《概率统计D》试题(A卷答案)
九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
临沂大学《概率论与数理统计》A卷试题+答案(2018-2019-2)

特别提示:自信考试 诚信做人临沂大学2018-2019学年第二学期《概率论与数理统计》试题(A 卷)(适用于2017级2018级普通本科学生,闭卷考试 时间120分钟) 1.设A 与B 是任意两个互不相容事件,则下列结论中正确的是 【 】(A) ()()1P A P B =-; (B) ()()P A B P B -=; (C) ()()()P AB P A P B =;(D) ()()P A B P A -=.2.()F x 是连续型随机变量X 的分布函数,则下列陈述错误的是 【 】 (A) 0()1≤≤F x ; (B) ()F x 单调不减;(C) ()F x 处处可导; (D) lim ()1→+∞=x F x .3.设二维随机变量(X ,Y )的分布律为 {0,0}P X Y ===0.1 ,{0,1}P XY ===0.1,{1,0},{1,1},P X Y a P X Y b ======且X 与Y 相互独立,则下列结论正确的是【 】(A) 0.2,0.6==a b ; (B) 0.1,0.9=-=a b ; (C) 0.4,0.4==a b ; (D) 0.6,0.2==a b .4.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是【 】(A) ·E XY E X E Y =()()(); (B) Cov (,)ρ=XY X Y ; (C) D X Y D X D Y +=+()()(); (D) Cov 2,22Cov ,X Y X Y =()(). 5.设随机变量X 与Y 相互独立且都服从(0,1)N ,则~22Y X + 【 】 (A) )2,0(N ; (B) )2(2χ; (C) )2(t ; (D))1,1(F .1. 设事件A 与B 相互独立,且()()=3P A P B =,则()P A B =____.2. 设随机变量X 服从参数为3的泊松分布, 则P {X =2}=_______.3. 设二维随机变量(X , Y )的分布律为则{}Y 2+≤P X =___________.4. 设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,且0ρ=,则(2)D X Y +=____________. 5. 设(1,4)XN ,则2()E X =____________.注意:以下各题都要写出必要的计算步骤或推导过程,直接写出答案者不得分.1. 已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从男女人数相等的人群中随机的挑选一人,恰好是色盲者,问此人是男性的概率是多少?特别提示:自信考试 诚信做人2.设连续型随机变量X 的概率密度为()2,010,x x f x <<⎧=⎨⎩其他求(1)分布函数()F x (2)数学期望()E X.3. 设K 服从(0, 5)上的均匀分布,求方程02442=+++K xK x 有实根的概率4. 设随机向量(,)X Y 的联合概率密度为:(2),0,0(,)0,x y ke x y f x y -+⎧>>=⎨⎩其它,(1)试确定常数k ;(2)求Z X Y =+的密度函数.5. 设随机变量X 具有概率密度/8,04,()0,.x x f x <<⎧=⎨⎩其它 试求随机变量28Y X =+的概率密度.6. 设总体X 的概率密度为1,01,(;)0,.x f x θ<<=⎪⎩其它其中0θ>为未知参数,12,,,n X X X 是来自总体X 的一个样本,试求θ的矩估计量.特别提示:自信考试 诚信做人临沂大学2018-2019学年第二学期《概率论与数理统计》试题(A 卷)参考答案与平分标准(适用于2017级2018级普通本科学生,闭卷考试 时间120分钟) 1.设A 与B 是任意两个互不相容事件,则下列结论中正确的是 【D 】(A) ()()1P A P B =-; (B) ()()P A B P B -=; (C) ()()()P AB P A P B =;(D) ()()P A B P A -=.2.()F x 是连续型随机变量X 的分布函数,则下列陈述错误的是 【C 】 (A) 0()1≤≤F x ; (B) ()F x 单调不减;(C) ()F x 处处可导; (D) lim ()1→+∞=x F x .3.