完美版2012年北京信息科技大学 基于MATLAB的图像去噪论文开题报告+论文
利用Matlab进行图像去噪和图像增强

利用Matlab进行图像去噪和图像增强随着数字图像处理技术的不断发展和成熟,图像去噪和图像增强在各个领域都有广泛的应用。
而在数字图像处理的工具中,Matlab凭借其强大的功能和易于使用的特点,成为了许多研究者和工程师首选的软件之一。
本文将介绍如何利用Matlab进行图像去噪和图像增强的方法和技巧。
一、图像去噪图像去噪是指通过一系列算法和技术,将图像中的噪声信号去除或减弱,提高图像的质量和清晰度。
Matlab提供了多种去噪方法,其中最常用的方法之一是利用小波变换进行去噪。
1. 小波变换去噪小波变换是一种多尺度分析方法,能够对信号进行时频分析,通过将信号分解到不同的尺度上,实现对图像的去噪。
在Matlab中,可以使用"dwt"函数进行小波变换,将图像分解为低频和高频子带,然后通过对高频子带进行阈值处理,将噪声信号滤除。
最后通过逆小波变换将去噪后的图像重构出来。
这种方法能够有效抑制高频噪声,保留图像的细节信息。
2. 均值滤波去噪均值滤波是一种基于平均值的线性滤波方法,通过计算像素周围邻域内像素的平均值,替代原始像素的值来去除噪声。
在Matlab中,可以使用"imfilter"函数进行均值滤波,通过设置适当的滤波模板大小和滤波器系数,实现对图像的去噪。
二、图像增强图像增强是指通过一系列算法和技术,改善图像的质量、增强图像的细节和对比度,使图像更容易被观察和理解。
Matlab提供了多种图像增强方法,以下将介绍其中的两种常用方法。
1. 直方图均衡化直方图均衡化是一种通过对图像像素值的分布进行调整,增强图像对比度的方法。
在Matlab中,可以使用"histeq"函数进行直方图均衡化处理。
该函数能够将图像的像素值分布拉伸到整个灰度级范围内,提高图像的动态范围和对比度。
2. 锐化增强锐化增强是一种通过增强图像边缘和细节来改善图像质量的方法。
在Matlab中,可以使用"imsharpen"函数进行图像的锐化增强处理。
matlab小波变换信号去噪

matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
基于MATLAB数字滤波器的设计开题报告书定稿

[8]李海涛,邓樱. MATLAB程序设计教程[M].北京:高等教育出版社,2002.
[9]胡广书.数字信号处理[M].北京:清华大学出版社,2007.
[10]Ingle V K,Proakis J G. Digital Signal Processing Using MATLAB[M].New York: PWS Publishing Company, 1997.
论文题目
基于MATLAB的数字滤波器的设计
1、本选题研究的目的及意义
目前,数字信号处理理论与应用已成为一门及其重要的高新技术学科。数字信号处理技术日益成熟,广泛应用于各个领域。伴随着社会和经济的伟大变革,如今人人享有通信自由。从过去的普通电话到现在随时随地视频聊天,移动电话不再是特殊阶层使用,已成为大众日常生活的普通工具。科技带给我们生活的极大便利,可能很多人会想到计算机发挥了很大作用,但是,数字信号处理技术发挥的作用也是惊人的。如果没有这一技术的快速发展和应用,可能我们还没有那么快就可以足不出户而正常生活着。
[11]Vinay K.Ingle.《Digital Signal Processing Using MATLAB》,清华大学出版社,2003:1025-1031
5、完成措施及写作进度计划
实施方案:
1.到图书馆搜集相关资料和书籍,深刻了解数字滤波器的基本原理.
2.确定研究的方向,即确定以何种方式设计数字滤波器,并集中这个方向去探讨这个课题.
