AF BF ,在直角12BF F △中用c 表示出1BF ,2BF ,然后由双曲线的定义列式后求得离心率e . 【详解】连接22,AF BF ,由11AF BF ⊥及双曲线的对称性知12AF BF 是矩形,由12AF BF =,1112BFO ABF π∠=∠=,122F F c =,则22sin12BF c π=,12cos12BF c π=,∴122cos2sin21212BF BF c c a ππ-=-=,∴离心率为111222cos sin 2cos 2cos sin 12123212212c e a πππππ=====⎛⎫-- ⎪⎝⎭, 故选:A .【点睛】本题考查求双曲线的离心率,列出关于,a b 关系式是䚟题关键.本题利用双曲线的对称性构造矩形12AF BF ,然后结合双曲线定义得出关系式,求得离心率.3.A解析:A【分析】先将A 、B 到双曲线的同一条渐近线的距离之和转化成焦点到渐近线的距离,得到b 值,再根据离心率,即求出a ,得到双曲线方程. 【详解】设右焦点0F c (,),依题意F 是AB 的中点,渐近线为0bx ay ±=,F bcb c== , 因为A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,F 是AB 的中点,所以122d d b +=,所以24b =,故2b =,得224c a -= ,又因为离心率2c e a ==,得243a =, 故双曲线的方程为223144x y -=.故选:A. 【点睛】本题考查了双曲线的方程,属于中档题.4.A解析:A 【分析】将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有122888CM CC CM CC MC +-+=+<=当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.5.C解析:C 【分析】 由题可求得2121222ABF AF F BF F cSSS=+=,2222ABF EABEBF EAF S SSSa =++=,即可得出22aAB c=,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF SSSSAB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅ ()22114222AB BF AF a a =++=⨯=, 222cAB a =,22a AB c ∴=,2242c e a =∈⎣⎦,,2,22a c ⎡∴∈⎣,则[]224,8ac∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出22aAB c=可求解. 6.B解析:B 【分析】由曲线的对称性,以及数形结合分析得15b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM⊥,所以1cos 4AOM ∠=, 渐近线OA 的斜率tan 15ak AOM b=∠==,所以15b a =所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.7.C解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a . 【详解】椭圆22183x y +=的半焦距为835c =-=∴双曲线中215a +=,∴2a =(∵0a >). 故选:C . 【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.8.C解析:C 【分析】求出双曲线的渐近线方程与抛物线22(0)y px p =>的准线方程,进而求出A ,B 两点的坐标,再由双曲线的离心率为2,AOB 3,列出方程,由此方程求出p 的值. 【详解】解:双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线方程是b y x a=±,又抛物线22(0)y px p =>的准线方程是2px =-,故A ,B 两点的纵坐标分别是2pb y a=±, 又由双曲线的离心率为2,所以2c a =,即2212ba +=,则3b a =, A ,B 两点的纵坐标分别是32=±py , 又AOB 的面积为3, 可得1··3322=p p ,得2p =, 故选:C . 【点睛】本题解题的关键是求出双曲线的渐近线方程和抛物线的准线方程,解出A ,B 两点的坐标,考查离心率公式和三角形的面积公式.9.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=, 即有433a t t -=,解得33t =+, 则12PF F △与12QF F 的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+-△△故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.10.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=, 由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y+=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎛⎫.因此,()()()()222222000004836121343232OE OF x y x y x y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.11.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形,∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin 33MF c c π==, ∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.12.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A B M,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.二、填空题13.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:⎛- ⎝⎭ 【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ, 由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x'=, 2y x =-得1y x'=-∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.14.27【分析】根据双曲线标准方程知结合离心率为2及常数关系即可求m 的值【详解】根据双曲线标准方程知:∵双曲线的离心率为2∴而∴故答案为:27【点睛】本题考查了双曲线利用双曲线的离心率标准方程中常数的等解析:27 【分析】根据双曲线标准方程知29a =,20b m =>,结合离心率为2及常数关系222c a b =+即可求m 的值 【详解】根据双曲线标准方程,知:29a =,20b m => ∵双曲线的离心率为2∴2ca=,而222c a b =+ ∴27m = 故答案为:27 【点睛】本题考查了双曲线,利用双曲线的离心率、标准方程中常数的等量关系222c a b =+求参数值15.3【分析】求周长的最小值即求的最小值设点在准线上的射影为则根据抛物线的定义可知因此问题转化为求的最小值根据平面几何知识当三点共线时最小从而可得结果【详解】求周长的最小值即求的最小值设点在准线上的射影解析:3 【分析】求PAF ∆周长的最小值,即求||||PA PF +的最小值.