四川2016-2017学年高一上学期10月月考试题 数学.

合集下载

初三上-月测卷-《10月月考》教院附中2016-2017学年度(一元二次方程、二次函数、旋转圆)

初三上-月测卷-《10月月考》教院附中2016-2017学年度(一元二次方程、二次函数、旋转圆)

初三上-⽉测卷-《10⽉⽉考》教院附中2016-2017学年度(⼀元⼆次⽅程、⼆次函数、旋转圆)教院附中2016-2017学年度第⼀学期初三数学⼗⽉⽉考试卷(测试范围:⼆次⽅程,⼆次函数,旋转,圆测试时间:120分钟满分:150分)姓名成绩⼀、选择题(每⼩题4分,共40分)1.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线表达式是()A.y=2(x+1)2+3 B.y=2(x-1)2-3 C.y=2(x-1)2+3 D.y=2(x+1)2-32.在平⾯直⾓坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第⼀象限 B.第⼆象限C.第三象限D.第四象限3.下⾯的图案中,既是轴对称图形⼜是中⼼对称图形的是()A.①B.②C.③D.④4.如果点(﹣2,﹣3)和(5,﹣3)都是抛物线y=ax2+bx+c上的点,那么抛物线的对称轴是()A.x=3 B.x=﹣3 C.x=D.x=﹣5.若⼀元⼆次⽅程2x2﹣6x+3=0的两根为α、β,那么(α﹣β)2的值是()A.15 B.﹣3C.3 D.以上答案都不对6.点P在⊙O内,OP=2,若⊙O的半径是3cm,则过点P的最短弦的长度为()A.1 cm B.2 cm C. c D.2cm7.在平⾯直⾓坐标系中,以点(2,3)为圆⼼,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切8.⼀个扇形的圆⼼⾓为60°,它所对的弧长为2πcm,则这个扇形的半径为()A.6cm B.12cm C.2cm D.cm9.如图,△PQR是⊙O的内接正三⾓形,四边形ABCD是⊙O的内接正⽅形,BC∥QR,则∠AOQ=()A.60°B.65°C.72°D.75°10.如图,动点P从点A出发,沿线段AB运动⾄点B后,⽴即按原路返回.点P在运动过程中速度⼤⼩不变.则以点A为圆⼼,线段AP长为半径的圆的⾯积S与点P的运动时间t之间的函数图象⼤致为()A. B.C.D.⼆、填空题(每⼩题4分,共28分)11.如图,圆锥底⾯半径为rcm,母线长为10cm,其侧⾯展开图是圆⼼⾓为216°的扇形,则r的值为12.已知四边形ABCD内接于⊙0,若∠A:∠B:∠C=2:3:4,则∠D=13.若正六边形的边长为6cm,则此正六边形的外接圆半径为cm.14.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是15.如图,在平⾯直⾓坐标系中,⼀条圆弧经过正⽅形⽹格格点A,B,C,其中点B(4,4),则该圆弧所在圆的圆⼼坐标为.16.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆⼼,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分⾯积是17.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,19.(3+2分)如图,在11×11的正⽅形⽹格中,每个⼩正⽅形的边长都为1,⽹格中有⼀个格点△ABC(即三⾓形的顶点都在格点上).(1)作出△ABC绕点C顺时针⽅向旋转90°后得到的△A1B1C1;(2)在(1)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)20.(5分)如图,有⼀座⽯拱桥的桥拱是以O为圆⼼,OA为半径的⼀段圆弧.若∠AOB=120°,OA=4⽶,请求出⽯拱桥的⾼度.21.(6分)如图,P是⊙O外的⼀点,PA、PB分别与⊙O相切于点A、B,C是上的任意⼀点,过点C的切线分别交PA、PB于点D、E.(1)若PA=4,求△PED的周长;(2)若∠P=40°,求∠DOE的度数.22.(7分)如图,已知△ABC是等边三⾓形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC 于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.23.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的⾯积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.24.(12分)如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a <0)经过A,B两点.P为线段AB上⼀点,过点P作PQ∥y轴交抛物线于点Q.(1)当m=5时,①求抛物线的关系式;②设点P的横坐标为x,⽤含x的代数式表⽰PQ的长,并求当x为何值时,PQ=;(2)若PQ长的最⼤值为16,试讨论关于x的⼀元⼆次⽅程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.25.(12分)已知如图,在平⾯直⾓坐标系xOy中,直线AB与x轴、y轴分别交于A,B两点,OA=2,∠ABO=30°,P是直线AB 上⼀动点,⊙P的半径为1.(1)判断原点O与⊙P的位置关系,并说明理由;(2)当⊙P过点B时,求⊙P被y轴所截得的劣弧的长;(3)当⊙P与坐标轴相切时,求出切点的坐标.26.(12分)如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m ⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)⽤关于x的代数式表⽰BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的⾯积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正⽅形?②作直线BG交⊙O于点N,若BN的弦⼼距为1,求AP的长(直接写出答案).院附中2016-2017学年度第⼀学期初三数学⼗⽉⽉考答案⼀、选择题:1.A2.A3.A4.C5.C6.D7.A8.A9.D 10.A⼆、填空题:11. 6 12. 90° 13. 6 14. 38 15. (2,0) 16. 8﹣π 17. +1三、解答题: 18.(1)1253,2x x ==(2)⽆解(3)125x x ==19.(1)△A 2B 2C 如图所⽰;(2)根据勾股定理,BC==,所以,点B 旋转到B 2所经过的路径的长==π.20.解:过点O 作OD ⊥AB 于点D ,交弧于点C ,∵∠AOB=120°,OD ⊥AB ,∴∠AOD=60°,在Rt △AOD 中,∠AOD=60°,∴∠OAD=30°,∴OD=2(⽶).∴CD=OA ﹣OD=2(⽶).答:⽯拱桥的⾼度是2⽶.21.解:(1)∵DA ,DC 都是圆O 的切线,∴DC=DA ,同理EC=EB ,PA=PB ,∴三⾓形PDE 的周长=PD +PE +DE=PD +DC +PE +BE=PA +PB=2PA=8,即三⾓形PDE 的周长是8;(2)∵∠P=40°,∴∠PDE +∠PED=140°,∴∠ADC +∠BEC=(180﹣∠PDE )+(180﹣∠PED )=360°﹣140°=220°,∵DA ,DC 是圆O 的切线,∴∠ODC=∠ODA=∠ADC ;同理:∠OEC=∠BEC ,∴∠ODC +∠OEC=(∠ADC +∠BEC )=110°,∴∠DOE=180﹣(∠ODC +∠OEC )=70°.22.(1)证明:如图1,连接OD ,∵△ABC 是等边三⾓形,∴∠B=∠C=60°.∵OB=OD ,∴∠ODB=∠B=60°.∵DE ⊥AC ,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE ⊥OD 于点D .∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)解:如图2,连接AD ,BF ,∵AB 为⊙O 直径,∴∠AFB=∠ADB=90°.∴AF ⊥BF ,AD ⊥BD .∵△ABC 是等边三⾓形,∴,.∵∠EDC=30°,∴.∴FE=FC ﹣EC=1.23.解:(1)∵四边形OCEF 为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代⼊y=﹣x2+bx+c中,得,解得,∴抛物线所对应的函数解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为D(1,4),∴△ABD中AB边的⾼为4,令y=0,得﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以AB=3﹣(﹣1)=4,∴△ABD的⾯积=×4×4=8;(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2),当x=3时,y=﹣32+2×3+3=0≠2,所以点G不在该抛物线上.24.解:(1)①∵m=5,∴点A的坐标为(5,0),把A(5,0)代⼊y1=kx+2得5k+2=0,解得k=﹣,∴直线解析式为y1=﹣x+2,当x=0时,y1=2,∴点B的坐标为(0,2).将A(5,0),B(0,2)代⼊,得,解得,∴抛物线的表达式为y=﹣x2+x+2;②设点P的坐标为(x ,﹣x+2),则Q(x ,﹣x2+x+2),∴PQ=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,⽽PQ=,∴﹣x2+2x=,解得:x1=1,x2=4,∴当x=1或x=4时,PQ=;(2)设P(x,kx+2),则Q(x,ax2﹣4ax+2),PQ的长⽤l表⽰,∴l=ax2﹣4ax+2﹣(kx+2)=ax2﹣(4a+k)x,∵PQ长的最⼤值为16,如图,当h=16时,⼀元⼆次⽅程ax2﹣4ax﹣kx=h有两个相等的实数解;当h>16时,⼀元⼆次⽅程ax2﹣4ax﹣kx=h没有实数解;当0<h<16时,⼀元⼆次⽅程ax2﹣4ax﹣kx=h有两个解.25.解:(1)原点O在⊙P外.理由:∵∠OBA=30°,OA=2∴点A(2,0),点B(0,﹣2),∴直线AB为y=x﹣2如图1,过点O作OH⊥AB于点H,在Rt△OBH中,OH=,∵>1,∴原点O在⊙P外;(2)如图2,当⊙P过点B时,点P在y轴右侧时,∵PB=PC,∴∠PCB=∠OBA=30°,∴⊙P被y轴所截的劣弧所对的圆⼼⾓为:180°﹣30°﹣30°=120°,∴弧长为:=;同理:当⊙P过点B时,点P在y 轴左侧时,弧长同样为:;∴当⊙P过点B时,⊙P被y 轴所截得的劣弧的长为:;(3)如图3,当⊙P与x轴相切时,且位于x轴下⽅时,设切点为D,在PD⊥x轴,∴PD∥y轴,∴∠APD=∠ABO=30°,∴在Rt△DAP中,AD=DP?tan∠DPA=1×tan30°=,∴OD=OA﹣AD=2﹣,∴此时点D的坐标为:(2﹣,0);当⊙P与x轴相切时,且位于x轴上⽅时,根据对称性可以求得此时切点的坐标为:(2+,0);综上可得:当⊙P与x轴相切时,切点的坐标为:(2﹣,0)或(2+,0).26.解:(1)在Rt△ABQ中,∵AQ:AB=3:4,AQ=3x,∴AB=4x,∴BQ=5x,∵OD⊥m,m⊥l,∴OD∥l,∵OB=OQ,∴=2x,∴CD=2x,∴FD==3x;(2)∵AP=AQ=3x,PC=4,∴CQ=6x+4,作OM⊥AQ于点M(如图1),∴OM∥AB,∵⊙O是△ABQ的外接圆,∠BAQ=90°,∴点O是BQ的中点,∴QM=AM=x ∴OD=MC=,∴OE=BQ=,∴ED=2x+4,S矩形DEGF=DF?DE=3x(2x+4)=90,解得:x1=﹣5(舍去),x2=3,∴AP=3x=9;(3)①若矩形DEGF是正⽅形,则ED=DF,I.点P在A点的右侧时(如图1)∴2x+4=3x,解得:x=4,∴AP=3x=12;II.点P在A点的左侧时,当点C在Q右侧,0<x <时(如图2),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=,∴AP=;当≤x <时(如图3),∵ED=4﹣7x,DF=3x,∴4﹣7x=3x,解得:x=(舍去),当点C在Q的左侧时,即x ≥(如图4),DE=7x﹣4,DF=3x,∴7x﹣4=3x,解得:x=1,∴AP=3,综上所述:当AP为12或或3时,矩形DEGF是正⽅形;②连接NQ,由点O到BN的弦⼼距为l,得NQ=2,当点N在AB的左侧时(如图5),过点B作BM⊥EG于点M,∵GM=x,BM=x,∴∠GBM=45°,∴BM∥AQ,∴AI=AB=4x,∴IQ=x,∴NQ==2,∴x=2,∴AP=6;当点N在AB的右侧时(如图6),过点B作BJ⊥GE于点J,∵GJ=x,BJ=4x,∴tan∠GBJ=,∴AI=16x,∴QI=19x,∴NQ==2,∴x=,∴AP=,综上所述:AP的长为6或.。

