CES2016_Kuo
CES2016万象更新 蓄势待发

CES2016万象更新蓄势待发作者:来源:《CHIP新电脑》2016年第02期世界各地的科技企业在今年的美国消费电子展(CES)上展开了争夺智能家居、手机、平板电脑、电视以及汽车等技术革新新一轮顺风口的“激战”。
战况如何,跟随CHIP一起来看看。
首先来说,在今年CES的4 119家参展商中,共有1 300家中国厂商,这个数量是去年的两倍。
由此可见,中国企业的自主品牌输出已经十分强势。
在展会上,360奇酷手机、华为、中兴、大疆等相关电子设备吸引了大量国外参观者驻足试用。
至此,中国企业参加CES以来的变化可谓是有目共睹,从观望者变成重要的参与者。
中国正在从庞大的制造方转变为强大的智造方,其规模正在逐渐转化成技术的沉淀和产品体验的提升,相信中国品牌还将取得长足的进步。
如果说如今的科技产品很快能帮人们实现足不出户就能满足所有的生理需要,甚至让人们的意识停留在任何想要的情境中,那么大多数人是否会愿意;如果对过去的“老时光”还抱有“情怀”,那么这样的结果可能不会十分有趣。
从智能可穿戴设备到智能家居,从自动驾驶技术到物联网,它们充斥在世界的各个角落,举“洪荒之力”改变着人们的生活。
智能穿戴是近年来电子产业在智能手机迈入“平稳期”后的必争之地,层出不穷的同类产品不管正在经历着怎样的冷遇,商家们都坚定地认为它一定能有“回升”的那一天。
因此,身为“电子表”大厂的卡西欧也绝不甘落人后。
在CES消费电子展上,卡西欧带来了旗下首款智能手表WSD-F10,看起来就像是一个增强版的G-Shock。
这款产品采用了1.32英寸屏幕,320×300分辨率,运行Android Wear系统,电池续航可达1个月;同时,内置了压力、指南针、加速度计等传感器,右上角的工具按钮还能快速访问各种户外功能。
当然,广义上的智能穿戴产品包罗了大多数可随身移动的事物,VR产品便是当下智能穿戴概念下的一个重要的分支,主要针对视觉体验的特性让它比同性质不同功能的产品取得更快的发展速度。
2016年哪些科技引领潮流?盘点9大标志性创新产品

2016年哪些科技引领潮流?盘点9大标志性创新产品苹果AirPods苹果AirPods是一款无线耳机,在2016年9月份苹果秋季新品发布会上发布。
这款耳机依旧是经典的白色,可以续航5小时,支持充电盒充电,只需要打开就可以让iPhone自动识别。
耳机内置红外传感器能够自动识别耳机是否在进行自动播放,通过双击可以控制Siri。
最大的好处是用户再也不用为解开缠绕在一起的耳机线而困扰。
苹果再次证明了自己走在科技最前沿。
《精灵宝可梦Go》《精灵宝可梦Go》是由任天堂、Pokémon公司和谷歌Niantic Labs 公司联合制作开发的现实增强(AR)宠物养成对战类手游。
2016年夏天,精灵宝可梦GO一夜爆红,无数宅男宅女走出家门,涌上街头寻找藏匿的精灵。
玩家可以通过智能手机在现实世界里发现精灵,进行抓捕和战斗。
虚拟的角色叠加在真实场景之上,亦虚亦实让无数人为之痴迷。
这一游戏19天内创下了7500万次的下载巅峰,总下载次数超过了5亿次。
Snapchat Spectacles眼镜Snapchat发布了第一款可穿戴硬件产品Spectacles太阳镜。
Spectacles是一副装有摄像头的太阳镜,配有一个按钮,按下后就可以录制一段长达10秒的视频。
Spectacles的相机采用115度的广角镜头,更能接近人的视野。
它录制的视频是环形的,回看视频时,就像是透过人的视觉看到的。
可以通过蓝牙或WiFi连接到手机上,视频内容可以自动添加至Snapchat存储器上。
充一次电就可以录制一整天视频。
亚马逊Echo 亚马逊Echo是一款语音交互式蓝牙音箱,与苹果的Siri或微软的Cortana一样,充当虚拟助手的角色。
内置的Alexa语音交互系统,可以同步语音数据、播放音乐和进行智能家居设备控制。
甚至可以优步打车,定披萨,关灯。
亚马逊的技术团队仍在致力于改进亚马逊Echo,其技术有望在2017年得到提高。
超薄手机Light phone 手机的诱惑力太大,总是忍不住想看。
孙峻涛CES销售理论全接触

孙峻涛CES销售理论全接触(一)导语:不久前,CNET中国咨询培训总经理,高级讲师,CES理论奠基人之一的孙峻涛老师受到某大型IT增值服务商的邀请,为该公司高级销售人员进行了一场销售培训课。
课上,孙老师用幽默的语言,极具实战性的案例为学员们深入浅出地剖析了CES 理论。
学员们纷纷表示受益良多。
现在,就让我们亲身走入这场成功的销售培训课程的现场。
拍PPT拍出的职业病PPT永远不能告诉我们客户的需求……虽然有着十余年的销售经历,但我是一个不爱用PPT的人。
在我看来,中国IT企业在逐步成长中,学习到了许多西方发达国家成熟企业的好东西,然而其中也有很多不适合中国这种特殊大环境的。
我不爱用PPT不是因为用不惯现代化的办公设备,而是因为PPT永远不能告诉我们用户的需求,但这却是销售中最重要的。
正如现今大多数公司所遇到的情况一样,公司里并不缺少项目需求。
随便一问,就能报出很多已经启动或是尚未启动的项目。
客户需求赫然纸上,而如何在诸多的项目中筛选出自己的机会,就是作为一名优秀的销售人员的必修课了。
现在让我们凭空想想,你平时是怎么判断这个“机会”的?或是说你判断机会的标准是什么?诸如项目金额、与客户的关系、公司技术储备、厂商认可度、竞争对手实力、项目实施时间等等,我们随便一想就能想出很多。
但是,你有没有发现一个问题——你所想到的这一切没有一个是从客户的角度去思考的。
从客户的角度去思考,应该考虑的是客户“需要什么”、“为何需要这些”,进而纵深挖掘客户的“潜在需求”以及“原始推动力”。
我们广大的销售人员想问题不能单纯的从自身的“利弊得失”去考虑,而忘记了客户的利益。
销售界说了多少年的“以客户为中心,以服务为导向”,大多还是只留存在会议室中,而没有根深蒂固地植入销售人员的脑中。
这,也许就是拍PPT拍出的销售职业病。
一把火烧出“燃眉之急”燃眉之急烧的一定是“决策人”……在以CES理论为首的许多销售理论中,都强调“时机”的把握。
【BestofInnovation】2018CES创新奖(完整版)

【BestofInnovation】2018CES创新奖(完整版)一年一度的CES大会最近在拉斯维加斯拉开帷幕估计最近很多人的朋友圈都被CES刷屏了据称今年参会人主要分两类中国和外国人为啥?因为今年国内的厂商参展高达1551家数量上占据CES展商总数的三分之一华为展台作为最顶尖的盛宴全球数码潮品的汇聚智慧家电、智能硬件、无人机AI人工智能、无人汽车等等黑科技依旧最受关注去不了拉斯维加斯也没关系跟着象君一起就够了!一起来看看2018 CES 31件最佳创新奖作品(Best of Innovation)!2018 日产LEAF类别:车辆智能和自动驾驶技术厂商:日产汽车公司全新日产Leaf为纯电动汽车,配备自动驾驶功能,该功能能够帮助司机在高速公路上行驶时加速、刹车和转向。
设计上更加符合空气力学,能够减少空气对汽车行驶的阻力。
除此之外,这样的设计还能够确保汽车在充电完成后为车主提供更多的续航里程。
B&O 模块化音响 BeoSound Shape类别:高性能家庭音频 - 视频设备厂商:Bang & Olufsen你是否厌倦了传统音响的外观造型和摆放?B&O最新推出的模块化墙艺音响BeoSound Shape能摆脱你的烦恼。
BeoSound Shape是由一组六角形面板所组成的无线扬声器系统,可以完美融入家居背景,充当“墙砖”,多可以拥有44个独立单元构成一整套音响系统。
三星The Wall电视类别:视频显示器厂商:三星电子The Wall是三星的电视新品,它是全球首款146英寸Micro LED 模块化电视,The Wall可以同其他设备连接在一起,构成更大的屏幕。
The Wall 采用了 Micro LED 自发光显示技术,相较于 OLED 电视来说,对比度更高且纯净,又没有残影现象,从各方面表现来看,Micro LED 显示技术所呈现出的画面效果都相当令人惊艳。
三星Family Hub 3.0冰箱类别:家电厂商:三星电子美国Family Hub 3.0冰箱不仅配置了AI语音助理Bixby,还提供了能分辨多用户的语音辨识并支援SmartThings 生态系,可以操控包括电灯、温度、监控摄影机等等各种物联产品。
CES 2016观后感 炫酷产品背后是技术实力的较量

CES 2016观后感炫酷产品背后是技术实力的较量
刘启诚;王熙
【期刊名称】《通信世界》
【年(卷),期】2016(0)2
【摘要】作为全球消费类电子盛会的CES2016日前在美国拉斯维加斯举行,除了传统的电视、智能手机的创新外,VR、智能汽车、无人机等更是夺人眼球。
【总页数】3页(P48-50)
【关键词】CES;技术;产品;拉斯维加斯;消费类电子;智能手机;智能汽车;无人机【作者】刘启诚;王熙
【作者单位】
【正文语种】中文
【中图分类】TN912
【相关文献】
1.2016款奥迪TT中的炫酷音响技术 [J],
2.炫酷产品背后是技术实力的较量 [J], 刘启诚;王熙
3.CES 2009:酷炫新品秀 [J],
4.技术开启春晚新局面r——回顾2016年春晚舞台上的炫酷技术 [J], 杨子
5.CES2020:展望炫酷新生活 [J], 园园
因版权原因,仅展示原文概要,查看原文内容请购买。
ces原理

ces原理CES(Consumer Electronics Show)原理CES是全球最大的消费电子产品展览会,每年一次,于美国拉斯维加斯举办。
CES的原理是为世界各地的创新科技公司提供一个展示他们最新产品和技术的平台。
展会囊括了消费电子行业的方方面面,涵盖了智能手机、智能家居、人工智能、虚拟现实、无人机等各类产品和技术。