设点P 在准线上的射影为D ,则根据抛物线的定义,可知||||PF PD =.因此问题转化为求||||PA PD +的最小值,根据平面几何知识,当D 、P 、A 三点共线时||||PA PD +最小,从而可得结果 【详解】求PAF ∆周长的最小值,即求||||PA PF +的最小值, 设点P 在准线上的射影为D , 根据抛物线的定义,可知||||PF PD =因此,||||PA PF +的最小值,即||||PA PD +的最小值根据平面几何知识,可得当D ,P ,A 三点共线时||||PA PD +最小, 因此的最小值为(1)112A x --=+=, ||1AF =,所以PAF ∆周长的最小值为213+=, 故答案为:3.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.16.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦 解析:2±【分析】根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果. 【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan 2α∴=± 即直线l 的斜率为2±. 故答案为:2±. 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin p AB x x p α=++=. 17.①②【分析】将代入也成立得①正确;利用不等式可得故②正确;联立得四个交点满足条件的最小正方形是以为中点边长为2的正方形故③不正确【详解】对于①将代入得成立故曲线关于直线对称故①正确;对于②因为所以所解析:①② 【分析】将(,)y x 代入22322:()4C x y x y +=也成立得①1≤,故②正确;联立22322()4y xx y x y=±⎧⎨+=⎩得四个交点,满足条件的最小正方形是以,,,A B C D 为中点,边长为2的正方形,故③不正确. 【详解】对于①,将(,)y x 代入22322:()4C x y x y +=得22322()4y x y x +=成立,故曲线C 关于直线y x =对称,故①正确;对于②,因为22322222()()44x y x y x y ++=≤,所以221x y +≤1≤, 所以曲线C 上任意一点到原点的距离都不超过1,故②正确;对于③,联立22322()4y x x y x y=±⎧⎨+=⎩得2212x y ==,从而可得四个交点A ,(22B -,(22C --,(22D -, 依题意满足条件的最小正方形是各边以,,,A B C D 为中点,边长为2的正方形,故不存在的正方形,使得曲线C 在此正方形区域内(含边界),故③不正确. 故答案为:①② 【点睛】本题考查了由曲线方程研究曲线的对称性,考查了不等式知识,考查了求曲线交点坐标,属于中档题.18.【分析】延长交于点连接由角平分线及垂直可知由双曲线的定义可知结合三角形的中位线性质可求出即进而可求渐近线的方程【详解】解:延长交于点连接由知由双曲线的定义知由可知则所以故答案为:【点睛】本题考查了双解析:12y x =±. 【分析】延长2F A 交1PF 于点Q ,连接OA ,由角平分线及垂直可知,2PF PQ =,由双曲线的定义可知12FQ a =,结合三角形的中位线性质,可求出1224FQ a OA b ===,即2a b =,进而可求渐近线的方程.【详解】解:延长2F A 交1PF 于点Q ,连接OA .由2,QPA F PA PA PA ∠=∠=知2PF PQ =. 由双曲线的定义知,12112PF PF PF PQ QF a -=-==,由122,FO F O QA F A ==,可知1242FQ OA b a === 则2a b =,所以12b y x x a =±=±.故答案为: 12y x =±.【点睛】本题考查了双曲线的渐近线求解.难点在于构造辅助线,推出,a b 的关系.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,3b =1c =,则122F F =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.三、解答题21.(1)22143x y +=;(2)6.【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案. (2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值. 【详解】(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=. (2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:1x =-与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠ 设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=, 12122269,3434my y y y m m +==-++,因为11AF F B QA QBλλ⎧=⎨=⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩则12y y λ-=,()1020y y y y λ-=- 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1F Q =. 直线2l 的方程为:11x y m=-- 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =. 所以()12113111362PQF m SFQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭, 当且仅当1m =±时,()1min6PQF S =.【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题.22.(1)24y x =;(2)证明见解析,定点(5,6)-. 【分析】(1)直线方程为2py x =-,代入抛物线,利用焦点弦公式即可求出p ,得出方程; (2)当MN 斜率不存在时,可得MN 方程为5x =,当MN 斜率存在时,设为y kx b =+,和抛物线联立,利用121k k +=-可得56b k =--,即可得出定点.