大学物理习题答案

合集下载

大学物理习题答案

大学物理习题答案

大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。

已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。

2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。

3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。

4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。

6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。

(完整版)《大学物理》练习题及参考答案

(完整版)《大学物理》练习题及参考答案

《大学物理》练习题一. 单选题:1.下列说法正确的是……………………………………() 参看课本P32-36A . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率有关B . 惯性系中,真空中的光速与光源的运动状态无关,与光的频率无关C . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率无关D . 惯性系中,真空中的光速与光源的运动状态有关,与光的频率有关2.下列说法正确的是………………………………… ( ) 参看课本P32-36A . 伽利略变换与洛伦兹变换是等价的B . 所有惯性系对一切物理定律都是不等价的C . 在所有惯性系中,真空的光速具有相同的量值cD . 由相对论时空观知:时钟的快慢和量尺的长短都与物体的运动无关3.下列说法正确的是………………………………… ( )参看课本P58,76,103 A . 动量守恒定律的守恒条件是系统所受的合外力矩为零 B . 角动量守恒定律的守恒条件是系统所受的合外力为零 C . 机械能守恒定律的守恒条件是系统所受的合外力不做功 D . 以上说法都不正确4. 下列关于牛顿运动定律的说法正确的是…………( ) 参看课本P44-45A . 牛顿第一运动定律是描述物体间力的相互作用的规律B . 牛顿第二运动定律是描述力处于平衡时物体的运动规律C . 牛顿第三运动定律是描述物体力和运动的定量关系的规律D . 牛顿三条运动定律是一个整体,是描述宏观物体低速运动的客观规律5.下列关于保守力的说法错误的是…………………( ) 参看课本P71-72 A . 由重力对物体所做的功的特点可知,重力是一种保守力B . 由弹性力对物体所做的功的特点可知,弹性力也是一种保守力C . 由摩擦力对物体所做的功的特点可知,摩擦力也是一种保守力D . 由万有引力对物体所做的功的特点可知,万有引力也是一种保守力6.已知某质点的运动方程的分量式是,,式中R 、ω是常cos x R t ω=sin y R t ω=数.则此质点将做………………………………………………() 参看课本P19A . 匀速圆周运动B . 匀变速直线运动C . 匀速直线运动D . 条件不够,无法确定7.如图所示,三个质量相同、线度相同而形状不同的均质物体,它们对各自的几何对称轴的转动惯量最大的是………( )A . 薄圆筒B . 圆柱体 参看课本P95C . 正方体D . 一样大8.下列关于弹性碰撞的说法正确的是………………() 中学知识在课堂已复习A . 系统只有动量守恒B . 系统只有机械能守恒C . 系统的动量和机械能都守恒D . 系统的动量和机械能都不守恒9.某人张开双臂,手握哑铃,坐在转椅上,让转椅转动起来,若此后无外力矩作用.则当此人收回双臂时,人和转椅这一系统的…………………( ) 参看课本P104A . 转速不变,角动量变大B . 转速变大,角动量保持不变C . 转速和角动量都变大D . 转速和角动量都保持不变10.下列关于卡诺循环的说法正确的是………………( ) 参看课本P144 A . 卡诺循环是由两个平衡的等温过程和两个平衡的绝热过程组成的B . 卡诺循环是由两个平衡的等温过程和两个平衡的等体过程组成的C . 卡诺循环是由两个平衡的等体过程和两个平衡的等压过程组成的D . 卡诺循环是由两个平衡的绝热过程和两个平衡的等压过程组成的11. 如图所示,在场强为E 的匀强电场中,有一个半径为R 的半球面,若场强E 的方向与半球面的对称轴平行,则通过这个半球面的电通量大小为…………………( ) 参看课本P172-173A .B .2E 22R E πC . D . 02R E 12.一点电荷,放在球形高斯面的中心处,下列情况中通过高斯面的电通量会发生变化的…………………………( ) 参看课本P173 A . 将另一点电荷放在高斯面内 B . 将高斯面半径缩小C . 将另一点电荷放在高斯面外D . 