设二维随机变量(X ,Y )的分布律为 {0,0}P X Y ===0.1 ,{0,1}P X Y===0.1,{1,0},{1,1},P X Y a P X Y b ======且X 与Y 相互独立,则下列结论正确的是【C 】(A) 0.2,0.6==a b ; (B) 0.1,0.9=-=a b ; (C) 0.4,0.4==a b ; (D) 0.6,0.2==a b .4.设(X ,Y )为二维随机变量,且D (X )>0,D (Y )>0,则下列等式成立的是【B 】(A) ·E XY E X E Y =()()(); (B) Cov (,)ρ=XY X Y ; (C) D X Y D X D Y +=+()()(); (D) Cov 2,22Cov ,X Y X Y =()(). 5.设随机变量X 与Y 相互独立且都服从(0,1)N ,则~22Y X + 【B 】 (A) )2,0(N ; (B) )2(2χ; (C) )2(t ; (D))1,1(F .1. 设事件A 与B 相互独立,且()()=3P A P B =,则()P A B =__7/9__.2. 设随机变量X 服从参数为3的泊松分布, 则P {X =2}=392-.3. 设二维随机变量(X , Y )的分布律为则{}Y 2+≤P X =__0.6_.4. 设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,且0ρ=,则(2)D X Y + =22124σσ+.5. 设(1,4)X N ,则2()E X =___5___.注意:以下各题都要写出必要的计算步骤或推导过程,直接写出答案者不得分.1. 已知男子有5%是色盲患者,女子有0.25%是色盲患者,今从男女人数相等的人群中随机的挑选一人,恰好是色盲者,问此人是男性的概率是多少?特别提示:自信考试 诚信做人解 设1A =”选到的人是男性”, 2A =”选到的人是女性”, B =”选到的人是色盲患者”, 则有12()0.5,()0.5;P A P A ==12(B|)0.05,()0.025;P A P A ==…………5分则有贝叶斯公式得1111122()(|)(|)()(|)()(|)P A P B A P A B P A P B A P A P B A =+0.50.0520.0.50.050.50.002521⨯==⨯+⨯…………10分2.设连续型随机变量X 的概率密度为()2,010,x x f x <<⎧=⎨⎩其他求(1)分布函数()F x (2)数学期望()E X .解 (1) 首先()(),xF x f t dt -∞=⎰ 于是当0x ≤时, ()0F x =,当01x <<时, ()202,xF x tdt x ==⎰当1x ≥时, ()1()2 1.x F x f t dt tdt -∞===⎰⎰,于是()20,0,,01,1, 1.x F x x x x ≤⎧⎪=<<⎨⎪≥⎩………5分(2) 1202()()2.3+∞-∞===⎰⎰E X xf x dx x dx ………10分3. 设K 服从(0, 5)上的均匀分布,求方程02442=+++K xK x 有实根的概率解 方程02442=+++K xK x 有实根这一事件可表示为2{1616(2)0}K K -+≥,即{12}k K ≤-≥或..因为K 服从(0, 5)上的均匀分布,其概率密度函数为1/5,05,()0,.k f k <<⎧=⎨⎩其它 于是,所求概率为5213{12}.55P k K ≤-≥==⎰或 4. 设随机向量(,)X Y 的联合概率密度为:(2),0,0(,)0,x y ke x y f x y -+⎧>>=⎨⎩其它, (1)试确定常数k ;(2)求Z X Y =+的密度函数. 解 (1) 根据概率密度函数的性质得(,)1+∞+∞-∞-∞=⎰⎰dx f x y dy ,另一方面,21(,),2+∞+∞+∞+∞---∞-∞-∞-∞==⎰⎰⎰⎰x y dx f x y dy k e dx e dy k于是 2.k =………5分(2) 设Z X Y =+的概率密度函数为()Z f z ,当0z <<+∞时, 根据两个随机变量和的概率密度公式得()2()220()(,)222.zzx z x x z z z Z f z f x z x dx edx e dx e e +∞-------∞=-===-⎰⎰⎰对于其它情况,都有()0Z f z =. 所以()22,0,()0,.z zZ e e z f z --⎧->⎪=⎨⎪⎩其它………10分 5. 设随机变量X 具有概率密度/8,04,()0,.x x f x <<⎧=⎨⎩其它 试求随机变量28Y X =+的概率密度.