【详解】(1)由题意知:(,0)2p F ,则直线l 的方程为2py x =-,代入抛物线方程得 22304p x px -+=,设(,),(,)A A B B A x y B x y ,根据抛物线定义||2A p AF x =+,||2B pBF x =+,||||||48A B AB AF BF x x p p ∴=+=++==,2P =∴, ∴24y x =;(2)抛物线方程为24y x =,直线2px =,即1x =,解得(1,2)E . ①当MN 斜率不存在时,设方程为x t =,则(,(,M t N t -,121k k +==-解得5t =,∴方程为5x =; ②当MN 斜率存在时,设:(0)MN y kx b k =+≠,24y kx by x =+⎧⎨=⎩,即222(24)0k x kb x b +-+=,1222122042kb x x k b x x k ⎧⎪∆>⎪-⎪+=⎨⎪⎪=⎪⎩ 111111222111y kx b b k k k x x x -+-+-===+---,2221b k k k x +-=+-, 12121222(2)1(1)(1)x x k k k b k x x +-+=++-⋅=---,化简得:56b k =--,此时:(5)6MN y k x =--,过定点(5,6)-. 综上,直线MN 过定点(5,6)-. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)221126x y +=;(2)不是定值;()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)设(),N x y,()00,P x y ,利用()21PN NM =-,根据向量的坐标运算可得00x xy =⎧⎪⎨=⎪⎩,代入圆O 方程可得C 的方程; (2)设()():41DE y k x k =-≠±,()11,D x y ,()22,E x y ,将DE 方程代入椭圆方程可得韦达定理的形式,利用0∆>可得k 的取值范围,将AD AE k k +整理为121kk --,根据k 的范围可求得∑的取值范围. 【详解】(1)设(),N x y ,()00,P x y ,则()0,0M x ,()21PN NM =-,2PM PN NM NM ∴=+=,又()00,PM y =-,()0,NM x xy =--,由2PM NM =得:))000x x y y -=-=-,则00x x y =⎧⎪⎨=⎪⎩,点P 在圆22:12O x y +=上,)2212x ∴+=,即221126x y +=,C ∴的方程为221126x y +=.(2)依题意,设()11,D x y ,()22,E x y ,过点B 的直线DE 斜率必存在, 可设直线DE 的方程为()()41y k x k =-≠±,由()2241126y k x x y ⎧=-⎪⎨+=⎪⎩,消去y 得:()2222211632120k x k x k +-+-=,其中()()()4222256421321216320k k k k∆=-+-=->,解得:22k -<<, ()611,11,2k ⎛⎫⎛⎫∴∈-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,21221621k x x k ∴+=+,2122321221k x x k -=+,()()121212124242222222AD AE k x k x y y k k x x x x ------∴+=+=+----()()()()121222122122k x k k x k x x --+--+=+--()121122122k k x x ⎛⎫=-++ ⎪--⎝⎭()()()121212422124x x k k x x x x +-=-+⋅-++()22222216421221321216242121k k k k k k k k -+=-+⋅--⋅+++()()2221642112221881k k kk k k k -+-=-+⋅=--. ()66,11,11,22k ⎛⎫⎛⎫∈--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ()121332,464,,1122k k k -⎛⎫⎛⎫∴=--∈-∞---+∞ ⎪ ⎪--⎝⎭⎝⎭,AD AE k k ∴+不是定值,且∑的取值范围是()33,464,,22⎛⎫⎛⎫-∞---+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定值、取值范围问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式; ②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出所求量,将所求量转化为关于变量的函数的形式; ④化简所得函数式,消元可得定值或利用函数值域的求解方法求得取值范围. 24.(1)24y x =;4a =;(2)证明见解析;定点48,33⎛⎫- ⎪⎝⎭. 【分析】(1)由抛物线的定义可得求出2p =,再代入4x =可求出a ; (2)将()11,A x y ,()22,B x y 代入抛物线可得1212124y y k x x y y -==-+,由123k k +=可得()121281633y y y y =-+-,即可得出定点. 【详解】(1)由题意,452p MF =+=,故2p =,24y x =;令4x =,可得4y =±,故4a =.(2)设()11,A x y ,()22,B x y ,设直线AB 斜率为k ,联立方程21122244y x y x ⎧=⎨=⎩,两式相减得22121244y y x x -=-,即1212124y y k x x y y -==-+, 故直线AB 方程为()21111244y y y k x x x y y ⎛⎫-=-=- ⎪+⎝⎭,即1212124y y y x y y y y =-++;1144MA k k y ==+,2244MB k k y ==+, ∴121244344MA MB k k k k y y +=+=+=++,即()121281633y y y y =-+-;因此,直线AB 为12121212444833y y y x x y y y y y y ⎛⎫=-=++ ⎪+++⎝⎭经过定点48,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查抛物线中直线过定点问题,解题的关键是得出直线斜率124k y y =+,由123k k +=得出()121281633y y y y =-+-. 25.(1)证明见解析;(2)存在,满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【分析】(1)设直线:1PQ x my =+,联立方程组得到121y y =-,结合0OP OQ ⋅=,即可求解;(2)设过定点(),0a 的直线x ty a =+,联立方程组,根据根与系数的关系,得到34y y a =-与t 无关,得出对于抛物线2y x =上的两点的直线RS 过定点(),0a ,进而得到9M N y y =-,再结合Rt ODG ,即可求解.【详解】(1)设直线PQ :1x my =+, 联立方程组21x my y x=+⎧⎨=⎩,整理得210y my --=,所以121y y =-, 又由22121212120OP OQ x x y y y y y y ⋅=+=+=,所以OP OQ ⊥.