CES的主要目的是促进业界合作和交流,展示最新的科技发展趋势,对消费者和业界人士来说是一个了解最新科技产品和趋势的机会。
CES展会的主体结构由展示区和会议区组成。
展示区为参展企业提供了展示他们最新产品和技术的场所,参展企业可以租用展位来展示他们的产品,并与观众进行互动和交流。
会议区则是举办各类行业论坛、发布会和研讨会的场所,这些会议旨在深入讨论科技行业的发展趋势、未来方向以及各类技术创新。
CES的成功原理主要有以下几个方面:1. 创新导向:CES致力于展示最新、最具创新性的科技产品和技术。
它为各类公司提供了一个展示他们创新科技的机会,能够吸引全球范围内的创新企业参展,提高整个行业的创新水平。
2. 市场需求导向:CES关注和反映了消费者对新科技产品的需求和兴趣。
参展企业借助CES展会,可以了解市场的动态和消费者对新产品的反馈,从而调整产品定位和开发策略。
3. 合作交流:CES提供了一个全球化的交流和合作平台。
各类企业可以在展会期间进行合作洽谈、业务对接和交流合作意向,促进行业内各个环节的合作与发展。
4. 公众参与:CES不仅面向专业观众和业界人士,还面向公众。
这样可以吸引更多的消费者和普通用户,让他们了解最新科技产品和行业趋势,并激发其对科技创新的兴趣和热情。
总的来说,CES通过搭建一个集展示、交流和合作为一体的平台,推动着全球消费电子行业的创新和发展。
它的原理和运作方式使得参展企业、观众和行业从业者都能够得到相应的价值和收益。
【CES2016最全】官方最佳创新奖99种炫黑科技

【CES2016最全】官方最佳创新奖99种炫黑科技新智元原创1整理:王嘉俊王婉婷张巨岩李宏菲CES 全称国际消费类电子产品展览会,由美国电子消费品制造商协会主办,开始于1967年,迄今已有48年历史,现已成为了全球各大电子产品企业发布产品信息和展示高科技水平及倡导未来生活方式的窗口。
2015年1月6日-9日CES在美国拉斯维加斯举行,来自全球的电子消费品制造商纷纷到此参战,逐鹿群雄,百花齐放。
新智元翻译了CES 官方认定的24 项最佳发明,除此之外还精选了 75 项炫黑科技产品,合计 99 项。
CES 2016 创新奖得主:24 项1.Bang & Olufsen BeoLab 90(音频—视频的高性能家居类)BeoLab 90 是Bang & Olufsen的旗舰落地扬声器。
全新的主动式空间补偿技术,以此弥补由房间、家具、扬声器的位置与聆听人员的位置所带来的影响,为用户提供360º 的声音体验。
该产品特色为:声场束宽控制、声场定向控制和主动式空间补偿技术。
2.Belkin International 苹果手表和iPhone的充电装置(便携式媒体播放器配件类)悬空式设计是这款 Belkin Charge Dock 的设计亮点,其底座的左边部分设置有Lightning 接口,用户可以将iPhone 放上去充电,右侧的上方则是 Apple Watch 的放置点。
这款产品的市场售价在 800 元人民币左右。
3.Deeper 智能手机探鱼助手(无线手机配件类)该款产品是一个配合智能手机使用的智能声纳,它是为专业和业余钓鱼者设计的,可以用来定位鱼,并把水下地形和鱼类的位置信息直接发送到你的iOS或Android手机或平板电脑上,检测到的数据有深度、水温、海底地形等。
淡水和盐水均适用。
4.Airspek DietSensor(软件&移动App类)这是一款手机app,它可以自动追踪食物营养,使用方便,追踪精准;适合需要追踪饮食情况的肥胖人士和其他与食品相关的慢性疾病患者等人使用。
2016年电子行业CES深度分析报告

2016年电子行业CES深度分析报告内容目录1. 虚拟显示仍是消费终端最值得关注的领域 (8)1.1. 消费级AR放量在即,中国厂商加速扩张 (9)1.2. AR将是手机创新的重要方向 (11)1.3. 专业领域汽车成为应用的主要场景 (11)1.4. 坚定看好AR带来的微投技术应用 (15)1.5. VR市场玩家扩容,从话题性转入实用 (17)1.5.1. VR玩家扩容带来新格局 (17)1.5.2. 全生态多维度提升是关键,内容将是今年VR推动的重要环节 (18)2. 多方推进自动驾驶技术,汽车电子化主题延续 (20)2.1. 无人驾驶技术:自动驾驶引入期,多方发力角逐 (20)2.1.1. 整车厂积极参与无人驾驶技术角逐:自动驾驶汽车商用 (21)2.1.2. 产业链各方提供无人驾驶技术支持:芯片+系统 (23)2.2. 新能源汽车:电动汽车发展迅猛,未来十年工业化提速 (24)2.3. 人机交互:人车互联到车车互联 (26)2.4. 汽车电子化:生物识别与OLED成为创新方向 (26)3. 声学的战争已经打响,人工智能的出入口 (28)3.1. 智能语音助手广泛应用到家电终端 (28)3.2. 高保真音频产品涌现,感官享受追求无极限 (29)4. 创新落地消费终端,今年能看到的商业应用 (31)4.1. 手机仍是消费电子最看重的领域 (31)4.2. 电视回归面板技术,量子点LCD和超薄OLED竞争发展 (33)4.3. 家庭机器人核心是语音助手,专业机器人应用场景丰富 (34)4.4. 无人机应用场景多样化,看好小型便携消费市场 (35)5. CES发布会重点回顾 (36)5.1. 高通发布骁龙835,重磅推出多平台消费终端芯片 (36)5.1.1. 顶级制程+诸多最新技术,骁龙835性能发力 (37)5.1.2. 从智能手机拓展到多平台多终端,下一代娱乐体验和联网云服务支持芯片 (38)5.1.3. 五大支柱打造极致用户体验 (38)5.1.4. 机器学习成为芯片基础技性术,神经网络框架可实现丰富体验 (40)5.2. 华为发布荣耀6X 国际版,双摄成主打 (40)5.3. 联想新品发布,出击声学与虚拟现实 (40)5.4. LG发布智能家电,愿景是连接一切 (41)5.4.1. 电视:传统与新兴,量子点LCD与超薄OLED (41)5.4.2. 听命于人类并实现交互的先进机器人 (43)5.4.3. 冰箱+触摸屏+语音助手一体化,打造厨房智能控制中枢 (43)5.5. TCL发布黑莓手机与量子点电视,呈现消费电子智能化 (43)5.5.1. 黑莓新机保留实体键盘,曲面玻璃+Type C (43)5.5.2. 量子点技术LCD电视,整合人工智能技术成亮点 (44)5.5.3. 全套智能家居解决方案,多功能智能手环 (45)5.6. 三星盛宴,消费电子全产品线创新 (45)5.6.1. QLED与家庭音响,出色硬件与优秀服务结合 (45)5.6.2. 家用电器全产品线展出,高品质笔记本电脑登场 (46)5.7. 华硕发布会,AR手机和拍照手机为重磅内容 (46)5.8. 英伟达力推市场上最具吸引力的自动驾驶架构 (48)5.8.1. 基于Drive PX 的AI 超级计算机,加速智能汽车革命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Thermodynamic analysis of a combined heat and power systemwith CO2utilization based on co-gasification of biomass and coalPo-Chih Kuo,Wei Wu nDepartment of Chemical Engineering,National Cheng Kung University,Tainan70101,TaiwanH I G H L I G H T SA CHP system based on co-gasification of biomass and coal is investigated.Identifying the CBP through the specific optimization algorithm.The performance of the CHP system can be effectively improved under CO2addition.Co-gasification of torrefied biomass and coal blends is able to suppress the CO2specific emissions.a r t i c l e i n f oArticle history:Received12June2015Received in revised form31October2015Accepted23November2015Available online11December2015Keywords:Co-gasificationTorrefied biomassCO2utilizationCarbon boundary pointCombined heat and powerOptimizationa b s t r a c tIn this article,a co-gasification system blending coal and biomass is examined in the Aspen Plusenvironment in terms of energy conversion efficiency(ECE)and exergy efficiency(EE).Although thepercentage of raw wood(RW),torrefied wood(TW)and coal in steam co-gasification is one of the mostimportant parameters that affect the gasification process,the addition