本科毕业论文(设计)
开题报告书
题目:基于MATLAB的数字滤波器的设计
系 部:信息工程学院
专业年级:通信工程2011级
开题报告-基于Matlab的指纹识别

毕业设计选题:基于matlab的指纹识别随着科学技术的不断发展,自动化的指纹识别技术如今已经被人们广泛地应用在银行、商业交易、公安部门、海关部门等需要对人的身份进识别的领域,而本文所描述的是对自动化指纹识别系统的研究现状以及自动化指纹识别系统的基本算法和流程,本实验是利用MATLAB2012来进行了指纹识别系统的仿真和实验的。
然而在生物识别技术的快速发展的今天,人们通过研究发现了每一个人的指纹都具有唯一性和不变性。
也正因为这样,指纹识别技术正在逐步的发展成为一种新的身份识别技术,并且凭借它良好的安全性以及可靠性,逐步有取代传统身份认证的方式趋势。
本实验简单的介绍了指纹识别图像的预处理的方法和步骤。
指纹图像预处理之后将会得到一个宽度为统一像素的细化后的二值化图像,最后再根据特定的指纹图像的端点以及交叉点的特征进行对指纹自动匹配。
本论文中采用MATLAB2012编程实现所有算法。
关键词:指纹识别技术指纹图像预处理指纹识别 MATLAB20121.1指纹及其识别如今,生物特征识别领域中的最为成熟的应用技术之一--指纹识别技术。
其实它已经有非常悠久的历史了。
很久以前,指纹识别技术已经很早就应用于刑事侦查和司法鉴定领域了,很多人不知道的是。
随着计算机网络和信息处理技术的快速发展,这门历史悠久的指纹识别技术也开拓了更多更广阔的市场,自动的指纹识别技术和与其相关的产品越来越多的应用在普通人的生活当中。
生物识别技术(Biometric Identification Technology)的定义是:利用人体的不同的生物特征来进行对人的身份进行认证的一种技术[1]。
这是因为人的生物特征是唯一的,可以区分与他人不同的特征。
并且我们还可以通过技术测量或者是自动识别来检验出生理特性以及行为方式,我们所说的这个特征分为生理特征、行为特征。
我们对生物特性来进行提取并放入数据库,再将提取出来的人的唯一特征和它的身份一一对应起来。
基于MATLAB控制系统的仿真与应用毕业设计论文

毕业设计(论文)题目基于MATLAB控制系统仿真应用研究毕业设计(论文)任务书I、毕业设计(论文)题目:基于MATLAB的控制系统仿真应用研究II、毕业设计(论文)使用的原始资料(数据)及设计技术要求:原始资料:(1)MATLAB语言。
(2)控制系统基本理论。
设计技术要求:(1)采用MATLAB仿真软件建立控制系统的仿真模型,进行计算机模拟,分析整个系统的构建,比较各种控制算法的性能。
(2)利用MATLAB完善的控制系统工具箱和强大的Simulink动态仿真环境,提供用方框图进行建模的图形接口,分别介绍离散和连续系统的MATLAB和Simulink仿真。
III、毕业设计(论文)工作内容及完成时间:第01~03周:查找课题相关资料,完成开题报告,英文资料翻译。
第04~11周:掌握MATLAB语言,熟悉控制系统基本理论。
第12~15周:完成对控制系统基本模块MATLAB仿真。
第16~18周:撰写毕业论文,答辩。
Ⅳ、主要参考资料:[1] 《MATLAB在控制系统中的应用》,张静编著,电子工业出版社。
[2]《MATLAB在控制系统应用与实例》,樊京,刘叔军编著,清华大学出版社。
[3]《智能控制》,刘金琨编著,电子工业出版社。
[4]《MATLAB控制系统仿真与设计》,赵景波编著,机械工业出版社。
[5]The Mathworks,Inc.MATLAB-Mathemmatics(Cer.7).2005.信息工程系电子信息工程专业类 0882052 班学生(签名):填写日期:年月日指导教师(签名):助理指导教师(并指出所负责的部分):信息工程系(室)主任(签名):学士学位论文原创性声明本人声明,所呈交的论文是本人在导师的指导下独立完成的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。
对本文的研究成果作出重要贡献的个人和集体,均已在文中以明确方式表明。
基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文语音信号在实际应用中通常不可避免地受到噪音的干扰,这使得语音信号的处理变得困难。
因此,在语音信号处理领域,去噪技术一直是一个热门的研究方向。
本文将介绍一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。
本文的主要内容分为以下几个部分。
首先,介绍语音信号处理的背景和意义。
在现实生活中,由于外界环境和设备的限制,语音信号往往会受到各种噪音的污染,如背景噪音、电磁干扰等。
因此,开发一种有效的语音信号处理去噪方法具有重要的实际意义。
其次,介绍基于MATLAB的语音信号处理去噪方法。
本文将采用小波降噪方法对语音信号进行去噪处理。
首先,对输入的语音信号进行小波变换,将信号转换到小波域。
然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪效果。
最后,通过逆小波变换将信号转换回时域,并输出去噪后的语音信号。
接下来,介绍实验设计和结果分析。
本文将使用MATLAB软件进行实验设计,并选取一组含有不同噪声干扰的语音信号进行测试。
通过对不同噪声信号进行处理,比较不同参数设置下的去噪效果,评估提出方法的性能。
最后,总结全文并展望未来的研究方向。
通过本次研究,我们可以看到基于MATLAB的语音信号处理去噪方法在去除噪音方面具有较好的效果,并具有很大的应用潜力。
然而,该方法仍然有改进的空间。
未来的研究可以在算法优化、参数选择和应用场景等方面进行深入研究,进一步提高语音信号处理去噪的效果和性能。
总的来说,本文介绍了一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。
通过对实验结果的分析和对未来研究方向的展望,本文为从事语音信号处理领域的研究人员提供了一定的参考和启示。