(2)设过定点(),0a 的直线x ty a =+与抛物线有两个不同交点()33,x y ,()44,x y ,联立方程组2x ty a y x=+⎧⎨=⎩,整理得20y ty a --=,可得34y y a =-与t 无关,即对于抛物线2y x =上的两点R ,S ,直线RS 过定点(),0a R ⇔,S 的纵坐标之积为a -,由此可得13M y y =,23N y y =,从而1299M N y y y y ==-, 于是可得直线MN 过点()9,0,记为G ,则OD DG ⊥, 取OG 中点为E ,则Rt ODG 中1922ED OG ==, 故存在满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关. 26.(1)||AB =12t;(2)7+ 【分析】(1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长. 【详解】(1)224y x t y x =+⎧⎨=⎩,整理得()224410x t x t +-+=,则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t;(2)由||AB ==4t =-,经检验,此时16320t ∆=->, 所以1215x x t +=-=, 由抛物线的定义,有1212||||()()52722p pAF BF x x x x p +=+++=++=+=,又||AB =,所以AFB △的周长为7+ 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。
新北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(含答案解析)(3)

一、选择题1.如图,已知1F 、2F 双曲线()222210,0x y a b a b-=>>的左、右焦点,A 、B 为双曲线上关于原点对称的两点,且满足11AF BF ⊥,112ABF π∠=,则双曲线的离心率为( )A 2B 3C 6D 4232.已知过抛物线()220y px p =>的焦点F 的直线交抛物线于A ,B 两点,线段AB 的延长线交抛物线的准线于点M .若2BM =,3AF =,则AB =( ) A .4B .5C .6D .73.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .24.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( ) A .12B 31C 3D 35.已知O 为坐标原点设1F ,2F 分别是双曲线2219x y -=的左右焦点,P 为双曲线左支上的任意一点,过点1F 作12F PF ∠的角平分线的垂线,垂足为H ,则OH =( ) A .1B .2C .3D .46.过原点O 的直线交双曲线E :22221x y a b-=(0,0a b >>)于A ,C 两点,A 在第一象限,12,F F 分别为E 的左、右焦点,连接2AF 交双曲线E 右支于点B ,若222,23OA OF CF BF ==,则双曲线E 的离心率为( )A .2145B .2134C .365D .5357.已知双曲线221(0,0)x y m n m n-=>>和椭圆22174x y +=有相同的焦点,则11m n +的最小值为( )A .12B .32C .43D .98.设P 为椭圆22:1169x y C +=上的点,12,F F 分别是椭圆C 的左,右焦点,125PF PF ⋅=,则12PF F △的面积为( )A .3B .4C .5D .69.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .410.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( )A .1BCD 111.已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,过F 点作x 轴的垂线交椭圆于A ,B 两点,若0OA OB ⋅=,则椭圆的离心率等于( )A .12-B .12-+ C .12D .212.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点,则该双曲线的离心率为( )A .2B C .3D 二、填空题13.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.14.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 且斜率为ab的直线l 与双曲线的右支交于点P ,与其中一条渐近线交于点M ,且有13PM MF =,则双曲线的渐近线方程为________.16.已知椭圆22221(0)x y a b c a b+=>>>的左、右焦点分别为1F ,2F ,若以2F 为圆心,b c -为半径作圆2F ,过椭圆上一点P 作此圆的切线,切点为T ,且PT 的最小值不小于)a c -,则椭圆的离心率e 的取值范围是________.17.曲线412x x y y -=上的点到直线y 的距离的最大值是________.18.双曲线22221(00)x y C a b a b-=>>:,的左、右焦点分别为1F ,2F ,过2F 的直线交曲线C 右支于P 、Q 两点,且1PQ PF ⊥,若3PQ =14PF ,则C 的离心率等于________.19.双曲线221916x y -=的左焦点到渐近线的距离为________.20.椭圆22143x y +=上一点A 到左焦点的距离为52,则A 点到右准线的距离为________.三、解答题21.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.22.已知坐标平面内第一象限的点P 到两个定点()1,0M -,()1,0N 距离的比3PM PN=.(1)若点P 的纵坐标为2,求点P 的横坐标;(2)若点N 到直线PM 的距离为1,求直线PM 的点法向式方程和直线PN 的点方向式方程.23.如图所示,已知椭圆()2222:10x y C a b a b+=>>,222:O x y b +=,点A 是椭圆C的左顶点,直线AB 与O 相切于点()1,1B -.(1)求椭圆C 的方程;(2)若O 的切线l 与椭圆C 交于M ,N 两点,求OMN 面积的取值范围.24.已知P 是椭圆22:18x C y +=上的动点.(1)若A 是C 上一点,且线段PA 的中点为11,2⎛⎫ ⎪⎝⎭,求直线PA 的斜率; (2)若Q 是圆221:(1)49D x y ++=上的动点,求PQ 的最小值.25.已知离心率22e =的椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B 两点,且423AB =,求直线l 的方程. 26.如图,在平面直角坐标系xOy 中,A ,B 是椭圆22221(0)x ya b a b+=>>的左、右顶点,22AB =,离心率22e =.F 是右焦点,过F 点任作直线l 交椭圆于M ,N 两点.(1)求椭圆的方程;(2)试探究直线AM 与直线BN 的交点P 是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】连接22,AF BF ,得矩形12AF BF ,在直角12BF F △中用c 表示出1BF ,2BF ,然后由双曲线的定义列式后求得离心率e . 