解 方法一 设Y 的概率密度函数为()Y f y ,显然当0x ≤时, 8y ≤,当4x ≥时, 16y ≥, 所以当8y ≤或16y ≥时,有()0Y f y =. ………4分而当04x <<时, 28y x =+的取值范围是816y <<,且28y x =+的反函数为8,2y x -=且有1,2dx dy =于是此时应有88()232Y y dx y f y f dy--⎛⎫=⋅=⎪⎝⎭.………4分特别提示:自信考试 诚信做人于是8,816,()320,.Y y y f y -⎧<<⎪=⎨⎪⎩其它………10分方法二 设Y 的分布函数为()Y F y , 密度函数为().Y f y 显然当由分布函数的定义可得当8y ≤时,有8(){}{28}02Y y F y P Y y P X y P X -⎧⎫=≤=+≤=≤=⎨⎬⎩⎭,当816y <<时,有82208(8)(){}{28}2864y Y y x y F y P Y y P X y PX dx ---⎧⎫=≤=+≤=≤==⎨⎬⎩⎭⎰ 当16y ≥时,有408(){}{28}128Y y x F y P Y y P X y P X dx -⎧⎫=≤=+≤=≤==⎨⎬⎩⎭⎰于是20,8,(8)(),816,641,16.Y y y F y y y ≤⎧⎪-⎪=<<⎨⎪≥⎪⎩………6分 所以8,816,()()320,.Y Y y y f y F y -⎧<<⎪'==⎨⎪⎩其它………4分6. 设总体X 的概率密度为1,01,(;)0,.x f x θ<<=⎪⎩其它其中0θ>为未知参数,12,,,n X X X 是来自总体X 的一个样本,试求θ的矩估计量.解 总体的数学期望为()(;)E X xf x dx θ+∞-∞===⎰⎰分设样本12,,,n X X X 的观察值为12,,,n x x x ,样本均值的观察值为x解方程x =θ的矩估计值为21x x θ⎛⎫= ⎪-⎝⎭.………8分相应的矩估计量为21X X θ⎛⎫= ⎪-⎝⎭.…………10分。
2017~2018(一)概率统计试卷(理工类)A卷(答案)

X2
...
X 100
1 } (用中心极限定理)
100
3
解: EX
1
xf (x)dx
1
x 2xdx
1
2 x 2 dx
2
0
0
0
3
EX 2 1 x 2 2xdx 1 2x3dx 1 , DX EX 2 (EX )2 1
0
0
2
18
P{ X1
M (M 1)
3.在 H0 为原假设, H1 为备择假设的假设检验中,若显著性水平为 ,则( C )。 (A) P (接受 H0 H0 成立)= ; (B) P (接受 H1 H1 成立)= ; (C) P (接受 H1 H0 成立)= ; (D) P (接受 H0 H1 成立)= 。
4. 设随机变量 X 和Y ,若 E( XY ) E( X )E(Y ) ,则下列结论一定成立的是(B )。
f
(x,
y)
Axe y
,0
x
1,0
y
x
2
0,
其他
求:(1)常数 A;(2)求 X 与 Y 的边缘概率密度 f X (x) 和 fY ( y) ;(3)判断 X 与 Y 的独立
性。
解:(1) f (x, y)dxdy 1
D
f (x, y)dxdy
U W , 拒绝 H 0 ,认为元器件的平均寿命有显著变化。
(八)(6)
已知 X 1 和 X 2 的概率分布律:
1
X1
~
1
0 1
08-09概率论期末考试试卷A (1)

《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。
《概率统计》期终考题(A卷)

6.若随机变量 X 的数学期望存在,则X 的方差也存在. ( )
7.样本二阶中心矩不是总体方差的无偏估计. ( )
8.假设检验中,样本容量确定时,犯弃真错误和取伪错误的概率不能同时减小. ( )
(2) 求铅中毒患者脉搏均值的0.95的置信区间.
以下分位数全部为下侧?--分位数:
?(0.50)=0.6915; ?(0.55)=0.7088; ?(1.00)=0.8413; ?(1.05)=0.8531; ?(1.65)=0.95;
?(1.95)=0.9744; ?(1.96)=0.9750; ?(2.00)=0.9772; ?(2.05)=0.9798; ?(3)=0.9987;
2. (15分) 设二维随机变量( X, Y )的联合密度函数为:
试求 (1) 系数c; (2) X和Y各自的边缘密度函数;
(3) P( X<Y ) ; (4) X与Y相互独立吗?为什么?
3. (10分) 某工厂有100台机器,各台机器独立工作,每台机器的开工率为0.8,工作时各需要1kw电力,问供电局至少要供应多少电力,才能以97.5%的把握保证正常生产?
(); ().
3. 人的体重为随机变量,,,10个人的平均体重记为,则 .
(); ();
(); ().
4. 设的联合概率密度为
则与为 的随机变量.