of CO2could effectively improveECE and EE while the steam-to-carbon ratio(S/C)is adjusted at the carbon boundary point(CBP).Theoptimum operating conditions such as S/C and CO2supply ratio,are determined by solving a series ofconstrained optimization algorithms for maximizing ECE and EE.A combined heat and power(CHP)system using the maximum waste heat recovery and Rankine cycle is illustrated to assess performance interms of power generation and CO2utilization.The results show that the total power generation byfeeding the TW-based fuel blend of40wt%TW and60wt%coal is increased by8.43%,as compared tothat of the RW-based fuel blend of40wt%RW and60wt%pared with100wt%coal fuel,theTW-based fuel can significantly reduce CO2specific emission by38.23%.&2015Elsevier Ltd.All rights reserved.1.IntroductionGasification is a promising thermo-chemical conversion pro-cess for producing syngas(i.e.H2þCO)(Goransson et al.,2011;Woolcock and Brown,2013).Syngas has been widely applied tothe synthesis of chemicals,such as methanol,dimethyl ether(DME),and methyl tert-butyl ether(MTBE),as well as some liquidtransportation fuels via the Fischer–Tropsch synthesis methodbased on various H2/CO ratios(Goransson et al.,2011;Tijmensenet al.,2002;Woolcock and Brown,2013).Moreover,both heat andpower can be generated in an integrated gasification combinedcycle(IGCC)power plant(Sadhukhan et al.,2010).Typically,syngas is converted from carbonaceous fuels,such ascoal,biomass,plastic and waste,of which coal currently plays animportant role in energy and electricity production(Goransson etal.,2011;Woolcock and Brown,2013).However,coal gasificationcombined-cycle power plants release a large amount of green-house gas(GHG)emissions,mainly carbon dioxide(CO2),nitro-gen-(N)and sulfur-(S)based gases,into the atmosphere,thuscausing environmental pollution(Taba et al.,2012).It is thusnecessary to reduce the GHG emissions associated with thistechnology.Biomass is one of the most important renewable and sustain-able energy sources to produce syngas and electricity,and thus apromising alternative to the use of fossil fuels(Abdollahi et al.,2010;Taba et al.,2012).Biomass is an abundant resource that isenvironmental friendly because of its low nitrogen and sulfurcontents.It is also seen as a carbon-neutral fuel,which producesessentially zero net CO2emissions to the environment(Abdollahiet al.,2010;Taba et al.,2013).However,when raw biomass isdeveloped for bioenergy purposes the utilization efficiency isrelatively low,due to the disadvantageous intrinsic properties ofContents lists available at ScienceDirectjournal homepage:/locate/cesChemical Engineering Science/10.1016/j.ces.2015.11.0300009-2509/&2015Elsevier Ltd.All rightsreserved.n Corresponding author.Tel.:þ88662757575x62689;fax:þ88662344496.E-mail address:weiwu@.tw(W.Wu).Chemical Engineering Science142(2016)201–214this material compared to those of coal.For example,the major properties of raw biomass include(Chen and Kuo,2011;Sarvar-amini et al.,2013;Taba et al.,2013;Thanapal et al.,2014):(1)high moisture content,(2)low calorific value,(3)low energy density,(4)high hydrogen-to-carbon(H/C)ratio and oxygen-to-carbon(O/C)ratio,(5)hygroscopic nature,and(6)a low bulk density,making both transportation and storage costs higher.These properties mean that raw biomass gasification has a lower conversion effi-ciency than that seen with coal gasification.In recent years various studies have reported that using the combination of coal and biomass as a feedstock,in a process known as co-gasification,is as promising technology for the production of syngas.This process has the advantages of being both economical and environmentally friendly(García et al.,2013;Taba et al.,2012,2013),and a number of researchers have examining blending various types of biomass with coal.For instance,Saw and Pang(2013)examined the use of lignite and wood as a feedstock at various blending mass ratios for co-gasification.They reported that the H2/CO ratio can be enhanced during co-gasification,and that a H2/CO ratio of2(for Fischer–Tropsch synthesis)can be obtained by blending60%wood with40%lignite.Aigner et al.