【详解】连接22,AF BF ,由11AF BF ⊥及双曲线的对称性知12AF BF 是矩形,由12AF BF =,1112BFO ABF π∠=∠=,122F F c =,则22sin12BF c π=,12cos12BF c π=,∴122cos2sin21212BF BF c c a ππ-=-=,∴离心率为111222cos sin 2cos 2cos sin 12123212212c e a πππππ=====⎛⎫-- ⎪⎝⎭, 故选:A .【点睛】本题考查求双曲线的离心率,列出关于,a b 关系式是䚟题关键.本题利用双曲线的对称性构造矩形12AF BF ,然后结合双曲线定义得出关系式,求得离心率.2.A解析:A 【分析】设A 、B 在准线上的射影分别为为C 、N ,通过三角形相似,求|BF |,再求出||AB 即可. 【详解】解:设A 、B 在准线上的射影分别为为C 、N ,过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A ,B 两点, 线段AB 的延长线交抛物线的准线l 于点M ,准线与x 轴的交点为H , ||2BM =,||3AF =,∴由BNM AMC ∽,可得||23||5BF BF =+, ||1BF ∴=,||||||4AB AF FB ∴=+=,故选:A .【点睛】本题考查抛物线的定义及其应用,抛物线的几何性质,转化化归的思想方法,属于中档题.3.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方4.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PF PF ,2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e +-=,解得1e =. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5.C解析:C 【分析】根据中位线性质得到22111()22OH BF PF PF a ==-=得到答案. 【详解】如图所示:延长1F H 交2PF 于B12F PF ∠的平分线为PA ,1F B PA H ⊥⇒为1F B 中点,1PF BP =,在12F F B △中,O 是12F F 中点,H 为1F B 中点,⇒22111()322OH BF PF PF a ==-==故选:C 【点睛】关键点点睛:本题考查了双曲线的性质,利用中位线性质将212OH BF =是解题的关键. 6.D【分析】根据题意得1F A AB ⊥,设22BF m =,则23CF m =,13AF m =,再结合双曲线的定义得1222,32BF a m AF m a =+-=,故在1Rt FAB 中由勾股定理得1514m a =,在12Rt F AF △中结合勾股定理和1514m a =,得222553c a =,进而得答案..【详解】设1F 为双曲线E 的左焦点,连接112,,AFBF CF , 取2AF 的中点M ,由2=OA OF ,得OM AB ⊥,又O 为12F F 的中点,故1F A AB ⊥,设22BF m =,则23CF m =,由1211||||||22OM AF CF ==得13AF m =. 根据双曲线的定义得1222,32BF a m AF m a =+-=, 在1Rt F AB 中,有()()()22235222=m m a m a -++, 化简得1514m a =,在12Rt F AF △中,有()()()2223322m m a c +-=, 结合1514m a =,得222553c a =,所以53e = 故选:D. 【点睛】本题考查双曲线的离心率的求解,解题的关键在于根据已知得1F A AB ⊥,同时注意到该题构成了焦点三角形,故借助定义,利用三角形的边角关系即可222553c a =,进而求解.考查运算求解能力,是中档题.7.C【分析】本题首先可根据双曲线和椭圆有相同的焦点得出3m n +=,然后将11m n+转化为123m n n m ⎛⎫++ ⎪⎝⎭,最后利用基本不等式即可求出最小值. 【详解】因为双曲线221x y m n-=和椭圆22174x y +=有相同的焦点,所以743m n ,则()111111233m n m n m n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 142233m n n m,当且仅当m n =时取等号, 故11m n+的最小值为43,故选:C. 【点睛】关键点点睛:本题考查双曲线与椭圆焦点的相关性质的应用,双曲线有222+=a b c ,椭圆有222a b c =+,考查利用基本不等式求最值,是中档题.8.D解析:D 【分析】先根据椭圆的方程求得c ,进而求得12F F ,设出12,PF m PF n ==,利用余弦定理可求得mn 的值,最后利用三角形面积公式求解. 【详解】由椭圆方程有4,3a b ==,则c .设12,PF m PF n ==,由椭圆的定义有:28m n a +==.设12F PF θ∠=, 由125PF PF ⋅=,得cos 5mn θ=,由余弦定理得: 222cos 28m n mn θ+-= 解得:513,cos 13mn θ==,12sin 13θ∴=. 所以12PF F △的面积为1112sin 1362213S mn θ==⨯⨯=.故选:D 【点睛】本题考查椭圆的标准方程、椭圆的定义的应用,椭圆中求三角形的面积问题,是中档题.9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p, 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(0Ax ,则0AT k=,则直线0:AT x x=-,代入抛物线方程化简得02220px y +=-, 则02028px ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin3MF c π==,∴1)2MF ME c a +==,∴1c e a ===. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.A解析:A 【分析】由0OA OB ⋅=可得OAB 是等腰直角三角形,结合椭圆的几何性质列出方程,可求解椭圆的离心率. 【详解】椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,由2b xc y a=⇒=±,若0OA OB ⋅=,则OAB 是等腰直角三角形(O 为坐标原点),可得2b c a =,即22a c ac -=,可得210e e +-=且(0,1)e ∈,解得51e -=. 故选:A . 【点睛】本题考查椭圆离心率的求解,考查了椭圆的几何性质,同时考查了垂直关系的向量表示,是基本知识的考查.12.A解析:A 【分析】求出双曲线的渐近线方程,将点2,6代入即可得3ba=得离心率. 【详解】双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点()2,6在渐近线b y x a =上,可得62b a =⨯,所以3ba= 所以22221132c a b b e a a a +⎛⎫===+=+= ⎪⎝⎭. 故选:A 【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ =, ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.14.