平阴县第一中学2016-2017学年高一上学期第一次月考数学试题 含答案

平阴县第一中学2016-2017学年高一上学期第一次月考数学试题 含答案

平阴一中2016级阶段性检测数学试题试卷说明:本试卷满分150分,考试时间为120分钟第Ⅰ卷(选择题 共60分)注意事项:用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

一、选择题(每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项)1、已知集合{}3,2,1=A ,{}4,3,2=B ,则B A ⋂=( )A.{}2B.{}4 C 。

{}3,2 D 。

{}4,3,2,1 2、若集合}21|{},20|{<≤=<<=x x B x x A ,则B A ⋃=()A 。

},0|{≤x x B.}2|{≥x x C.},21|{<<x x D.}20|{<<x x3、下列函数为偶函数的是( ) A.1+=x yB.2x y = C.x x y +=2 D.3x y =4、函数()312-+-=x x x f 的定义域是( )A .[)+∞,2B .[)2,3∪()+∞3,C .()2,3∪()+∞3,D .{}3,≠∈x R x x5、下列四组函数中,表示同一个函数的是( ) A 。

1(1)()|1|,()1(1)x x f x x g x x x +≥-⎧=+=⎨--<-⎩B 。

()()21,11x f x g x x x -==-+C 。

()()2f xg x ==D 。

()(),f x x g x ==6、已知集合{|0,}A x x x R =≤∈,{,1}B a =,若A B φ≠,则实数a 的取值范围是( ) A .a ≥ B .a ≤ C 。

1a ≤D .1a <7、若集合{}2(2)210A x k xkx =+++=有且仅有1个元素,则实数k 的值是( ) A 。

±2或—1 B.-2或—1 C 。

2或-1 D 。

—2 8、已知集合{}1|2==x x P ,集合{}1|==ax x Q ,若P Q ⊆,那么实数a 的值是( )A .1B .—1C .1或-1D .0,1或-19、若函数2()2(1)2f x xa x =+-+在区间(,1]-∞内递减,那么实数a 的取值范围为( ) A.2a ≤ B.0a ≤ C 。

四川省成都市石室中学2023-2024学年高一上学期10月月考数学试题

四川省成都市石室中学2023-2024学年高一上学期10月月考数学试题

11.已知 m n 1,则下列不等式正确的是( )
A.
n m
2 2
n m
C. m3 n3 2m2n
B. m 1 n 1 mn
D.
m
1 n
n
1 m
12.若 a,b (0, ), a b 1,则下列说法正确的是( )
A. ab 的最大值为 1 4
C. 4a 1 的最大值为 2 4b
x
5.为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:
每户每月用水量
水价
不超过12m3 的部分
3 元/ m3
超过12m3 但不超过18m3 的部分 6 元/ m3
超过18m3 的部分
9 元/ m3
若某户居民本月交纳的水费为 54 元,则此户居民的用水量为( )
A. 6m3
18.已知函数 f (x) 是定义在 R 上的偶函数,且当 x 0 时, f (x) x 2 2x .
(1)已知函数 f (x) 的部分图象如图所示,请根据条件将图象补充完整,并写出函数 f (x) 的
单调递增区间;
(2)写出函数 f (x) 的解析式;
(3)若关于 x 的方程 f (x) t 有 4 个不相等的实数根,求实数 t 的取值范围(. 只需写出结论)
x 1

x
2

x3
R

f
( x1 )

f
(x2 )

f
()
为某一三角形
的三边长,则称
f
(x)
为“可构成三角形的函数”,已知
f
(x)
x2 x2
t 是可构成三角形的函 1
数,则实数 t 的取值范围是( )