(2011)reported an increase in hydrogen production and a decrease in CO production with a ris-ing coal ratio.Furthermore,the concentrations of impurities such as NH3and H2S in the gas product have also been found to decrease during the co-gasification process.Howaniec and Smo-linski(2013)investigated the influence of synergetic effects on the steam co-gasification process.They reported that the reactivity of fuel blends increased at a gasification temperature of900°C,due to the alkali content of the biomass,and especially the presence of potassium,which acts as a catalyst to aid in the process of char gasification.Compared to traditional approaches to the production of raw biomass energy,the application of torrefied biomass is attracting increasing attention in recent years,as it offers several advantages. Torrefied biomass is produced by thermally pretreating the raw biomass.This process is known as torrefaction,which is a mild pyrolysis process carried out in the temperature range of200–300°C under an inert or nitrogen atmosphere.Torrefaction enhances the physical and chemical properties of raw biomass. Torrefied biomass has the following improved properties com-pared with the untreated material(Chen and Kuo,2011;Sarvar-amini et al.,2013;Thanapal et al.,2014;Kuo et al.,2014):(1)lower moisture content(hydrophobicity),(2)higher energy density, (3)greater ignitability,reactivity and grindability,(5)a lower oxygen-to-carbon(O/C)ratio,and(6)lower costs of transportation and storage.Torrefied biomass is thus seen as a more valuable and economic fuel than raw biomass.In the recent literature Deng et al.(2009)reported that a combination of torrefaction and co-gasification is a promising process for the production of syngas. Chen et al.(2011)gasified torrefied sawdust in a bench-scale laminar entrained-flow gasifier,and found that the cold gas effi-ciency increased compared to that of raw sawdust,especially for sawdust torrefied at250°C.Weiland et al.(2014)observed that carbon conversion was improved by using torrefied wood residue as a feedstock in an entrainedflow gasifier.Furthermore,and more recently,Dudyński et al.(2015)used torrefied woody biomass for industrial-scale gasification experiments,and found that syngas with a higher calorific value was obtained by using torrefied pel-lets as a feedstock.These earlier studies show that torrefaction in association with gasification is an effective and promising method to enhance the performance of gasification.Although numerous works have investigated the gasification characteristics of torrefied biomass, little information is available on the co-utilization of coal and torrefied biomass during a steam co-gasification process.On the other hand,the integrated gasification combined cycle(IGCC)power generation is an important and potential clean coal tech-nology(CCT)that is able to reduce emissions of CO2,the primary greenhouse gas that is responsible global warming.A review of the past literature suggests that most of the related studies focus on the type of oxygen-blown(Emun et al.,2010;Zhang et al.,2013), air-blown(Klimantos et al.,2009;Giuffrida et al.,2013),and a mixture of steam/oxygen(Lee et al.,2014;Asif et al.,2015)IGCC systems,while relatively little research has been carried out using a mixture of CO2/O2(Oki et al.,2011;Prabu,2015).If CO2is used as a gasifying agent it can not only be converted to carbon monoxide via the Boudouard reaction in gasification,but also reduce the level of CO2emission into the atmosphere(Prabu,2015).Fur-thermore,a number of studies have examined the use of steam and CO2as a gasifying agent.Castaldi and Dooher(2007)adopted the Aspen Plus simulator to investigate coal steam gasification with a CO2recycle stream to the reformer.They found that the addition of CO2could lead to decreased energy consumption in the reformer,and thus this is a suitable technique for reducing the energy requirements of such systems.Butterman and Castaldi (2007)also studied biomass steam gasification by introducing CO2 via thermogravimetric analysis-gas chromatography(TGA-GC), and found that the existence of CO2significantly promotes the