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±15.【分析】根据题意求出点M 的坐标再根据求出点P 的坐标将点P 的坐标代入双曲线方程即可求出进而求出双曲线的渐近线方程【详解】设双曲线的左焦点为所以直线l 的方程为:由直线l 与其中一条渐近线交于点M 且有可知解解析:43y x =± 【分析】根据题意求出点M 的坐标,再根据13PM MF =求出点P 的坐标,将点P 的坐标代入双曲线方程即可求出ba,进而求出双曲线的渐近线方程. 【详解】设双曲线的左焦点为(),0c -,所以直线l 的方程为:()ay x c b=+, 由直线l 与其中一条渐近线交于点M ,且有1PM=3MF ,可知()a y x c b b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩,解方程可得2a x c ab y c ⎧=-⎪⎪⎨⎪=⎪⎩,即2,a ab M c c ⎛⎫-⎪⎝⎭, 过点M 、P 分别作x 轴垂线,垂足为A 、B 因为13PM MF =,所以1114AF BF =,14AM BP =, 不妨设04,ab P x c ⎛⎫ ⎪⎝⎭,则204c x a c c +-=,解得2043a x c c=-, 所以2443,a ab P c c c ⎛⎫- ⎪⎝⎭,将点2443,a ab P c c c ⎛⎫- ⎪⎝⎭代入()222210,0x y a b a b -=>>, 即()2222244310,0a ab c c c a b a b⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=>>, 整理可得22925c a =,即()222925a b a +=,解得22169b a =,43b a ∴=,所以双曲线的渐近线方程为43y x =±.故答案为:43y x =± 【点睛】本题考查了双曲线的简单几何性质,此题要求有较高的计算能力,属于中档题.16.【分析】利用切线的性质和勾股定理可得利用椭圆的性质可得的最小值为由题意可得最小值为即可得出离心率满足的不等式再利用得联立两个不等式即可解出的取值范围【详解】因为所以当且仅当取得最小值时取得最小值而的解析:3,52⎡⎢⎣⎭【分析】利用切线的性质和勾股定理可得||)PT b c =>,利用椭圆的性质可得2PF 的最小值为a c -,由题意可得PT)a c -,即可得出离心率e 满足的不等式,再利用b c >,得222a c c ->,联立两个不等式即可解出e 的取值范围. 【详解】因为||)PT b c =>,所以当且仅当2PF 取得最小值时,PT 取得最小值.而2PF 的最小值为a c -, 所以PT23()2a c -, 所以22()4()a cbc --,所以2()a c b c --,所以2a c b +,所以()222()4a c a c +-,所以225302c ac a +-≥,所以25230e e +-.①又b c >,所以22b c >,所以222a c c ->,所以221e <.② 联立①②,得3252e <.故答案为:32,52⎡⎫⎪⎢⎣⎭【点睛】本题主要考查了椭圆的性质,离心率的计算公式,圆的切线的性质,勾股定理,一元二次不等式的解法,属于基础题17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的 解析:263【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故y =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线y =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线y 的距离.设直线()0y m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:22440x m ++-=,令()22=81640m m ∆--=,解得m =-所以切线为:y -故两平行线y =-y =之间的距离为3d ==.所以曲线412x x y y -=上的点到直线y =的距离的最大值是3.故答案为:3.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】设则再利用双曲线的定义可得分别在中利用勾股定理即可获解【详解】如图设由=可得由双曲线定义有所以又所以因为所以即①②由②解得代入①得即所以故答案为:【点睛】本题考查双曲线的离心率的求法解题关键解析:2【分析】设||4(0)PQ t t =>,则13PF t =,再利用双曲线的定义可得232PF t a =-,1||4QF t a =+,分别在12PF F △,1PFQ 中利用勾股定理即可获解. 【详解】如图,设||4(0)PQ t t =>,由3PQ =14PF 可得13PF t =, 由双曲线定义,有12||||2PF PF a -=,所以232PF t a =-,21||||2QF PQ PF t a =-=+,又12||||2QF QF a -=,所以1||4QF t a =+,因为1PQ PF ⊥,所以22212||||4PF PF c +=,22211||||||PF PQ QF +=,即222(3)(32)4t t a c +-=①,222(3)(4)(4)t t t a +=+②,由②解得t a =,代入①,得222(3)(32)4a a a c +-=,即22104a c =, 所以101042c e a ===. 故答案为:102【点睛】本题考查双曲线的离心率的求法,解题关键是建立关于,,a b c 的方程,考查学生的数学运算能力,是一道中档题.19.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4 【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=, 则左焦点到其渐近线的距离为22200204543d -±===+, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.20.3【分析】先由椭圆的第一定义求出点到右焦点的距离再由第二定义求出点到右准线的距离【详解】由椭圆的第一定义得点到右焦点的距离等于离心率所以由椭圆的第二定义得即故点到右准线的距离故答案为:【点睛】本题考解析:3 【分析】先由椭圆的第一定义求出点P 到右焦点的距离,再由第二定义求出点P 到右准线的距离d . 【详解】由椭圆的第一定义得点P 到右焦点的距离等于53422-=,离心率12e =, 所以,由椭圆的第二定义得3122d =,即3d =,故点P 到右准线的距离3d =.故答案为:3 【点睛】本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质,属于基础题.三、解答题21.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2p x =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=,即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO 的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)3±;(2))10x y ++=;111x y-=±. 