四川省成都市2024-2025学年高三上学期10月月考数学试题含答案

四川省成都市2024-2025学年高三上学期10月月考数学试题含答案

2024-2025学年度高三上期数学10月阶段性测试(答案在最后)(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合{{},21x A x y B y y ====+,则A B = ()A .(]0,1B .(]1,2C .[]1,2D .[]0,22.已知复数z 满足23i z z +=+,则3iz+=()A .12i+B .12i-C .2i+D .2i-3.已知向量,a b 满足222a b a b -=-= ,且1b = ,则a b ⋅=()A .14B .14-C .12D .12-4.如图为函数()y f x =在[]6,6-上的图象,则()f x 的解析式只可能是()A .())lncos f x x x =+B .())lnsin f x x x =+C .())ln cos f x x x =-D .())ln sin f x x x=-5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为()A .ππ0x y +-=B .ππ0x y -+=C .π0x y -+=D .0x y +=6.在体积为12的三棱锥A BCD -中,,AC AD BC BD ⊥⊥,平面ACD ⊥平面ππ,,34BCD ACD BCD ∠=∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为()A .12πB .16πC .32πD .48π7.若()()sin cos2sin αβααβ+=-,则()tan αβ+的最大值为()A .62B .64C .22D .248.设202420230.2024log 2023,log 2022,log 0.2023a b c ===,则()A .c a b<<B .b c a<<C .b a c<<D .a b c<<二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:2024120242025202511,1,01a a a a a ->><-,下列结论正确的是()A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则()A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A 与事件13A A 是互斥事件11.已知6ln ,6e n m m a n a =+=+,其中e nm ≠,则e nm +的取值可以是()A .eB .2eC .23eD .24e第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若1sin 3α=-,则()cos π2α-=______.13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n ∈N在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为______.14.已知点()()2,0,1,4,A B M N 、是y 轴上的动点,且满足4,MN AMN =△的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为______,PQ PB +的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设ABC△的内角,,A B C的对边分别为,,a b c,且()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,,BC AC 边上的两条中线,AD BE 相交于点P.(1)求BAC ∠;(2)若2,cos 14AD BE DPE ==∠=,求ABC △的面积.16.(15分)如图,在三棱锥D ABC -中,ABC △是以AB 为斜边的等腰直角三角形,ABD △是边长为2的正三角形,E 为AD 的中点,F 为DC 上一点,且平面BEF ⊥平面ABD .(1)求证:AD ⊥平面BEF ;(2)若平面ABC ⊥平面ABD ,求平面BEF 与平面BCD 夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:近视情况每天看电子产品的时间合计超过一小时一小时内近视10人5人15人不近视10人25人35人合计20人30人50人附表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()22()n ad bc a b c d a c b d χ-=++++.(1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.(17分)已知函数()()ln 1f x x =+.(1)求曲线()y f x =在3x =处的切线方程;(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线()y g x =关于直线x m =对称.19.(17分)已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和2,3⎛- ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于,A B 两点,过点,A B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB △面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知0.20240.2024log 0.2023log 0.20241c =>=,2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=,所以1,01,01c a b ><<<<;当2n >时,()()ln 1ln ln 10n n n +>>->,所以()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦,取2023n =,则2lg2022lg2024(lg2023)0⋅-<,所以220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅,即b a <,综上,b a c <<.二、多项选择题:ABC ACD CD .11.【解】令()6ln f x x x =-,则()661xf x x x-=-=',故当()0,6x ∈时,()()0,f x f x '>单调递增,当()6,x ∈+∞时,()()0,f x f x '<单调递减,()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= ,又e n m ≠,不妨设06e n m <<<,解法一:记12,e nx m x ==,设()()()()12,0,6g x f x f x x =--∈,则()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''在()0,6上恒成立,所以()g x 在()0,6上单调递减,所以()()()()()1260,0,6g x f x f x g x =-->=∈,则()()()11212f x f x f x ->=,又因为()1212,6,x x -∈+∞,且()f x 在()6,+∞上单调递减,所以1212x x -<,则1212x x +>,所以e 12n m +>.解法二:由6ln ,66lne e nnm m a n a =+==+,两式相减,可得e 6ln e n nm m =-,令e (1)n t t m=>,则()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---;令()()()1ln 21,1g t t t t t =+-->,则()11ln 2ln 1t g t t t t t+=+-=+-',令1ln 1(1)y t t t =+->,则221110t y t t t-=-=>'在()1,+∞上恒成立,所以()g t '在()1,+∞上单调递增,因为()()10g t g ''>=在()1,+∞上恒成立,所以()g t 在()1,+∞上单调递增,则()()10g t g >=,即()1ln 21t tt +>-,所以()61ln e 121n t tm t ++=>-.解法三:6ln ,66lne e nnm m a n a =+==+ ,两式相减得e 6lne ln n nmm-=-,212121ln ln 2x x x xx x -+<<-,可得e 12n m +>,三、填空题:79-1n n +24y x =;314.【解】设点()0,M t ,则()0,4)N t -根据点P 是AMN 的外心,(),2P x t -,而22||PM PA =,则2224(2)(2)x x t +=-+-,所以2(2),24t x y t -==-从而得到点P 的轨迹为24y x =,焦点为()1,0F 由抛物线的定义可知1PF PQ =+,因为4,14PF PB BF PF PB PQ PB +≥=+=++≥,即3PQ PB +≥,当点P 在线段BF 上时等号成立.四、解答题:15.【解】(1)因为()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,所以由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a BAC bc +-∠==,又0πBAC <∠<,所以π3BAC ∠=.(2)因为P 是,BC AC 边上的两条中线AD 与BE 的交点,所以点P 是ABC △的重心.又7,2,AD BE APB DPE ==∠=∠,所以在ABP △中,由余弦定理22222cos c AB PA PB PA PB APB==+-⋅∠2227474724333314⎛⎛⎫=+-⨯⨯⨯= ⎪⎝⎭⎝⎭,所以2c =,又π2,3BE BAC =∠=,所以2AE BE ==,所以24b AE ==,所以ABC △的面积为1π42sin 2323⨯⨯⨯=.16.【解】(1)ABD △是边长为2的正三角形,E 为AD 的中点,则BE AD ⊥.且平面BEF ⊥平面ABD ,平面BEF 平面,ABD BE AD =⊂平面ABD ,则AD ⊥平面BEF .(2)由于底面ABC △为等腰直角三角形,ABD △是边长为2正三角形,可取AB 中点O ,连接OD ,则,OD AB OC AB ⊥⊥.且平面ABC ⊥平面ABD ,且平面ABC 平面ABD AB =,则OD ⊥平面ABC .因此,,OC OA OD 两两垂直,可以建立空间直角坐标系O xyz -.ABD △是边长为2的正三角形,则可求得高3OD =.底面ABC △为等腰直角三角形,求得1OC OA OB ===.可以得到关键点的坐标()()()(0,1,0,0,1,0,1,0,0,0,0,3A B C D -由第(1)问知道平面BEF 的法向量可取(0,3AD =-.设平面BCD 的法向量为(),,m x y z =,且()(1,1,0,1,0,3BC CD ==- ,则m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩,则030x y x z +=⎧⎪⎨-+=⎪⎩,解得()3,3,1m = .则2321cos ,727m AD m AD m AD⋅〈〉==⨯⋅ .则平面BEF 与平面BCD 夹角的余弦值为217.17.【解】(1)零假设0H 为:学生患近视与长时间使用电子产品无关.计算可得,220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.05α=的2χ独立性检验,推断0H 不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为ξ,则()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是6991.(3)依题意,()()1111110,22245525P X Y P X Y ===⨯====⨯=,事件1X Y ==包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=,所以()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=.18.【解】(1)切点为()3,ln4.因为()11f x x '=+,所以切线的斜率为()134k f ='=,所以曲线()y f x =在3x =处的切线方程为()1ln434y x -=-,化简得48ln230x y -+-=;(2)由题意可知()()ln 1F x ax x =-+,则()F x 的定义域为()1,-+∞,()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++当0a ≤时,()101F x a x '=-<+,则()F x 在()1,-+∞上单调递减;当0a >时,令()0F x '=,即10ax a +-=,解得11x a=-,若()11111,01a ax a x F x a a x '-+--<≤=-=≤+;若()111,01ax a x F x a x +--'>=>+,则()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,()F x 在()1,-+∞上单调递减;当0a >时,()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(3)证明:函数()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,函数()g x 的定义域为()(),10,-∞-+∞ .若存在m ,使得曲线()y g x =关于直线x m =对称,则()(),10,-∞-+∞ 关于直线x m =对称,所以12m =-由()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211ln ln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+.可知曲线()y g x =关于直线12x =-对称.19.【解】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,代入已知点的坐标,得:312413m n m n +=⎧⎪⎨+=⎪⎩,解得1612m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为22162x y +=.(2)如图:①设直线l 的方程为()20x my m =+≠,并记点()()()112200,,,,,A x y B x y P x y,由222,162x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()223420m y my ++-=,易知()()222Δ16832410m m m =++=+>,则12122242,33m y y y y m m --+==++.由条件,()()12,0,,0D x E x ,直线AE 的方程为()1212y y x x x x =--,直线BD 的方程为()2121y y x x x x =--,联立解得()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++,所以点P 在定直线3x =上.②0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△,而121212my y y y =+,所以()121212my y y y =+,则1211211224PABy y S y y y +=-=-=△令t =,则1t >,所以21222224PAB t S t t t=⋅=⋅≤++△,当且仅当t =时,等号成立,所以PAB △面积的最大值为4.。