基于小波变换的图像去噪方法的研究开题报告

基于小波变换的图像去噪方法的研究开题报告硕士研究生学位论文选题报告基于小波变换的图像去噪方法的研究一、拟选题目在图像处理中,图像通常都存在着各种不易消除的噪声。
寻求一种既能有效地减小噪声、又能很好地保留图像边缘信息的方法,一直是人们努力追求的目标。
传统的去噪方法很难同时兼顾这两个方面。
而小波分析由于在时域频域同时具有良好的局部化性质和多分辨率分析等优点,所以本文拟用小波变换的方法对图像去噪进行分析研究。
二、课题的目的和意义图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。
不同性质的噪声应采用不同的方法进行消噪。
最简单的也[1]比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。
这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。
带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。
[2]将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。
特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。
具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点:(1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了;(2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;(3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白1硕士研究生学位论文选题报告化趋势,所以小波域比时域更利于去噪;(4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。
因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。
基于小波变换的图像去噪研究的开题报告

基于小波变换的图像去噪研究的开题报告一、研究背景和意义:在数字图像处理领域中,图像去噪一直是一个非常受关注的研究方向。
图像噪声的来源很广泛,包括图像采集和传输过程中的噪声,以及储存和复制过程中的噪声等。
这些噪声会导致图像质量下降,甚至影响图像分析和处理结果的准确性,因此,如何有效地去除噪声,提高图像质量,是图像处理领域中的重要问题之一。
小波变换作为一种数字信号处理技术,已经被广泛应用于图像去噪中。
小波变换可以将信号分解成不同尺度和频率的子带,从而可以对信号的局部进行描述和处理。
通过选择适当的小波基函数和阈值处理方法,可以对图像进行有效的去噪,同时保留图像中的细节和特征。
本研究旨在探究基于小波变换的图像去噪方法,在实验中比较不同的小波基函数和阈值处理方法在去噪效果上的差异,为图像去噪问题提供更加有效的解决方案。
二、研究内容:1. 研究基于小波变换的图像去噪理论基础,包括小波变换的基本原理、小波基函数的选择和阈值处理方法的分类等。
2. 分析不同小波基函数在图像去噪中的适用性,比较不同基函数在去噪效果中的优缺点。
3. 探究不同阈值处理方法在图像去噪中的作用和应用,对比不同阈值处理方法对图像去噪效果的影响。
4. 综合应用小波变换及相关处理方法,设计并实现基于小波变换的图像去噪系统,并进行实验验证。
三、研究方法和步骤:1. 研究小波变换及相关的基础理论和方法。
2. 分析不同小波基函数的特点和应用范围,比较它们在图像去噪中的优缺点。
3. 研究不同的阈值处理方法,包括硬阈值、软阈值、伽马阈值等,并分析它们在图像去噪中的优缺点。
4. 基于Matlab工具,实现基于小波变换的图像去噪系统,并进行实验验证。
5. 分析实验结果,比较不同方法在去噪效果上的差异,并探究优化方法和方案。
四、研究预期成果:1. 完成基于小波变换的图像去噪研究,并撰写相关论文。
2. 分析不同小波基函数和阈值处理方法在图像去噪中的优缺点,提出更有效的图像去噪方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小 波 变 换 的 概 念 是 由 法 国 从 事 石 油 信 号 处 理 的 工 程 师 J.Morlet 在 1974 年 首 先 提 出 的,通过物理的直观和信号处理的实际需要经验的建立了反演公式,当时未能得到数学家的 认可。 正如 1807 年法国的热学工程师 J.B.J.Fourier 提出任一函数都能展开成三角函数的无 穷级数的创新概念未能得到著名数学家 grange, place 以及 A.M.Legendre 的认 可一样。幸运的是,早在七十年代,A.Calderon 表示定理的发现、Hardy 空间的原子分解和 无条件基的深入研究为小波变换的诞生做了理论上的准备,而且 J.O.Stromberg 还构造了历 史上非常类似于现在的小波基;1986 年著名数学家 Y.Meyer 偶然构造出一个真正的小波基, 并与 S.Mallat 合作建立了构造小波基的同意方法枣多尺度分析之后, 小波分析才开始蓬勃发 展起来,其中比利时女数学家 I.Daubechies 撰写的《小波十讲(Ten Lectures on Wavelets) 》 对小 波的 普及起 了重 要的推 动作用 。它 与 Fourier 变换 、窗 口 Fourier 变换 ( Gabor 变换 ) 相比,这是一个时间和频率的局域变换,因而能有效的从信号中提取信息,通过伸缩和平移 等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis),解决了 Fourier 变 换不能解决的许多困难问题,从而小波变化被誉为“数学显微镜”,它是调和分析发展史上 里程碑式的进展。