2.如果P(A) = P(B) = 0.5, 则P( AB ) = P(). ( )
3.设 n 次独立重复试验中, 事件 A 出现的次数为X, 则 4 n 次独立重复试验中,A出现的次数为 4 X. ( )
4.如果随机变量 X ? N ( ? , ?2 ), 则 (? ?X) /? ? N (0, 1) . ( )
《概率论与数理统计》期末考试试题及答案-(最新版-已修订)

《概率论与数理统计》期末考试试题(A )专业、班级: 姓名: 学号: 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
=≤}5.1{X P (A)0.6 (B) 1 (C) 0 (D)21(3)设事件与同时发生必导致事件发生,则下列结论正确的是()1A 2A A (A ) (B ))()(21A A P A P =1)()()(21-+≥A P A P A P (C ) (D ))()(21A A P A P =1)()()(21-+≤A P A P A P (4)).54,0);46,0();3,0();5,0(~,72,),1,2(~),1,3(~(D)N (C)N (B)N (A)Z Y X Z Y X N Y N X 则令相互独与且设随机变量+-=-(N 立).((5)设为正态总体的一个简单随机样本,其中n X X X ,,2,1 ),(2σμN μσ,2=未知,则( )是一个统计量。
(A) (B)212σ+∑=ni iX 21)(μ-∑=ni i X (C) (D)μ-X σμ-X (6)设样本来自总体未知。
统计假设n X X X ,,,21 22),,(~σσμN X 为 则所用统计量为( )。
:已知)(:01000μμμμμ≠=H H (A) (B) nX U σμ0-=nSX T 0μ-=(C) (D)222)1(σχS n -=∑=-=ni iX1222)(1μσχ二、填空题(每空3分 共15分)1. 2. , 3. 4. )(B P ⎩⎨⎧≤>=-00)(x x xe x f x23-e1-)9(t (1)如果,则 .)()(,0)(,0)(A P B A P B P A P =>>=)(A B P (2)设随机变量的分布函数为X ⎩⎨⎧>+-≤=-.0,)1(1,0,0)(x e x x x F x则的密度函数,.X =)(x f =>)2(X P (3).ˆ,________,ˆ3ˆ2ˆˆ,ˆ,ˆ,ˆ321321是的无偏估计量也时当的无偏估计量是总体分布中参数设θθθθθθθθθθ=+-=a a (4)设总体和相互独立,且都服从,是来自总体的X Y )1,0(N 921,,X X X X 样本,是来自总体的样本,则统计量 921,,Y Y Y Y 292191Y Y X X U ++++= 服从分布(要求给出自由度)。
《概率论与数理统计》期末考试试卷(A)答案

2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
2020-2021大学《概率论与数理统计》期末课程考试试卷A(含答案)

2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海南大学2012-2013学年度第2学期试卷科目:《概率统计D 》试题(A 卷)姓名: 学 号:学院: 专业班级:时限: 120 分钟 考试形式:闭卷笔试,不用计算器注意:选择题、填空题、判断题答案就写在试卷纸上,计算题和应用题的答案必须写在后面的空白纸上!!!!!!!!!!!最后一张纸是稿纸,交卷时不用上交。
一、选择题(每题3分,共15分) :答案就填写在括号内.1、设A,B,C 是同一个试验E 的三个事件,则下列选项正确的是(4 )(1) 若A B C B =,则A=C ;(2)若A-B=C-B ,则A=C ;(3) 若AB=CB ,则A=C ; (4)若AB=,A B Φ=Ω,则A B =。
2、123A ,A ,A 是试验E 的三个不同事件,关于概率的乘法公式,下面表达错误的是( 2 )(1) 12312323p(A A A )p(A |A A )p(A A )=;(2)12312323p(A A A )p(A |A A )p(A )p(A )=;(3)()1231233p(A A A )p(A A |A )p A =; (4) 123123233p(A A A )p(A |A A )p(A |A )p(A )=。
3、一个随机变量的数学期望和方差都是1,则这个随机变量不可能服从( 1 )(1)二项分布;(2) 泊松分布;(3)指数分布;(4)正态分布。