2013-2014学年高一数学10月月考试题及答案(新人教A版 第90套)

2013-2014学年高一数学10月月考试题及答案(新人教A版 第90套)

高一上学期第一次月考数学试卷一.选择题(共10小题)1. 已知集合2{|230}A x x x =+->,{|40}B x x =-≤≤,则()R C A B ⋃=( ) A .[4,3)-- B .[4,1]- C .[4,3]-- D .{-4,-3,-2,-1,0,1} 2.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是 ( ) A .1 B .3 C .4 D .8 3.下列函数与x y =有相同图象的一个函数是( )A 2x y = B xx y 2= C )10(log ≠>=a a a y xa 且 D x a a y log =4.下列函数中,在区间()0,1上是增函数的是( ) A x y = B x y -=3 C xy 1=D 42+-=x y 5.设)(x f 是定义在R 上的一个函数,则函数)()()(x f x f x F --=在R 上一定是( )A 奇函数B 偶函数C 既是奇函数又是偶函数D 非奇非偶函数6.三个数60.70.70.76log 6,,的大小关系为( )A 60.70.70.7log 66<<B 60.70.70.76log 6<<C 0.760.7log 660.7<< D 60.70.7log 60.76<<7.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A )2()1()23(f f f <-<- B )2()23()1(f f f <-<-C )23()1()2(-<-<f f fD )1()23()2(-<-<f f f8.在下列图象中,二次函数y =ax 2+bx 与指数函数y =(ab )x的图象只可能是( )9. 函数()f x =( )A. )1,1(-B. (-∞,-1),(3,+∞)C. (1,3)D. (1,+∞)10.定义符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设1211sgn()1sgn()122()()(),[0,1]22x x f x f x f x x -+-+=⋅+⋅∈,若121(),()2(1)2f x x f x x =+=-,则f(x)的最大值为( )A .3B .1C .12-D .12二.填空题(共6小题)11.函数422--=x x y 的定义域12.函数2y x =________________13.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 14.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 15.计算:(log )log log 2222545415-++= 16.设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是三.解答题(共5题,必须写出必要的解答步骤)17.(本小题满分14分)把长为10cm 的细铁丝截成两段,各自围成一个正方形,求这两个正方形面积之和的最小值。

高中高一数学10月月考试题-人教版高一全册数学试题

高中高一数学10月月考试题-人教版高一全册数学试题

田阳高中2016—2017学年上学期月考高一数学试卷一、 选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A 只含有一个元素a ,则有( )A .0∈AB .a ∉AC .a ∈AD .a =A2.已知集合M ={2,3,4},N ={0,2,3,5},则M ∩N =( )A .{0,2}B .{2,3}C .{3,4}D .{3,5}3.若一个集合中的三个元素a ,b ,c 是△ABC 的三边长,则此三角形一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形4.下列图形中不是函数图象的是( )A B C D5.设集合A ={1,2,3},B ={4,5},M ={x |=a +b ,a ∈A ,b ∈B },则M 中元素的个数为( )A .3B .4C .5D .66.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3 B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z7.设集合{}3,2,1=A ,则集合A 的真子集的个数是A. 3个B. 6个C. 7个D. 8个8.已知集合A ={x |x 2-3x +2=0,x ∈R},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .49.下列函数中,在区间(0,1)上是增函数的是( )A .y =|x |B .y =3-xC .y =1xD .y =-x 2+410.如下图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是()A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )11.已知f (x )=⎩⎪⎨⎪⎧x -5 (x ≥6),f (x +2) (x <6),则f (3)为( ) A .2 B .3 C .4 D .512 .定义在R 上的函数)∈()()()()(R x xy y f x f y x f x f ++=+满足,==)3(1)1(f f 则( )A 、-3B 、3C 、6D 、-6二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卷相应位置上.)13.映射f :A →B ,在f 作用下A 中元素(x ,y )与B 中元素(x -1,3-y )对应,则与B 中元素(0,1)对应的A 中元素是________.14.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为________.15.若A ={x |y =x +1},B ={}y |y =x 2+1,则A ∩B =________. 16.已知函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-2,12,则f (x )的定义域为________.三、解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.)17.(本小题满分10分)已知全集U =R ,集合A ={x |1≤x <4},B ={x |3x -1<x +5},求:(1)A ∩B ;(2)∁U A ∪B .18.(本题满分12分)已知函数f (x )=x +1x. (1)求f (x )的定义域;(2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.19.(本题满分12分)集合A ={x |-1<x <1},B ={x |x <a },(1)若A ∩B =∅,求a 的取值X 围;(2)若A ∪B ={x |x <1},求a 的取值X 围.20.(本题满分12分)(1)已知f (x )满足2f (x )+f )1(x=3x ,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.21.(本题满分12分)已知函数f (x )的定义域为[-2,2],且f (x )在区间[-2,2]上是增函数, f (1-m )<f (m ),某某数m 的取值X 围.22.(本题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧x +a ,x ≤1,x 2-2x ,x ≥1. (1)求a 的值;(2)求f (f (2))的值;(3)若f (m )=3,求m 的值.田阳高中2016—2017学年上学期月考高一数学试卷答案1.C ∵集合A 中只含有一个元素a ,故a 属于集合A ,∴a ∈A .2.选B3.【解析】 △ABC 的三边长两两不等,故选D.4.A5【解析】 1,2,3与4,5分别相加可得5,6,6,7,7,8,根据集合中元素的互异性可得集合M 中有4个元素.【答案】B6.C7.C8【解析】 由题意知:A ={1,2},B ={1,2,3,4}.又A ⊆C ⊆B ,则集合C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.【答案】D9.【答案】A10.【答案】C11.. A 【解析】 ∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.12.C13【解析】 由题意可知⎩⎪⎨⎪⎧x -1=0,3-y =1,∴⎩⎪⎨⎪⎧x =1,y =2,∴A 中的元素为(1,2). 14.【答案】 {-1,0,3}15【解析】 由A ={x |y =x +1},B ={}y |y =x 2+1,得A =[-1,+∞),B =[1,+∞),∴A ∩B =[1,+∞).16【解析】 由于函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-2,12,即-2<x <12,所以-3<2x +1<2,故函数f (x )的定义域为(-3,2).17.【解】 (1)由已知得:B =(-∞,3),A =[1,4),∴A ∩B =[1,3).(2)由已知得:∁U A =(-∞,1)∪[4,+∞),∁U A ∪B =(-∞,3)∪[4,+∞).18.【解】 (1)要使函数f (x )有意义,必须使x ≠0,∴f (x )的定义域是(-∞,0)∪(0,+∞).(2)f (-1)=-1+1-1=-2, f (2)=2+12=52.(3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1a +1. 19【解】 (1)如下图所示:A ={x |-1<x <1},B ={x |x <a },且A ∩B =∅,∴数轴上点x =a 在x =-1左侧.∴a ≤-1.(2)如图所示:A ={x |-1<x <1},B ={x |x <a }且A ∪B ={x |x <1},∴数轴上点x =a 在x =-1和x =1之间.即a 的X 围为{a |-1<a ≤1}.20【解】 (1)∵2f (x )+f )1(x=3x ,① 把①中的x 换成1x ,得2f )1(x +f (x )=3x.② ①×2-②得3f (x )=6x -3x, ∴f (x )=2x -1x(x ≠0). (2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7, ∴f (x )=2x +7.21【解】 因为f (x )在区间[-2,2]上单调递增,所以当-2≤x 1<x 2≤2时,总有f (x 1)<f (x 2)成立;反之也成立,即若f (x 1)<f (x 2),则-2≤x 1<x 2≤2.因为f (1-m )<f (m ),所以⎩⎪⎨⎪⎧-2≤m ≤2,-2≤1-m ≤2,1-m <m ,解得12<m ≤2. 所以实数m 的取值X 围为⎝ ⎛⎦⎥⎤12,2. 22【解】 (1)由函数定义,得当x =1时,应有1+a =12-2×1,即a =-2.(2)由(1),得f (x )=⎩⎪⎨⎪⎧x -2,x ≤1,x 2-2x ,x ≥1. 因为2>1,所以f (2)=22-2×2=0,因为0<1,所以f (f (2))=f (0)=0-2=-2.(3)当m ≤1时,f (m )=m -2,此时m-2=3得m=5,与m≤1矛盾,舍去;当m≥1时,f(m)=m2-2m,此时m2-2m=3得m=-1或m=3.又因为m≥1,所以m=3.综上可知满足题意的m的值为3.。