【分析】(1)根据直接法,利用PM PN=(),P x y ,代入化简即可得到点P 的轨迹方程,由P(2)根据几何关系,因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,PM k =,求出直线方程,代入圆的方程求得P 点坐标,即可得解. 【详解】(1)设(),P x y ,因为PM PN==化简得22610x y x +-+=,令y 2630x x -+=,解得3x =±所以点P 的横坐标为3(2)因为点N 到直线PM 的距离为1,2MN =,所以30PMN ∠=︒,PM k =,所以直线PM 的方程为)1y x =+把)1y x =+代入22610x y x +-+=, 得2410x x -+=,解得12x =22x =所以点P的坐标为(2++或(21-或(21-或(2,所以直线PN 的方程为1y x =-或1y x =-+, 所以直线PM的点法向式方程为)10x y ++= 直线PN 的点方向式方程为111x y-=±. 【点睛】本题考查了求轨迹方程,考查了直线和圆的位置关系以及直线的点法向式方程和点方向式方程,有一定的计算量,属于中档题. 本题的关键点有:(1)直接法求轨迹方程,利用条件直接列式求方程;(2)计算能力和计算技巧,计算能力和计算技巧是解决解析几何问题的关键能力,需强化训练.23.(1)22142x y +=;(2)(OMN S ∈△. 【分析】(1)由点()1,1B -在O 上可得22b =,然后由OB AB ⊥可求出a ;(2)分切线斜率存在和不存在两种情况讨论,斜率不存在时利用弦长公式表示出MN 并求出其范围即可. 【详解】(1)由直线AB 与O 相切于点()1,1B -,可知点()1,1B -在O 上,则22b =, 又点(),0A a -,且OB AB ⊥,则10101101a--⨯=----+,解得2a =, 故所求椭圆方程为22142x y +=.(2)若切线斜率存在,设切线为0kx y m -+=,其中0k ≠,切线l 与椭圆C 交点()11,M x y ,()22,N x y ,则圆心到直线l的距离d ==()2221m k ∴=+,联立方程220142kx y m x y -+=⎧⎪⎨+=⎪⎩,消去y 得()222214240k x kmx m +++-=,则122421km x x k -+=+,21222421-=+m x x k()0,2MN ====,当切线斜率不存在时,此时2MN =,故O 的切线l 与椭圆C 相交弦长取值范围为(]0,2,又12OMN S d MN =⋅⋅=△,可得(OMN S ∈△. 【点睛】关键点睛:在解决圆锥曲线中的面积问题时,要善于观察图形的特点,怎么表示出面积是解题的关键. 24.(1)14-;(2. 【分析】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,代入椭圆方程,利用点差法即可求得直线PA 的斜率;(2)设(,)(P x y x -≤≤,圆心(1,0)D -,可得PD 的表达式,利用二次函数性质,即可求得PD 的最小值,进而可得答案. 【详解】(1)设A ,P 两点的坐标分别为()11,x y ,()22,x y ,因为A ,P 两点都在C 上,所以221122221818x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减,得()()()()2121212180x x x x y y y y -++-+=, 因为21122x x +=⨯=,211212y y +=⨯=, 所以212114PA y y k x x -==--. (2)设(,)(P x y x -≤≤,则2218x y +=,圆心(1,0)D -,则222222786||(1)(1)18877x PD x y x x ⎛⎫=++=++-=++ ⎪⎝⎭,当87x时,PD7=. 因为圆D17=. 所以PD的最小值为11777-=. 【点睛】解题的关键是熟练掌握点差法的步骤,点差法常见的结论有,设以00(,)P x y 为中点的弦所在斜率为k ,则(1)椭圆22221x y a b +=中,2020y b k x a ⋅=-;(2)双曲线22221x y a b -=中,2020y b k x a⋅=;(3)抛物线22y px =中0p k y =,熟记结论可简化计算,提高正确率,属中档题.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,2c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-==, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交点坐标1122(,),(,)A x y B x y ,设出直线方程,代入椭圆方程后应用韦达定理得1212,x x x x +,代入弦长公式12AB x =-求解.26.(1)2212x y +=;(2)直线AM 与直线BN 的交点P 落在定直线2x =上.【分析】(1)根据题中条件,求出,a b ,即可得出椭圆方程;(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,联立直线与椭圆方程,由韦达定理,得到12y y +,12y y ,表示出直线AM 和BN 的方程,联立两直线方程,计算为定值,即可得出结果. 【详解】 (1)2AB=2a∴=a =设焦距为2c,离心率2e =2c a ∴=,1c ∴=, 2221b a c ∴=-=因此所求的椭圆方程为2212x y +=(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,由22121x y x my ⎧+=⎪⎨⎪=+⎩得()222210m y my ++-=, 12222m y y m ∴+=-+,12212y y m =-+, 直线AM方程是y x =+,直线BN方程是y x =,由y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,212112211y x y my my y y++++===212211212(1122221(12mm y m m m y m mm ym⎛⎫⎛⎫-+--⎡⎤⎪ ⎪-++--+++⎝⎭⎝⎭==⎛⎫-+-⎪+⎝⎭21312mm y-+-++=((()(()()()21213121121m m ym m y⎡⎤-+-+++⎣⎦=⎡⎤-+++⎣⎦()213121m m y⎡⎤-+-+++=(()(221121m m y⎡⎤--++=(213==+3=+2x=此直线AM与直线BN的交点P落在定直线2x=上.【点睛】关键点点睛:求解本题第二问的关键在于根据点P为两直线交点,联立两直线方程,结合直线MN与椭P横坐标为定值,即可求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修1-1圆锥曲线方程检测题
斗鸡中学 强彩红
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、设定点
()
10,3F -,
()
20,3F ,动点
()
,P x y 满足条件
a PF PF =+21(a
>)0,则动点
P 的轨迹是( ).