production of CO when the operating temperature was beyond 700°C,while the production of H2is reduced.Prabowo et al. (2014)compared the gasification performance under the atmo-spheres of steam,CO2,and steam–CO2mixtures.They found that the gasification thermal efficiency increased along with the CO2 mixing ratio at high gasification temperatures.Jayaraman and Gokalp(2015)carried out char gasification to investigate the kinetic behaviors of gasification under a steam–CO2environment in the temperature range of850–950°C.They found that a higher temperature reduced the time required for50%char conversion.Despite the potential advantages of using steam–CO2mixtures as a gasifying agent,as detailed above,the process of co-gasification under a steam–CO2environment for a class of power generation system has not yet been investigated.The present study thus aims to design a combined heat and power(CHP) system based on the steam co-gasification of biomass and coal with the addition of CO2.Particular emphasis is placed on the comparison of co-gasification performance between raw/torrefied biomass and coal blends.Two important parameters of the steam-to-carbon ratio(S/C)and CO2supply ratio(y CO2)are adjusted to evaluate their influences on system performance.Finally,the optimum operating conditions are obtained by solving a series of constrained optimization algorithms2.Process simulationCoal and two types of biomass,namely raw wood(RW)and torrefied wood(TW),are selected as the feedstock for gasification and co-gasification in this study(Park et al.,2012).Their proper-ties,such as proximate analysis,elemental analysis,and higher heating values(HHV),are presented in Table1.The simulation model is established using a commercial heat and mass balance analysis package,Aspen Plus V8.4.The following main assump-tions are made in this study for developing the process model: (1)the process is steady-state;(2)the feedstock is at normal conditions(i.e.25°C and1atm);(3)the solid and gaseous phases are in a state of thermodynamic equilibrium;(4)the following gaseous species are considered in the whole system:H2O,H2,O2, N2,CO,CO2,CH4,H2S,COS,SO2,HCN,NO,NO2and NH3;and (5)char only contains carbon and ash,and tar formation is neglected(Kannan et al.,2013;Shen et al.,2008;Song et al.,2013). In the simulation,the global thermodynamic property method used in this model is the Peng-Robinson equation of state with theP.-C.Kuo,W.Wu/Chemical Engineering Science142(2016)201–214 202Boston-Mathias alpha function (PR-BM).The fuels are de fined as an unconventional component,based on the experimental results of elemental analysis and proximate analysis.Due to the non-conventional stream for the fuels,the HCOALGEN model,including a number of empirical correlations for heat of combustion,heat of formation,and heat capacity,is used in the simulation.The density of nonconventional fuels is established by the DCOALIGT model (Ramzan et al.,2011).The simpli fied block diagram of the whole system is shown in Fig.1,which consists of a gasi fication unit,gas cooling unit,gas cleaning unit,gas burning unit,and power generation unit.2.1.Co-gasi fication systemFig.2a shows a schematic of the co-gasi fication process,which is composed of a number of blocks.The total mass flow rate of fuel into the system is kept constant at 100kg/h throughout the simulations.When the “fuel ”(stream 1)is fed into the system,the first stage is the drying of the fuel.An RStoic reactor is used to simulate the drying process and the heat produced by the reaction is simulated by a heat stream (Q drying ).The process of drying is simulated by the following chemical reaction (Chen et al.,2013):Fuel -0:0555H 2O þfuel dryð1ÞAfter fuel drying,a yield reactor is used to simulate the decomposition of fuel.In the yield reactor,the unconventional components of the fuel (stream 2)are decomposed into conven-tional constituents (stream 3),including N 2,O 2,H 2,S,H 2O,carbonand ash.The product yield distributions in RYield are calculated by a calculator block which is controlled by the FORTRAN statement in accordance with the component characteristics of the feedstock (Table 