(新课标)高一数学上学期第一次月考试题-人教版高一全册数学试题

(新课标)高一数学上学期第一次月考试题-人教版高一全册数学试题

2015-2016学年上学期第一次月考高一数 学试题【新课标】一、选择(共12小题,每题5分)1.在△ABC 中,若C cB b A a cos cos cos ==,则ABC ∆是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形 2.在ABC ∆中,角A ,B ,C 的对边分别为a,b,c ,若bc c b a 3222-=--,则A 等于A .6πB .4πC .3πD .23π3.在ABC ∆中,32=a ,22=b ,︒=45B ,则=AA .︒30B .︒60C .︒30或︒150D .︒60或︒120 4.在ABC ∆中,60A ∠=,a =3b =,则ABC ∆解的情况A .有一解B .有两解C .无解D .不能确定5.若,011<<ba 则下列不等式:(1)b a b a ⋅<+;(2)b a >(3) b a <中,正确的不等式有( )A. 1个B.2个C.3个D.0个 6.在各项均为正数的等比数列{}n a 中,若389a a =,则31310log log a a +=( ) A 、1 B 、4 C 、2 D 、3log 57.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 A .()-10-61-3B .()-1011-39C .()-1031-3D .()-1031+3 8.如果等差数列{}n a 中,34512a a a ++=,那么=7S A 、14 B 、21 C 、28 D 、35 9.等差数列}{n a 中,20,873==a a ,若数列}1{1+n n a a 的前n 项和为254,则n 的值为( ) A 、14 B 、15 C 、16 D 、18 10.在数列{}n a 中,12a =,nn a a n n 1ln1++=+,则n a = ( ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 11.已知0,0a b >>,且12=+b a ,则21a b+的最小值为( ) A .7 B .8 C .9 D .10 12. 已知不等式()27)1(log 114313212112-+->++⋅⋅⋅+⨯+⨯+⨯a a n n 对一切正整数n 恒成立,则实数a 的X 围为A .()3,0B .)3,1(C .)4,2(D .),3(+∞ 二.填空题(共4小题,每题5分)13.在下列图形中,小黑点的个数构成一个数列{}n a 的前3项.数列n a 的一个通项公式n a =;14.在△ABC 中三边之比a:b:c=2:3:19,则△ABC 中最大角=; 15.在ABC ∆中,内角,,A B C 所对的边长分别是,,a b c , 已知4A π=,4cos 5B =,若10,BC D =为AB 的中点,则CD = ;16.设S n 是公差不为零的等差数列{}n a 的前n 项和,且a 1 > 0,若S 5 = S 9,则当S n 最大时,n=三.解答题(本题共6小题)17. (本题满分10分)已知等差数列{}n a 为递增数列,其前三项和为-3,前三项的积为8 (1)求等差数列{}n a 的通项公式; (2)求数列{}n a 的前n 的和n S 。