A. 椭圆
B. 线段
C. 不存在
D.椭圆或线段或不存在
2、抛物线
2
1y x m = 的焦点坐标为( ) . A .⎪⎭⎫ ⎝⎛0,41m B . 10,4m ⎛⎫ ⎪⎝⎭ C . ,04m ⎛⎫ ⎪⎝⎭ D .0,4m ⎛⎫
⎪⎝⎭
3、双曲线
22
1mx y +=的虚轴长是实轴长的2倍,则m 的值为( ). A .14-
B .4-
C .4
D .1
4
4、设双曲线的焦点在x 轴上,两条渐近线为y=±
x 2
1
,则该双曲线的离心率e 为( )
(A )5 (B )5 (C )
25 (D )4
5 5、线段∣AB ∣=4,∣PA ∣+∣PB ∣=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值是( ) (A )2 (B )2
(C )
5
(D )5
6、若椭圆13
22
2=++y m x 的焦点在x 轴上,且离心率e=2
1,则m 的值为( )
(A )
2
(B )2 (C )-2
(D )±
2
7、过原点的直线l 与双曲线42x -32
y =-1有两个交点,则直线l 的斜率的取值范围是 A.(-23,23) B.(-∞,-23)∪(23
,+∞) C.[-23,23] D.(-∞,-23]∪[23
,+∞)
8、如图,在正方体ABCD -A1B1C1D1中,P 是侧面BB1C1C 内一动点,若P 到直线BC
与直线C1D1的距离相等,则动点P 的轨迹所在的曲线是( ). A.直线 B. 抛物线 C.双曲线 D. 圆
9、已知椭圆x 2sin α-y 2cos α=1(0<α<2π)的焦点在x 轴上,则α的取值范围是( )
(A )(4
3π,π) (B )(4
π,4
3π ) (C )(2
π,π) (D )(2
π,4
3π )
10、 F 1、F 2是双曲线
116
92
2=-y x 的两个焦点,点P 在双曲线上且满足∣P F 1∣·∣P F 2∣=32,则∠F 1PF 2是( )
(A ) 钝角 (B )直角 (C )锐角 (D )以上都有可能 11、与椭圆125
162
2=+y x 共焦点,且过点(-2,10)的双曲线方程为( )
(A )
14
52
2=-x y (B )
14
52
2=-y x (C )
13
52
2=-x y (D )
13
52
2=-y x 12.若点 到点
的距离比它到直线 的距离小1,则 点的轨
迹方程是( ) A . B . C .
D .
二、填空题:本大题共4小题,每小题4分,共16分.
13、已知双曲线的渐近线方程为y=±34x ,则此双曲线的离心率为________.
14.在抛物线
上有一点 ,它到焦点的距离是20,则 点的坐标是
_________. 15.抛物线
上的一点 到 轴的距离为12,则 与焦点 间的距离
=______.
. 16、椭圆具有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a,焦距为2c,静放在点A 的小球(小球的半径忽略不计)从点A 沿直线出发,经椭圆壁反射后第一次回到点A 时,小球经过的路程是_____________.
三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤.
B
D
A 1
B 1
C 1
P
17. (本小题满分15分)
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为3,求此椭圆的标准方程。
18. (本小题满分15分)
F1,F2为双曲线
)0
,0
(1
2
2
2
2
>
>
=
-b
a
b
y
a
x
的焦点,过2
F作垂直于x轴的直线交双曲线与
点P且∠P F1F2=300,求双曲线的渐近线方程。
19. (本小题满分15分)
抛物线的顶点在原点,它的准线过双曲线
)0
,1
(1
2
2
2
2
>
>
=
-b
a
b
y
a
x
的一个焦点,并于双曲
线的实轴垂直,已知抛物线与双曲线的交点为
)6
,
2
3
(
,求抛物线的方程和双曲线的方程。
20.(本小题满分15分)
已知抛物线的顶点在原点,对称轴是轴,抛物线上的点到焦点的距离等于5,求抛物线的方程和的值.
参考答案 一、选择题:
1 D
2 D .
3 A
4 C
5 C
6 B
7 C
8 B
9 B 10 A 11 C 12 B 二、填空题
13、53或54.
提示:据题意,34a b =或43,∴
53e =
或54. 14、(18,12)或(18,-12)
提示:当线段AB 过焦点时,点M 到准线的距离最小,其值为)(21
p a -.
15 13
16、4a 或2(a -c)或2(a+c)
提示:设靠近A 的长轴端点为M ,另一长轴的端点为N.若小球沿AM 方向运动,则路程应为2(a -c);若小球沿ANM 方向运动,则路程为2(a+c);若小球不沿AM 与AN 方向运动,则路程应为4a.
三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.
17. 解:当焦点在x 轴时,设椭圆方程为122
2
2=+b y a x ,由题意知a=2c ,a-c=3 解得a=32,c=3,所以b2=9,所求的椭圆方程为1
9122
2=+y x 同理,当焦点在y 轴时,所求的椭圆方程为11292
2=+y x .
18. 解:设
2
PF =m ,所以
1
PF =2m ,
2
1F F =2c=3m ,1PF -2PF =2a=m
322==∴a c e 222
222
13a b a b a e +=+==∴ 222=∴a b 2
=∴a b
12222=-∴b y a x 的渐近线方程为y=x 2±.
19.解:由题意可知,抛物线的焦点在x 轴,又由于过点)
6,23
(,所以可设其方程为 )0(22〉=p px y p 36=∴ ∴p =2 所以所求的抛物线方程为x y 42=
所以所求双曲线的一个焦点为(1,0),所以c=1,所以,设所求的双曲线方程为
112222=--∴a y a x 而点)6,23(在双曲线上,所以116)
23(2222
=--a a 解得
412=a 所以所求的双曲线方程为13442
2=-
y x .
20.据题意可知,抛物线方程应设为 ( ),则焦点是
点 在抛物线上,且 ,故 ,
解得 或
抛物线方程
,。