1).The heat of the reaction from the decomposition is simulated by a heat stream (Q decomp ).For the gasi fication model,an RGibbs reactor is used to model reactions according to chemical equilibrium.In this block,the chemical and phase equilibrium calculations are carried out by minimizing the Gibbs free energy.The mathematical model of the RGibbs reactor is described in a previous study (Kuo et al.,2014),and this reactor is operated at 900°C (Howaniec and Smolinski,2013;Jayaraman and Gokalp,2015;Prabowo et al.,2014).The heat of the reaction from the endothermic gasi fication reactions is simulated by a heat stream (Q gasi fier ).The detailed operating con-ditions of the co-gasi fication process are presented in Table 2,and the major chemical reactions that take place during the gasi fica-tion are listed below (Prabowo et al.,2014;Taba et al.,2012,,2013):Water gas reaction C þH 2O -CO þH 2;ΔH 0¼þ131:4kJmol À1ð2ÞWater gas shift reaction CO þH 2O 2CO 2þH 2;ΔH 0¼À42kJmol À1ð3ÞBoudouard reaction C þCO 2-2CO ;ΔH 0¼þ172:6kJmol À1ð4ÞMethanation reaction C þ2H 22CH 4;ΔH 0¼À75kJmol À1ð5ÞCH 4þH 2O 2CO þ3H 2;ΔH 0¼À206kJmol À1ð6ÞRegarding the gasifying mediums (stream 4),steam and CO 2,are mixed and preheated by a heater (H1)before being fed into the RGibbs reactor.Notably,a heater (H1)with a heat stream (Q gasifying agents )is used to adjust the inlet temperature from 25°C (stream 4)to 200°C (stream 5).The outlet stream (stream 6)resulting from the RGibbs reactor is divided into two streams,product gas (stream 7)and char (stream 8)through an SSPLIT block.The product gas is cooled down by a cooler (C1),which reduces the temperature to 150°C (Emun et al.,2010).The steam and acid gases produced from the co-gasi fication process are then removed from the product gas in a separator block,where a heat stream (Q sep )is simulated to the energy demand of the separator.The clean gas (stream 9)is then obtained and combusted with excess air (stream 11)in order to provide complete combustion in theTable 1Proximate and elemental analyses of the feedstock used in the simulation (Park et al.,2012).FeedstocksRaw wood Torre fied wood CoalProximate analysis (wt%)Moisture3.81 3.19 6.67Volatile matter (VM)88.7281.1927.25Fixed carbon (FC)7.4215.5154.5Ash0.050.1111.58Elemental analysis (wt%)C 46.7352.2274.12H 6.46 5.18 4.22N 0.410.55 1.91O a 46.3541.94 6.93S000.41Higher heating value (MJ/kg)18.5120.5626.82aBy difference.Co-gasificationRaw gasGasifying agents (Steam/CO 2)Clean gasGas BurningHeat Recovery Steam Generator (HRSG) and Rankine cycleFlue gasFuels(RW, TW, Coal)PowerGas cooling and cleaningFig.1.Block diagrams for the CHP system.P.-C.Kuo,W.Wu /Chemical Engineering Science 142(2016)201–214203burner to form flue gas (stream 12),which can be used in the power generation system.To validate the present model,simula-tions have been performed for gasi fication of rubber wood in a fixed bed gasi fier operated at atmospheric pressure (1atm)(Mahishi and Goswami,2007)and the gasi fication temperature is 900°C.The validation has been examined in a previous study (Kuo et al.,2014),where the predicted results are in good agreement with the experimental values.2.2.Power generation systemThe schematic process of power generation is shown in Fig.2(b)where the power generation system major consists of a steam generator and Rankine cycle (Chen and Wu,2014).After burning the product gas from the co-gasi fication process,the high tem-perature flue gas is obtained and sent to the heat recovery steam generator (HRSG)and steam turbine (ST)process.A series of heat exchangers is used,including a radiant water-wall evaporator,radiant superheater,and economizer,in which steam is generated in conjunction with the heat transfer from hot product gas and then sent to three steam turbines,namely a high pressure (HP),intermediate pressure (IP),and low pressure (LP)one,for power generation.The detailed operating conditions of the steam cycle are shown in Table 2.First of all,0.279kg/s of the feedwater (stream 13)with a temperature of 45°C goes through a water pump in which it is pressurized from 1to 240atm,resulting in energy consumption (W Pump ).The high pressure feedwater (stream 14)is then fed into shell side of the multi-stream heat exchangers (feedwater regenerative heaters)and this water gets heated by the exhaust steam entering in the tube side,so that the steam is heated to 250°C (stream 17)and sent to the economizer.The steam (stream 17)is first heated by the outlet stream of the hot flue gas to the temperature of 550°C after leaving the boiler (stream 19).To achieve the supercritical state,the temperature of the steam is then raised from 550to 600°C through superheater 1,and it subsequently feeds into a high pressure turbine (HPT)(stream 20)to expand and produce electricity (W HPT ).The pres-sure of the steam exhausted from HPT is 49atm (stream 21).The Fsplitter (F1)is then speci fied as 0.7and used to split the steam stream;that is,a 0.195kg/s of steam stream (stream 22)flows to superheater 2to reheat the temperature to 620°C (stream 23),while a 0.0837kg/s of steam stream (stream 28)is sent to the feedwater regenerative heaters to reheat the feedwater.Similarly,after reheating to 620°C (stream 23)in superheater 2,the steam is also delivered into an intermediate-pressure turbine (IPT)and exhausted to a low-pressure turbine (LPT)(stream 25)to produce electricity (W IPT and W LPT ).After removing the heat from the flue gas,the temperature of exhausted gas drops to 50°C (stream 38)(Sorgenfrei and Tsatsaronis,2014),and the exhaust steam (stream 37)is then cooled down to 45°C at 0.1atm as saturatedwaterFig.2.Process flow chart of (a)the co-gasi fication system,and (b)power generation system.P.-C.Kuo,W.Wu /Chemical Engineering Science 142(2016)201–214204(stream13)by the cooling water in an external water-cooled condenser(C2).2.3.Process parametersThe steam-to-carbon(massflow rate)ratio(S/C ratio)and CO2supply ratio(y CO2)are two significant parameters in this process.They are expressed asS=C¼F steamy c F fuelð7Þy CO2¼F CO2steamþF CO2ð8Þwhere y c is the carbon content in the fed fuel,and y CO2is definedby the weight ratio of the CO2contained in the total gasifyingagents from both steam and CO2.That is,when y CO2is equal to0,itmeans that steam is the only gasifying agent fed to the gasifier.In addition,four biomass blending ratios(BR)of raw/torrefied biomass and the coal are considered for the co-gasification pro-cess,and these are20,40,60,and80wt%,which are expressed as BRðwt%Þ¼F biomassbiomassþF coalÂ100%ð9Þ2.4.Energy analysisThe energy conversion efficiency(ECE)and net energy effi-ciency(NEE)are two important indexes with regard to the per-formance of the system,and thus they are evaluated in this study.The ECE is defined as the ratio of energy output of the co-gasification system to the energy input,whereas NEE is the ratio of net power generation to energy input(Mahishi and Goswami, 2007;Speidel and Worner,2015).The energy input is calculated as the sum of the energy content of the fuel,heat of reaction,and energy requirement of the preheating gasifying agents and separator.The energy output is the lower heating value(LHV,kJ/ Nm3)of the product gas for the co-gasification system(Lv et al., 2004;Kuo et al.,2014)or net power output(W n et,kW)for the power generation system.These are defined as follows:ECE%ðÞ¼F productgas UG P U LHV productgasF fuel U LHV fuelþQ HÂ100%ð10ÞQ H¼Q d ryingþQ d ecompþQ g asifierþQ g asifying agentsþQ s epð11ÞLHV product gas¼30:0x COþ25:7x H2þ85:4x CH4ÀÁÂ4:2ð12ÞNEEð%Þ¼W n etF fuel U LHV fuelþQ HÂ100%ð13ÞW n et¼W H PTþW I PTþW L PTÀW P umpð14Þwhere F productgas and F fuel are the massflow rates of the product gas and fuel(kg/s),respectively;G P is the volume of product gas from the gasification per unit weight of fuel(Nm3/kg-fuel);Q H is the heat required for the co-gasification process(kW);x stands for the mole fraction of gas species in the product gas(dry basis); W n et is the net power of the whole system(kW);W P ump is the energy requirement of the water pump(kW),and W H PT,W I PT,and W L PT are the energy outputs(kW)from individual steam turbines, corresponding to the high-pressure turbine,intermediate-pressure turbine,and low-pressure turbine,respectively.2.5.Exergy analysisIn addition