四川省成都市中学2023-2024学年高一上学期10月月考数学试题含解析

四川省成都市中学2023-2024学年高一上学期10月月考数学试题含解析

2023-2024学年上期十月阶段检测高2023级数学试卷(答案在最后)(考试时间:120分钟,总分:150分)注意事项:01.答题前,考生务必将自己的姓名、准考证号填写在答题卡规定的位置上,或将条形码贴在答题卡规定的位置上.02.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.03.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.04.所有题目必须在答题卡上作答,在试题卷上答题无效.05.考试结束后,只将答题卡交回.一、单选题(本题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}220A x x x =-=,则()A.{}0A∈ B.2A∉ C.{}2A∈ D.0A∈【答案】D 【解析】【分析】先化简集合A ,根据元素与集合的关系可得答案.【详解】因为{}{}2200,2A x x x =-==,所以{}{}0,2,0,2A A A A ∈∈⊂⊂.故选:D.2.已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5B =,则U A B ⋂ð等于A.{}2,5 B.{}1,3,5C.{}2,4,5 D.{}2,4,6【答案】D 【解析】【详解】因为全集1234567{}U =,,,,,,,{246}A =,,,5{}13B =,,,所以{}2467U B =,,,ð,所以{}246U A B ⋂=,,ð.故选:D.3.已知命题:p x R ∀∈,210x x -+>,则p ⌝A.x ∃∈R ,210x x -+≤ B.x ∀∈R ,210x x -+≤C.x ∃∈R ,210x x -+> D.x ∀∈R ,210x x -+≥【答案】A 【解析】【分析】根据全称命题与特称命题互为否定的关系,即可求解,得到答案.【详解】由题意,根据全称命题与特称命题的关系,可得命题:p x R ∀∈,210x x -+>,则:p ⌝x ∃∈R ,210x x -+≤,故选A .【点睛】本题主要考查了含有一个量词的否定,其中解答中熟记全称命题与特称性命题的关系是解答的关键,着重考查了推理与运算能力,属于基础题.4.若,,R a b c ∈,则下列命题正确的是()A.若0ab ≠且a b <,则11a b> B.若01a <<,则2a a >C.若0a b <<,则22a b > D.若,a b >c d >,则ac bd >【答案】C 【解析】【分析】根据不等式的性质结合作差法判断求解;【详解】选项A :令1,1,a b =-=11a b>不成立,选项错误;选项B :当01a <<时,()210a a a a -=-<,选项错误;选项C :0a b <<,()()22a b a b a b -=+-,因为00a b a b +-<,<,所以220a b ->,即22a b >,选项正确;选项D :12,a b =-=-,31c d ==,,ac bd >,不成立,选项错误;故选:C.5.对于实数x ,“202xx+≥-”是“2x ≤”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两个不等式解集的包含关系,判定结论.【详解】不等式202xx +≥-的解集{}22A x x =-≤<,不等式2x ≤的解集{}22B x x =-≤≤,由AB ,所以“202xx+≥-”是“2x ≤”的充分不必要条件.故选:A6.设2x >,则函数4412y x x =-+-,的最小值为()A.7B.8C.14D.15【答案】D 【解析】【分析】利用基本不等式求解.【详解】因为2x >,所以20x ->,所以()444142771522y x x x x =-+=-++=--≥,当且仅当()4422x x -=-,即3x =时等号成立,所以函数4412y x x =-+-的最小值为15,故选:D .7.若不等式20ax bx c ++<的解集是{}23x x <<,则不等式20cx bx a ++>的解集为A.1132⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,, B.1132⎛⎫ ⎪⎝⎭,C.1123⎛⎫-- ⎪⎝⎭,D.1123⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭,【答案】A 【解析】【分析】由题可得2,3为20ax bx c ++=的两根,利用韦达定理算出,,a b c 的关系式,再将,,a b c 换成同一参数再求20cx bx a ++>的根即可.【详解】因为不等式20ax bx c ++<的解集是{}23x x <<,故0a >且2,3为20ax bx c ++=的两根.根据韦达定理有235236bac a⎧-=+=⎪⎪⎨⎪=⨯=⎪⎩,故56b a c a =-⎧⎨=⎩,故20cx bx a ++>可写成2650ax ax a -+>,因为0a >所以26510(21)(31)0x x x x -+>⇒-->解得13x <或12x >,即x ∈1132⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭,,故选A.【点睛】二次不等式的解集的端点值为二次函数的零点,注意二次函数开口方向影响不等式的取值在区间内还是区间外.8.对于集合,M N ,定义{}|,M N x x M x N -=∈∉,()()M N M N N M ⊕=-- ,设9|,R 4A x x x ⎧⎫=≥-∈⎨⎬⎩⎭,{}|0,R B x x x =<∈,则A B ⊕=()A.904,⎛⎫-⎪⎝⎭B.904,⎡⎫-⎪⎢⎣⎭C.[)4,,90⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.()4,,90⎛⎤-∞-⋃+∞ ⎥⎝⎦【答案】C 【解析】【分析】根据题中集合新定义的特性结合集合的基本运算可求解出结果.【详解】集合9|,R 4A x x x ⎧⎫=≥-∈⎨⎬⎩⎭,{}|0,R B x x x =<∈,则R A ð9,R 4x x x ⎧⎫=<-∈⎨⎬⎩⎭,R B ð{}|0,R x x x =≥∈,由定义可得:{A B x x A -=∈且}x B A ∉=⋂R B ð{}[)|0,R 0,x x x ∞=≥∈=+,{B A x x B -=∈且}x A B ∉=⋂R A ð99,R ,44x x x ∞⎧⎫⎛⎫=<-∈=--⎨⎬ ⎪⎝⎭⎩⎭,所以()()[)9,0,4A B A B B A ∞∞⎛⎫⊕=--=--+ ⎪⎝⎭,选项ABD 错误,选项C 正确.故选:C .二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若集合{}1A x x =≥,则满足B A ⊆的集合B 可以是()A.{}2,3 B.{}2x x ≥ C.{}0,1,2 D.{}0x x ≥【答案】AB 【解析】【分析】根据子集的定义可得出结论.【详解】{}1A x x =≥ ,则{}2,3A ⊆,{}2x x A ≥⊆,{}0,1,2A ⊄,{}x x ≥A .故选:AB.10.下列命题是真命题的为()A.2,10x R x ∀∈--<B.,,n Z m Z nm m∀∈∃∈=C.所有圆的圆心到其切线的距离都等于半径D.存在实数x ,使得213234x x =-+【答案】ABC 【解析】【分析】根据题意,依次分析各选项即可得答案.【详解】对于A ,2,0x R x ∀∈-≤,所以210x --<,故A 选项是真命题;对于B ,当0m =时,nm m =恒成立,故B 选项是真命题;对于C ,任何一个圆的圆心到切线的距离都等于半径,故C 选项是真命题.对于D ,因为()2223122-+=-+≥x x x ,所以21132324x x ≤<-+.故D 选项是假命题.故选:ABC.11.若a ,b 均为正数,且21a b +=,则下列结论正确的是()A.ab 的最大值为19B.12a b+的最小值为9C.224a b +的最小值为12 D.()()221a b ++的最小值为4【答案】BC 【解析】【分析】根据基本不等式“1”的妙用与()0,02a ba b +≤>>逐项判断即可.【详解】因为a ,b 均为正数,且21a b +=,所以21a b +=≥,所以18ab ≤,当且仅当2a b =,即12a =,14b =时,等号成立,所以A 错误;()12122214592b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当22b a a b =,即13a b ==时,等号成立,所以B 正确;()()22222212422224a b a b ab a b a b +⎛⎫=+-≥+-= ⎪⎝+⎭,当且仅当2a b =,即12a =,14b =时,等号成立,所以C 正确;()()222122142a b a b +++⎛⎫≤= ⎪⎝+⎭+,当且仅当221a b +=+,即0a =,12b =时,等号成立,而a ,b 均为正数,故等号不成立,所以D 错误.故选:BC.12.若关于x 的不等式201(0)ax bx c a ≤++≤>的解集为{}12x x -≤≤,则32a b c ++的值可以是()A.59B.34C.56D.2【答案】ABC 【解析】【分析】根据解集的形式先分析出20ax bx c ++≥解集为R ,210ax bx c ++-≤的解集为[1,2]-,得到a 的范围,将32a b c ++最终用含a 的式子表达出来即可得到答案.【详解】先考虑20(0)ax bx c a ++≥>的解集,若解集不是R ,不妨设20ax bx c ++=的根为3434,()x x x x <,则20ax bx c ++≥的解集为(][)34,,x x -∞⋃+∞,根据最终解集的形式为[1,2]-可知:210ax bx c ++-≤的解集非空,设210ax bx c ++-=的根为1212,()x x x x <,则210ax bx c ++-≤的解集为12[,]x x ,由根与系数的关系:1234bx x x x a+=+=-,可能1234,,,x x x x 的排序有两种可能:3124x x x x <<<,此时原不等式201(0)ax bx c a ≤++≤>解集为空集,不符题意;又或者1342x x x x <<<,此时不等式的解集为1342[,][,]x x x x ⋃,形式与题意不符,于是原假设矛盾,故20(0)ax bx c a ++≥>的解集是R ,于是210ax bx c ++-≤的解集是[1,2]-,由韦达定理:12112b a c a ⎧-+=-⎪⎪⎨-⎪-⋅=⎪⎩,整理可得21b a c a =-⎧⎨=-+⎩,于是321a b c a ++=-+,又20(0)ax bx c a ++≥>解集是R ,故224()4(21)0b ac a a a ∆=-=--⋅-+≤,即2940a a -≤,结合题干0a >,于是409a <≤,故5321,19abc a ⎡⎫++=-+∈⎪⎢⎣⎭.