五、参考文献
[1]李建平,《小波分析与信号处理一理论、应用及软件实现》,重庆出版社,1997 年第 1 版. [2]陈武凡,《小波分析及其在图像处理中的应用》,科学出版社,2002 年第 1 版. [3]李建平,《小波分析与信号处理一理论、应用及软件实现》,重庆出版社,1997 年第 1 版. [4]夏良正,数字图像处理,南京,东南大学出版社,1999 第一版. [5]Pok G, Liu J C, Nair A S. Selective Removal of Impulse Noise Based on Homogeneity Level Information [J].IEEE Trans, On Image Processing,2003,12(1):85-92. [6]Kasparis T, Tzannes N S, Q Chen. Detail-preserving adaptive conditional median filters [J]. Electic. Image, 1992, 1 (14):356-364. [7]Sawant A,Zeman H, Muratore D, etal. An adaptive median filter algorithm to remove impulse noise in X-ray and CT images and speckle in ultrasound images [J] proc. SPIE, 19991 3661(2):1263-1274.
开题报告
Processing,1999,75 (3):201~223. [21]D L.Donoho and I M Johnstone.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994 81(3):425–455. [22]Mallat S,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEETrans on SP,1993,12,41(12):3397-3415. [23]Rioul O,Veterli M.Wavelets and signal processing[J].IEEE Signal ProcessingMagzine,1991,10,8(4):14-38. [24]Chui C.K,Lian J.A study of orthonormalmulti-wavelets[J].Appl.Nmer.Math.1996,20(3):273-298. [25]Goodman T.N.T.Lee S L.Wavelets of multiplicity[J].Trans.Amer.Math.Soc.,1994.3,342(1):307-324. [26]Jiang Q.On the design of multifilter banks and orthonormal multiwaveletbanks[J].IEEE Trans.on SP.,1998.12,46(12):3292-3302. [27]Kurth F.and Clausen M.Filter bank tree and M–band wavelet packet algorithm inaudio signal processing[J].IEEE Trans on SP,1999,47(2):549-554. [28]Daubechies I.The wavelet transform,time-frequency localization and signalanalysis[J].IEEE Trans on IT.,1990,36(5):961-1005. [29]Grochenig K.Acceleration of the frame algorithm[J].IEEE Trans on SP,1993,41(12):3331-3340. [30]Lawton W.Tight frames of compactly supported wavelets[J].Journal ofMath.Phys.,1990,31(3):1898-1901. [31]Munch N J.Noise reduction in tight Wely-Heisenberg frames[J].IEEE Trans onIT,1992,38(2):608-616. [32]Cohen A,Daubechies I,Feauveau J.C.Biorthogonal bases of compactlysupported wavelets[J].Comm.Pure Appl.Math,1992,45(23):485-560. [33]Vetterh M.,Herley C.Wavelets and filter banks:theory and design[J].IEEETrans.on SP,1992,40(9):2207-2232. [34]Unser M.,Thorenaz P.Aldroubi A.Shift-orthogonal wavelet bases[J].IEEE Transon SP,1998,46(7):1827-1836. [35]Unser M.,Thorenaz P.,Aldroubi A.Shift-orthogonal wavelet bases usingsplines[J].IEEE Signal Processing Lett.,1996,3(3):85-88. [36]D L Donoho,l M Johnstone.Adaption to unkown smoothness via waveletshrinkage[J].Journal of American statistical Accoc,1995,90(432):1200-1224.. [37]S G.Chang,B Yu,M