4、下列哪一个随机变量不服从泊松分布 ( 4 )(1)随机变量X 表示某校长的手机一天内收到的骚扰短信条数;(2)随机变量Y 表示某老师编写的教材一页上出现的印刷错误个数;(3)随机变量Z 表示海大一学期被退学的学生人数;(4)随机变量R 表示你到学校某办公室办事需要等待的时间。
5、某随机变量的分布函数为30,x 0F(x)x ,0x 11,x 1<⎧⎪=≤<⎨⎪≥⎩,则X 的数学期望E(X)=( 2 )(1)140x dx ⎰;(2)1303x dx ⎰;(3)1203x dx ⎰;(4)1401x dx xdx +∞+⎰⎰。
二、填空题(每题3分,共15分):答案就填写在横线空白处.6、某小学生捡到一份高考试卷,其中有10道选择题,每道题四个答案中都只有一个答案正确,此小学生将10道题中6道题做对的概率为___6641013C ()()44________________________. 7、设X ~N(1,2),则随机变量Y=2X+4的概率密度函数2(y 6)16--_____________.8、设随机变量X 与Y 相互独立,且P{X=-1}=P{Y=-1}=13,P{X=1}=P{Y=1}=23,则P{X=Y}=____5/9_______________________________________________.9、设X 表示某班(40人)上概率课认真听课的人数,假设每个人认真听课的概率为0.8,则2X 的数学期望2()E X =__________1030.4________________________________.10、海大信息科技学院教师的职称人数比例为: 助教:讲师:副教授:教授=1:4:3:2,从这个学院任意抽取4位教师,这四人职称全不相同的概率为____0.0024______________.三 、计算题(每题8分,共48分)11、海大校长和某副校长相约晚上七点到八点之间到某小餐馆吃海南粉,他们在七点到八点之间任何时刻等可能到达餐馆。
但校长对副校长说:“我最多等你五分钟就离开。
”而副校长对校长说:“我最多等你半小时就离开。
”求他们当晚能在一起吃海南粉的概率。
解 设校长和副校长来到餐馆的时刻分别为x 和y ,由题意知样本空间为{(x,y)|0x,y 60}Ω=<<, (2分)又设事件A=“正副校长当晚能吃到海南粉”,则A {(x,y)|0y x 5}{(x,y)|0x y 30}=<-<<-<, (4分)几何图示如下:(5分)根据几何概型,有A p(A)=Ω的面积的面积(6分) =2222116055302260--。
(8分) 12、甲、乙、丙三人独立射击同一目标,已知三人击中目标的概率依次为0.8,0.6,0.5,用X 表示击中目标的人数,求X 的分布函数。
解 设A1,A2,A3表示第i 人击中目标,i=1,2,3,根据题意有:P(A1)=0.8,p(A2)=0.6,p(A3)=0.5,且A1,A2,A3相互独立。
(2)随机变量X 的取值为0,1,2,3,且123123p{X 0}p(A A A )p(A )p(A )p(A )0.04====,123123123p{X 1}p(A A A )p(A A A )p(A A A )0.26==++=;123p{X 3}p(A A A )0.24===,所以P{X=2}=0.46. (5分) 即随机变量X 的分布律为X 0 1 2 3P 0.04 0.26 0.46 0.24 (6分)因此X 的分布函数为0,x 00.04,0x 1F(x)0.30,1x 20.76,2x 31,x 3<⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ (8分)13、现在网络上把教室的座位分区如下:前两排座位称为学霸区,即学生来课堂的目的就是听老师讲课的;第三第四排的座位称为酱油区,即这两排的学生来课堂没有目的;第五第六.排的座位称为刷屏区,即坐在这两排的学生上课主要是玩手机的;从第七排到最后一排的座位称为考研区,坐这里的学生来课堂主要是自己复习,准备考研。
根据教学经验,学霸区的0 605 30学生认真听课的概率为1,酱油区的学生认真听课的概率为0.5,刷屏区的学生认真听课的概率为0.3,考研区的学生认真听课的概率为0.1。
现在有个班级来课堂上概率统计课,坐在第一二排的学生有15个,坐在三四排的学生有20个,坐在五六排的学生有10个,坐在第七以后(包括第七排)的学生有15个。