故选:ABC三、填空题(本题共8小题,每小题5分,共计40分.)13.已知集合{1,2}A =-,2{,}B a a =,若{}1A B ⋂=,则实数a 的值为___【答案】1-【解析】【分析】由集合中元素的互异性以及集合间的运算即可求得.【详解】解:∵{1,2}A =-,2{,}B a a =,{}1A B ⋂=,∴21a =,且1a ≠,∴1a =-.故答案为:1-.14.已知32a b -≤<≤,则b a -的范围是______.【答案】05b a <-≤【解析】【分析】根据不等式的性质即可求解.【详解】由32a b -≤<≤可得32,32a b -≤<-<≤,0b a <-所以23a -<-≤,则05b a <-≤,故答案为:05b a <-≤15.中国健儿在杭州亚运会上取得傲人佳绩,获奖多多,为丰富学生课余生活,拓宽学生视野,石室成飞中学积极开展社团活动,每人都至少报名参加一个社团,高一(1)班参加A 杜团的学生有17人,参加B 杜团的学生有21人,参加C 社团的学生有22人,同时参加,A B 社团的学生有3人,同时参加,B C 社团的学生有4人,同时参加,A C 社团的学生有7人,三个社团同时参加的学生有1人,那么高一(1)班总共有学生人数为______.【答案】47【解析】【分析】根据题意,利用容斥原理结合集合的运算概念和运算方法,即可求解【详解】由题意,用,,A B C 分别表示参加A 杜团、参加B 杜团和参加C 杜团的学生形成的集合,则card()17,card()21,card()22A B C ===,card()3,card()4,card()7,card()1A B B C A C A B C ==== ,因此()()()()card card card card A B C A B C =++ ()()()()card card card card A B B C A C A B C ---+ 172122347147=++---+=.所以高一(1)班总共有学生人数为47人.故答案为:47.16.已知a b >,关于x 的不等式240ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得20040ax x b ++=成立,则22a b a b+-的最小值为____________.【答案】【解析】【分析】首先由不等式恒成立得到4ab ≥,再由存在成立问题,得到4ab ≤,从而确定4ab =,然后将原问题转化为单变量最值问题,利用整体代换和基本不等式得到最值即可.【详解】由不等式240ax x b ++≥对于一切实数x 恒成立可得01640a ab >⎧⎨-≤⎩,解得4ab ≥,又存在实数0x ,使得20040ax x b ++=成立,则Δ1640ab =-≥,得4ab ≤,所以4ab =.∴4=b a∵a b>∴40a b a a-=->∴2222244848444a a a b a a a a b a a a a a a a ⎛⎫⎛⎫+-+ ⎪ ⎪+⎝⎭⎝⎭===-+≥----(当且仅当248a a ⎛⎫-= ⎪⎝⎭,4ab =,即a b ⎧=+⎪⎨=⎪⎩或a b ⎧=⎪⎨=⎪⎩取等号)故答案为:【点睛】本题的考查点较多,首先是对于能成立和恒成立问题的转化确定4ab =,然后运用了我们常用的一种处理最值的方法,多变量变单变量,最后在化解的过程中还需要整体代换,最后再利用基本不等式的方法求取最值,所以平时对于恒成立与能成立的问题要十分熟悉,最值问题的常见处理方法,如多变量多变单量法,整体代换法,构造一元二次不等式法,判别式法等,平时要熟练运用.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知U =R 且{}2560A x x x =--<,{}44B x x =-≤≤,求:(1)A B ⋃;(2)()()U UA B ⋂痧.【答案】(1)[)4,6-(2)()[),46,-∞-+∞ 【解析】【分析】(1)将集合A 化简,结合并集的运算,即可得到结果;(2)根据题意,由交集以及补集的运算,即可得到结果.【小问1详解】因为{}()25601,6A x x x =--<=-,且{}[]444,4B x x =-≤≤=-,则[)4,6A B =- .【小问2详解】由(1)可知,()[]1,6,4,4A B =-=-,则(][),16,U A =-∞-+∞U ð,()(),44,U B =-∞-+∞U ð,所以()()()[),46,U U A B ⋂=-∞-+∞U 痧.18.已知命题p :x ∀∈R ,2240x tx -+≥恒成立,命题p 为真命题时实数t 的取值集合为A .(1)求集合A ;(2)设集合{}231B t m t m =-<<+,若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围.【答案】(1){}|22=-≤≤A t t (2)[)1,14,2⎡⎤+∞⎢⎥⎣⎦【解析】【分析】(1)根据一元二次不等式恒成立,0∆≤,求得结果即可.(2)根据充分不必要条件得出B 是A 的真子集,根据集合的包含关系列不等式求得结果.【小问1详解】命题p 为真命题时,x ∀∈R ,2240x tx -+≥恒成立,所以()22160∆=--≤t ,解得22t -≤≤,所以集合{}|22=-≤≤A t t .【小问2详解】若x B ∈是x A ∈的充分不必要条件,所以B 是A 的真子集,又{}231B t m t m =-<<+,当B =∅时,231m m -≥+,解得4m ≥,所以423212m m m <⎧⎪-≥-⎨⎪+≤⎩,解得112m ≤≤,所以实数m 的取值范围[)1,14,2⎡⎤+∞⎢⎥⎣⎦.19.为了减少能源损耗,房屋的屋顶和外墙通常需要建造隔热层,某地正在建设一座购物中心,现在计划对其建筑物建造可使用40年的隔热层,已知每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用P (单位:万元)与隔热层厚度x (单位:cm )满足关系:()3R,0845mP x x x =∈≤≤+.若不建隔热层,每年能源消耗费用为9万元.设S 为隔热层建造费用与40年的能源消耗费用之和.(1)求m 的值及用x 表示S ;(2)当隔热层的厚度为多少时,总费用S 达到最小,并求最小值.【答案】(1)15m =,1800845S x x =++(08x ≤≤);(2)当隔热层的厚度为6.25cm 时,总费用S 取得最小值110万元.【解析】【分析】(1)利用给定条件,求出m 的值,进而可得能源消耗费用与隔热层建造成本之和.(2)利用基本不等式即可求最值,根据等号成立的条件可得隔热层厚度.【小问1详解】设隔热层厚度x ,依题意,每年的能源消耗费用为:345m P x =+,而当0x =时,9P =,则395m =,解得15m =,显然建造费用为8x ,所以隔热层建造费用与40年的能源消耗费用之和为:45180040840884545S P x x x x x =+=⨯+=+++(08x ≤≤).【小问2详解】由(1)知()180018008245104545S x x x x =+=++-++1026010110≥=⨯-=,当且仅当()180024545x x =++,即 6.25x =时取等号,所以当隔热层的厚度为6.25cm 时,总费用S 取得最小值110万元.20.(1)已知正实数x ,y 满足等式144x y +=,求4x y +的最小值;(2)已知0x >,0y >,228x y xy ++=,则2x y +的最小值.【答案】(1)4;(2)4.【解析】【分析】(1)利用“1”的妙用求出最小值作答;(2)利用均值不等式建立不等关系,再解一元二次不等式即可.【详解】(1)因为0,0x y >>,144x y+=,所以1114x y+=,所以()4441111244x y x y y x x y ⎛⎫+=+++≥+= +⎪⎝⎭,当且仅当44x y y x =即1,22x y ==时取等号,所以4x y +的最小值为4;(2)因为0,0,228x y x y xy >>++=,而()222222x y x y xy x y +⎛⎫++≤++ ⎪⎝⎭,当且仅当2x y =时取等号,因此()22282x y x y +⎛⎫++≥ ⎪⎝⎭,即()()2242320x y x y +++-≥,化为()()28240x y x y +++-≥,解得24x y +≥或28x y +≤-(舍去),由22820x y xy x y ++=⎧⎨=>⎩解得2,1x y ==,所以当2,1x y ==时,2x y +取得最小值4.21.已知关于x 的不等式()2121mx m x m m +-+-<-.(1)当2m =时,求该不等式的解集;(2)当R m ∈时,求该不等式的解集.【答案】(1)112x x ⎧⎫-<<⎨⎬⎩⎭(2)答案见解析【解析】【分析】(1)根据因式分解即可结合一元二次解的特征求解,(2)对m 分类讨论,即可结合一元二次不等式的解的特征求解.【小问1详解】当2m =时,2210x x --<,所以()121(1)012x x x +-<⇒-<<,故不等式的解为112x x ⎧⎫-<<⎨⎬⎩⎭【小问2详解】不等式()2121mx m x m m +-+-<-变形为()1(1)0mx x +-<,当0m =时,不等式为101x x -<⇒<,当0m >时,不等式可化为1(1)0x x m ⎛⎫+-< ⎪⎝⎭,解得11x m-<<,当10m -<<时,11m ->,不等式可化为1(1)0x x m ⎛⎫+-> ⎪⎝⎭,解得1x m >-或1x <,当1m <-时,11m -<,不等式可化为1(1)0x x m ⎛⎫+-> ⎪⎝⎭,解得1x m <-或1x >,当1m =-时,不等式可化为2(1)0x ->,解得1x ≠,综上可知:当0m =时,不等式的解为{}1x x <,当0m >时,不等式的解为11x x m ⎧⎫-<<⎨⎬⎩⎭,当10m -<<时,不等式的解为11x x x m ⎧⎫>-<⎨⎬⎩⎭或,当1m <-时,不等式的解为11x x x m ⎧⎫><-⎨⎩⎭或,当1m =-时,不等式的解为{}1x x ≠.22.已知二次函数22y ax bx =++(a ,b 为实数)且当1x =时,1y =.(1)当0a ≥时,对()2,5x ∀∈,0y >恒成立,求实数a 的取值范围;(2)对[]2,1a ∀∈--,0y >恒成立,求实数x 的取值范围.