to the energy analysis,the exergy efficiency(EE)of the co-gasification system is also evaluated.For a steady state process,the overall exergy balance between the inlet and outlet streams can be written as(Kaska,2014;Prins et al.,2003;Zhang et al.,2012,2013):XinE x i¼XoutE x jð15ÞXinE x i¼E x fuelþE x gasifying agentsþE x heatð16ÞXoutE x j¼E x product gasþE x charþE x wþE x lossð17ÞwherePinE x i andPoutE x j are the exergy rates of the input and outputstreams,respectively.E x fuel is the input exergy rate of fuel(kW), E x gasifyingagents is the exergy rate of the gasifying agents(kW),E x heat is the exergy rate of heat required by the gasification system(kW), E x product gas is the output exergy rate of the product gas(kW),E x char is the exergy rate of char(kW),E x w is the exergy rate of work (kW),and E x loss is exergy loss rate from the system(kW).Therefore,the total exergy of the material streams includes physical exergy and chemical exergy,and these are defined in the following equations:E x total¼E x phþE x chð18Þwhere E x total represents the total exergy of the material streams (kW),E x ph is the physical exergy of the material streams(kW),and E x ch is the chemical exergy of the material streams(kW).Table2Operating parameters of co-gasification for power generation systems. Parameter ValueFeedstock CH1.68O0.752N0.008(raw wood)CH1.04O0.486N0.006(torrefied wood)CH0.683O0.070N0.022S0.002(Coal)Fuelflow rate(kg/h)100Blending ratio(wt%)20–80Gasifier Temperature(°C)900Pressure(atm)1 Burner Airflow rate(kg/h)1000 Sensitivity analysis Steam to carbon ratio(S/C)0.1–2CO2content in gasifyingagents0.01–2Heat recovery steam generator (HRSG)and Rankine cycle Feedwater(kg/s)0.279HP steam turbine inletpressure(atm)240HP steam turbine inlettemperature(°C)600Fsplitter(F1)0.7Steam massflow rate(kg/s)0.195(stream22)0.084(stream28)IP steam turbine inletpressure(atm)49IP steam turbine inlet tem-perature(°C)350Fsplitter(F2)0.9Steam massflow rate(kg/s)0.186(stream25)0.009(stream32)LP steam turbine inletpressure(atm)5Fsplitter(F3)0.9Steam massflow rate(kg/s)0.176(stream27)0.009(stream35)Condenser pressure(atm)0.1P.-C.Kuo,W.Wu/Chemical Engineering Science142(2016)201–214205In the foregoing equation,the E x ph for each species in the product gas can be described by E x ph ¼ðh Àh 0ÞÀT 0ðs Às 0Þð19Þwhere h and s are the speci fic enthalpy and entropy of the gasspecies at a given state,while h 0and s 0are the speci fic enthalpy and entropy of the gas species at the environment state T 0¼25°C and P 0¼1atm,respectively.The E x ch for each species in the gas mixture can be evaluated as follows:E x ch ¼X i n i Ex ch ;i þRT 0ln n iP n ið20Þwhere n i is the mole flow rate of species i in the product gas (kmol/s),Ex ch ;i is the standard chemical exergy of species i in the product gas,and R is the universal gas constant (kJ kmol À1K À1).The exergy of heat streams is de fined as follows (Kaska,2014):E x heat ¼X 1ÀT 0Q H ð21Þwhere T is the operating temperature for the system,and Q H is the heat requirement of the system (kW).For coal,the speci fic chemical exergy can be expressed by (Zhang et al.,2013)E x coal ¼Q L Â1:0438þ0:0013H =C þ0:1083O =C þ0:0549N =CÀÁþ6:710S O =C r 0:666ÀÁð22Þwhere Q L is the heating value of the coal (kJ/kg),and C ,H ,O ,N ,S are the mass fractions of carbon,hydrogen,oxygen,nitrogen,and sulfur,respectively.However,for biomass,the speci fic chemical exergy can be obtained by (Prins et al.,2003;Zhang et al.,2012)E x biomass ¼βF biomass LHV biomassð23Þβ¼1:044þ0:0160H =C À0:3493O =C ð1þ0:0531H =C Þþ0:0493N =C1À0:4124O =CðO =C r 2Þð24Þwhere LHV biomass is the heating value of the biomass (kJ/kg),and C ,H ,O ,N are the mass fractions of carbon,hydrogen,oxygen,and nitrogen,respectively.As a result,the exergy ef ficiency (EE)of the product gas in the co-gasi fication system is de fined by (Prins et al.,2003;Zhang et al.,2012)EE ð%Þ¼E x product gasE x fuel gasifying agents heatÂ100%ð25ÞFig.3.Distributions of (a)H 2flow rate,(b)CO flow rate,(c)CO 2flow rate in the product gas,and (d)char flow rate from steam gasi fication of three fuels.P.-C.Kuo,W.Wu /Chemical Engineering Science 142(2016)201–214206。