Vetterli.Adaptive wavelet thresholding for image denoisingand compression[J].IEEE Trans on Image Processing,2000,9(9):1532-1546. [38]S Grace Chang,Bin Yu,Martin Vetterli.Spatially Adaptive Wavelet Thresholdingwith Context Modeling for Image Denoising[J].IEEE Trans on Image Processing,2000,9(9):1522-1531. [39]L E Baum.An inequality and associated maximization technique in statisticalestimation for probabilistic functions of finite state Markov chains[J].InequalitiesⅢ,Pages1-8,1972. [40]Kingsbury.The dual-tree complex wavelet transform a new efficient tool forimage restoration and enhancement[C].Proc Eusipco98,Rhodes:Eurasip1998:319-322. [41]Kingsbury.A dual tree complex wavelet transform with improve orthogonalityand symmetry properties[C].Proc.IEEE Conf On Image Processing.VancouvEr:IEEE,2000,2:375-378. [42]Selesnick I W,Baraniuk R G.,Kingsbury N G..The dual-tree complex wavelettransform[J].IEEE Trans on 1
[8]Oppenheim A.V. and Schafer R.W. Digital Signal Processing. Prentice-Hall[J]. 1975:361-367. [9]路系群 陈 纯. 《图像处理原理、技术与算法》[M].浙江大学出版社,2001,8. [10]Vidakovic B, Johnstone C B. On time dependent wavelet donoising. [J] In:IEEE Trans, Signal processing, 1998, 46(9),2549-2551. [11]Donoho D L, Johnstone IM, Kerkyacharian G et al. Wavelet shrinkage: asymptopia?[J] In: Journal of royal statistics society series, 1995, 57:301-369. [12]Weyich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising. [J] In: IEEE Trans. Image on Processing, 1998, 7(71), 82-90. [13]Gunawan D. Dennoising images using wavelet transform.[J] In:Processings of the IEEE Pacific Pim Conference on Communications, Computter and Signal Processing, Victoria BC, USA, 1999, 83-85. [14]Shark L K, Yu C. Denoising by optimal fuzzy thresholding in wavelet domain. [J] In: Electronices Letters, 2000, 36(6), 581-582. [15]Stein C. Estimation of the mean of a multivariate normal distribution.[J] In:Annals of Statistics, 1981, 9, 1135-1151. [16]谢杰成,张大力,许文立.小波图像去噪综述.中国图像图形学报, 2002 3(7),209-217. [17]Krim H, Schick I C, Minimax description length for signal denoising and optimized representation.[J] In: IEEE Trans. Information. Theory, 1999, 45(3), 898-908. [18]Malfait M, Roose D. Wavelet based image denoising using a Markov random field apriorl mode.[J] In: IEEE Trans. Image Processing, 1997, 6(4), 549-565. [19]Xu Yansun, Weaver J B, Healy M J et al. Wavelet transform domain filters :A spatially selective noise filtration technique.[J] In: IEEE Trans. Image Processing, 1994, 3(6), 743-758. [20]Isreael Cohen,Shalom Ras,David M alah.Translation 2 invariant denoising length criterion [J.Signal 1