【答案】(1)(3)∞-+(2)11(,44+【解析】【分析】(1)依题意可得1b a =--,即对(2,5)x ∀∈,2(1)20ax a x -++>恒成立,参变分离可得2(1)x a x x ->-对(2,5)x ∀∈恒成立,令2t x =-,则212(1)3x x x t t-=-++,再利用基本不等式计算可得;(2)依题意2()20x x a x --+>对[]2,1a ∀∈--恒成立,结合一次函数的性质得到不等式组,解得即可;【小问1详解】1x = 时1y =,21a b ∴++=,即1b a =--,(2,5)x ∀∈ ,0y >恒成立,即2(1)20ax a x -++>恒成立,(1)2ax x x ∴->-恒成立,(2,5)x ∈ ,2(1)x a x x -∴>-,对(2,5)x ∀∈恒成立,max 2(1)x a x x ⎡⎤-∴>⎢⎥-⎣⎦.令2t x =-,则(0,3)t ∈,则22132(1)(2)(1)323x t t x x t t t t t t-===≤--++++++,当且仅当2t t=,即t =,此时2x =+时取“”=,所以实数a的取值范围时(3)∞-+.【小问2详解】[]2,1a ∀∈-- ,0y >恒成立,即2(1)20ax a x -++>对[]2,1a ∀∈--恒成立,2()20x x a x ∴--+>对[]2,1a ∀∈--恒成立.2222020x x x ⎧-++>∴⎨-+>⎩,解得11711744x x ⎧-+<<⎪⎨⎪<<⎩,1144x +∴<<,所以实数x的取值范围是11,44⎛+ ⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年10月绵阳南山中学高2019届2016年秋10月月考数 学 试 题命题人:文媛 审题人:王怀修1.本试卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分,全卷共100分,考试时间100分钟.2.所有试题均答在答题卡上,答在题卷上无效.第Ⅰ卷(客观题,共48分)一. 选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.集合},{b a 的子集有( ). A.2个B.3个C.4个D.5个2.设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( ).A.(4,3)-B.(4,2]-C.(,2]-∞D.(,3)-∞ 3.已知函数1,0,(),0,x x f x ax x -≤⎧=⎨>⎩,若(1)(1)f f =-,则实数a 的值等于( ).A.1B.2C.3D.44.已知集合{04}P x x =≤≤,{02}Q y y =≤≤,下列从P 到Q 的各个对应关系f 不是..映射的是( ).A.1:2f x y x →=B.1:3f x y x →= C.21:8f x y x →= D.2:3f x y x →=5.已知偶函数()f x 的定义域是R ,且()f x 在(0,)+∞是增函数,则(2),a f =-(),b f π=c (3)f =-的大小关系是( ).A.a c b <<B.b a c <<C.b c a <<D.c a b <<6.若函数2()2(1)2f x x a x =+-+在区间[4,)+∞上是增函数,则实数a 的取值范围是( ). A.3a ≤ B.3a ≤- C.3a ≥- D.5a ≤ 7.函数()f x 的图象如图所示,则()f xA.()1f x x =--B.()1f x x =-C.()1f x x =-+D. ()1f x x =+8.已知函数(21)32f x x +=+,且()2f a =A.8 B.1 C.5 D.1-9.若函数()f x =的定义域为R ,则实数m 的取值范围是( ). A.04m <<B.04m ≤≤C.4m ≥D.04m <≤10.已知二次函数()f x 图象的对称轴是直线2x =,且(0)3,(2)1,f f ==若在[0,]m 有最大值3,最小值1,则实数m 的取值范围是( ).A.(0,)+∞B.[2,)+∞C.(0,2]D.[2,4]11.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”.那么函数解析式为2y x =-,值域为{1,9}--的“同族函数”共有( ).A.9种B.8种C.5种D.4种12.设函数()f x 是定义在R 上的奇函数,当0x ≥时,()2f x x =,若对任意[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( ).A.)+∞B.[2,)+∞C.(0,2]D.[1]-⋃第Ⅱ卷(主观题,共52分) 二. 填空题(本大题共4小题,每小题3分,共12分.)13.设集合{}1,2,3A =,{}2,4B =,全集{}0,1,2,3,4U =则()U C A B ⋃= . 14.若函数 f (x )= (k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是 .15.函数()f x 是定义在R 上的奇函数,当0x ≥时,()22f x x x =-,则当0x <时,()f x = .16.对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k的图象与x 轴恰有三个不同交点,则k 的取值范围是 .三.解答题(本大题共4小题,每小题10分,共40分,解答应写出文字说明证明过程或推演步骤.)17.已知集合U R =,函数xx x f ---=713)(的定义域为集合A ,集合{}=210B x x ≤<,集合{}=C x x a >.(1)求A ,()U C A B ⋂;(2)若(C )U B C R ⋃=,求实数a 的取值范围.18.已知集合{}2=230A x x x -+=,{}=10B x ax -=. (1)若{1}A B ⋂=-,求实数a 的值;(2)若A B B ⋂=,求实数a 的值.19.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤ 20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元. (年利润=年销售总收入-年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?20.已知函数()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若对任意的,[1,1]x y ∈-,且0x y +≠,都有()[()()]0x y f x f y +⋅+>. (1)判断()f x 的单调性,并加以证明; (2)解不等式()12102f x f x ⎛⎫++-< ⎪⎝⎭;(3)若2()22f x m am ≤-+对任意的[1,1],[1,2]x m ∈-∈恒成立,求实数a 的取值范围.2016年10月绵阳南山中学高2019届2016年秋10月月考数 学 试 题 答 案三. 选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)四. 填空题(本大题共4小题,每小题3分,共12分.) 13. {}0,2,4;14. (0,)+∞15. 22x x +16. -2≤k <1解析 当x 2-1≥4+x +1,即x ≤-2或x ≥3时,f (x )=4+x ,当x 2-1<4+x +1,即-2<x <3时,f (x )=x 2-1,如图所示,作出f (x )的图象,由图象可知,要使-k =f (x )有三个根,需满足-1<-k ≤2,即-2≤k <1.三.解答题(本大题共4小题,每小题10分,共40分,解答应写出文字说明证明过程或推演步骤.)17.解:(1)由30,70,x x -≥⎧⎨->⎩得:37x ≤<,{}=37A x x ∴≤<.{}=3,7U C A x x x <≥ 或,{}(C )=23,710U A B x x x ∴⋂≤<≤<或.(2) C {2,10}U B x x x =<≥ 或,∴由(C )U B C R ⋃=,得2a ≥.18.解: {}{}2=2301,3A x x x -+==-,(1) {1}A B ⋂=- ,1B ∴-∈,10a ∴--=即1a ∴=- (2) ,A B B B A ⋂=∴⊆当B =∅时,方程10ax -=无解,故0a =; 当B ≠∅时,则1=B a ⎧⎫⎨⎬⎩⎭.若11a =-,即1a =-;若13a =,则13a =. 综上所述,a 的值为0,1-或13. 19. 解: (1)当0<x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20(x ∈N *).(2)当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润,最大年利润为156万元. 答:当该工厂年产量为16件时,取得最大年利润为156万元. 20.解:(1)()f x 在[1,1]-上为增函数.证明:任取12,[1,1]x x ∈-,且12x x <,则210x x ->,由题意知2121()[()()]0x x f x f x -⋅+->,又()f x 为奇函数,2121()[()()]0x x f x f x ∴-⋅->,21()()0f x f x ∴->,即21()()f x f x >()f x ∴在[1,1]-上为增函数.(2)由题意及(1)知,111,21121,112,2x x x x ⎧-≤+≤⎪⎪-≤-≤⎨⎪⎪+<-⎩解得:106x ≤<.故所求不等式的解集为:1{|0}6x x ≤<.(3)由()f x 在[1,1]-上为增函数,知max ()(1)1f x f ==.由题意,得2122m am ≤-+,即2210m am -+≥对任意[1,2]m ∈恒成立, 法一: 即12m a m +≥对任意[1,2]m ∈恒成立,则只需min 12m a m ⎛⎫+≥ ⎪⎝⎭,[1,2]m ∈即可. 令1()g m m m=+,[1,2]m ∈,易证()g m 在[1,2]上是增函数,所以min ()g(1)2g m ==. 故22a ≥,即1a ≤.法二:则只需()2min210m am -+≥,[1,2]m ∈即可.令2()21h m m am =-+,[1,2]m ∈,其函数图象的对称轴为m a = ① 当1a ≤时,()h m 在[1,2]上是增函数,则min ()(1)22h m h a ==-.∴由220a -≥得:1a ≤,从而1a ≤;② 当12a <<时,2min ()()1h m h a a ==-+∴由210a -+≥得:11a -<<,从而a 无解;③ 当2a ≥时,()h m 在[1,2]上是减函数,则min ()(2)54h m h a ==-.∴由540a -≥得:54a ≤,从而a 无解. 综上所述,a 的取值范围为1a ≤.。

相关文档
最新文档