现在从这个上课班级,任意抽一个学生,求他在认真听课的概率。
解 设A=“学生认真听课”,Bi=“学生坐在第i 区”,i=1,2,3,4表示学霸区,酱油区,刷屏区,考研区。
根据题意,有p(B1)=1/4,p(B2)=1/3,p(B3)=1/6,p(B4)=1/4,且p(A|B1)=1,p(A|B2)=0.5,p(A|B3)=0.3,p(A|B4)=0.1, (4分) 根据全概率公式,有4i i i 1p(A)p(A |B )p(B )==∑=111110.50.30.14364⨯+⨯+⨯+⨯=59/120. (8分) 14、已知二维随机变量(X,Y )的联合概率密度为cxy,0x 1,0y 1f (x,y)0,<<<<⎧=⎨⎩其余,求(1)常数c ;(2)求P{X Y}≤。
解 (1)根据密度函数的规范性,有f (x,y)dxdy 1+∞+∞-∞-∞=⎰⎰,即 (2分) 1=11110000c dx cxydy c xdx ydy 4==⎰⎰⎰⎰,所以c=4. (4分) (2)x yp{X Y}f (x,y)dxdy ≤≤=⎰⎰ (6分) =110x 14xdx ydy 2=⎰⎰。
(8分) 15、已知二维随机变量(X,Y)的分布函数为x y (x y)1e e e ,x 0,y 0,F(x,y)0---+⎧--+>>⎪=⎨⎪⎩,其余,求关于X 和Y 的边缘分布函数x Y F (x),F (y),并以此判断X 和Y 是否相互独立。
解 关于X 的边缘分布函数为x X 1e ,x 0F (x)F(x,)0x 0-⎧->=+∞=⎨≤⎩,, (3分)关于Y 的边缘分布函数为y Y 1e ,y 0F (y)F(,y)0,y 0-⎧->=+∞=⎨≤⎩。
(6分)比较可知,有X Y F(x,y)F (x)F (y),x,y R =∈,即X 与Y 相互独立。
(8分)16、假设X 和Y 相互独立,且都服从正态分布2N(,)μσ,令12Z 2X 3Y,Z 2X 3Y =+=-,求Z1和Z2的相关系数12Z Z ρ。
解 1E(Z )E(2X 3Y)2E(X)3E(Y)=+=+=235μ+μ=μ,2E(Z )E(2X 3Y)2E(X)3E(Y)23=-=-=μ-μ=-μ, (2分)222212E(Z Z )E(4X 9Y )4E(X )9E(Y )=-=- (X,Y 服从相同分布)=2225E(X )5()-=-μ+σ, (4分)21D(Z )D(2X 3Y)4D(X)9D(Y)13=+=+=σ,22D(Z )D(2X 3Y)4D(X)9D(Y)13=-=+=σ, (6分)所以12Z Z ρ== =2225()()(5)13-μ+σ--μμσ=-5/13. (8分) 四、是非题(每小题2分,共12分):在括号内写上“对”或“错”17、设某试验E 的样本空间为1234{,,,}Ω=ωωωω,事件A=123{,,}ωωω,则P(A)=0.75.( 错 )18、设随机变量X 的分布函数为F(x),实数a b <,则一定有F(a)F(b)<. ( 错 )19、E(XY)=E(X)E(Y)是随机变量X ,Y相互独立的充分必要条件. (错 )20、设12f (x),f (x)是两个随机变量的概率密度函数,则12f (x)f (x)也一定是某个随机变量的概率密度函数. (错 )21、若X 服从正态分布2N(,)μσ,则概率P{X }≤μ与参数2,μσ无关. (对 )22、盒子中有20只粉笔,其中5只黄色粉笔,从盒子中不放回地取10次,则每次取到黄色粉笔的概率一样. (对 )五、应用题(10分):尽可能写出思路和求解方法23、三西路菜场质检部每天都要对每个摊位的蔬菜进行农药残留抽检,根据以往数据,某个摊位蔬菜检测到某种剧毒农药的概率为5%,由于摊位数n 很大,如果每一个摊位的样品检测一次,工作人员的工作量太大。
有人建议,将n 个摊位的样品分别抽取部分构成n 个小样品(另一部分留着复查),将这n 个小样品分成m 个组,每个组由k 个小样品构成,检验员将这k 个小样品混合在一起做一次检测,如果没有检测到毒农药,这个组的k 个样品全部合格;如果这k 个小样品的混合液中检测到毒农药,则需要对这k 个小样品中对应的样品进行逐一复查,直到分清这k 个样品哪些有毒农药,哪些没有毒农药。
现在检验单位聘请你为他们设计一个恰当的k 值,使得检验人员平均每天的检测次数尽可能少。
(提示:将这m=n/k 个组的检验次数设成随机变量X1,X2,...,Xm ,对每个Xi 求出其分布律,再求出其数学期望,整个菜场样品的平均检测次数为E(12m X X X +++),再求其最小值点k 即可)。