将球心处的点电荷移开,但仍在高斯面内13.如图所示,在与均匀磁场垂直的平面内有一长为l 的铜棒B MN ,设棒绕M 点以匀角速度ω转动,转轴与平行,则棒的动B 生电动势大小为……………()参看课本P257A .B . Bl ω2BlωC .D . 12Bl ω212Blω14. 、方均v 、最概然速率为,则这气体分子的三种速率的关系是…………(p v ) A .B 参看课本P125v >p vC .D p v pv =15. 下列关于导体静电平衡的说法错误………………( ) 参看课本P190-191 A . 导体是等势体,其表面是等势面 B . 导体内部场强处处为零 C . 导体表面的场强处处与表面垂直 D . 导体内部处处存在净电荷16. 下列哪种现代厨房电器是利用涡流原理工作的…( ) 参看课本P259A . 微波炉B . 电饭锅17. 下列关于电源电动势的说法正确的是……………() 参看课本P249-250A . 电源电动势等于电源把电荷从正极经内电路移到负极时所作的功B . 电源电动势的大小只取于电源本身的性质,而与外电路无关C . 电动势的指向习惯为自正极经内电路到负极的指向D . 沿着电动势的指向,电源将提高电荷的电势能18. 磁介质有三种,下列用相对磁导率正确表征它们各自特性的是………( r μ)A . 顺磁质,抗磁质,铁磁质 参看课本P39-2400r μ<0r μ<1r μ?B . 顺磁质,抗磁质,铁磁质1r μ>1r μ=1r μ?C . 顺磁质,抗磁质,铁磁质0r μ>0r μ>0r μ> D . 顺磁质,抗磁质,铁磁质1r μ>1r μ<1r μ?19. 在均匀磁场中,一带电粒子在洛伦兹力作用下做匀速率圆周运动,如果磁场的磁感应强度减小,则………………………………………………( ) 参看课本P231 A . 粒子的运动速率减小 B . 粒子的轨道半径减小 C . 粒子的运动频率不变 D . 粒子的运动周期增大20. 两根无限长的载流直导线互相平行,通有大小相等,方向相反的I 1和I 2,在两导线的正中间放一个通有电流I 的矩形线圈abcd ,如图所示. 则线圈受到的合力为…………( ) 参看课本P221-223A . 水平向左B . 水平向右C . 零D . 无法判断21. 下列说法错误的是……………………………………( ) 参看课本P263A . 通过螺线管的电流越大,螺线管的自感系数也越大B . 螺线管的半径越大,螺线管的自感系数也越大C . 螺线管中单位长度的匝数越多,螺线管的自感系数也越大D . 螺线管中充有铁磁质时的自感系数大于真空时的自感系数22. 一电偶极子放在匀强电场中,当电矩的方向与场强的方向不一致时,则它所受的合力F 和合力矩M 分别为…………………………………( ) 参看课本P168-169A . F =0 ,M =0B . F ≠0 ,M ≠0C . F =0 ,M ≠0D . F ≠0 ,M =023. 若一平面载流线圈在磁场中既不受磁力,也不受磁力矩作用,这说明……( )A . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行 参看课本P223-224B . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行C . 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直D . 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直24. 下列关于机械振动和机械波的说法正确的是………( ) 参看课本P306A . 质点做机械振动,一定产生机械波B .波是指波源质点在介质的传播过程C . 波的传播速度也就是波源的振动速度D . 波在介质中的传播频率与波源的振动频率相同,而与介质无关25. 在以下矢量场中,属保守力场的是…………………( ) A . 静电场 B . 涡旋电场 参看课本P180,212,258C . 稳恒磁场D . 变化磁场26. 如图所示,一根长为2a 的细金属杆AB 与载流长直导线共面,导线中通过的电流为I ,金属杆A 端距导线距离为a .金属杆AB 以速度v 向上匀速运动时,杆内产生的动生电动势为……( ) 参看课本P261 (8-8)A . ,方向由B →A B .,方向由A →B2ln 20πμεIv i =2ln 20πμεIv i =C . ,方向由B →A D . ,方向由A →B0ln 32i Iv μεπ=3ln 20πμεIv i =27.在驻波中,两个相邻波节间各质点的振动………( ) 参看课本P325A . 振幅相同,相位相同B . 振幅不同,相位相同C . 振幅相同,相位不同D . 振幅不同,相位不同28.两个质点做简谐振动,曲线如图所示,则有( )A . A 振动的相位超前B 振动π/2 参看课本P291B . A 振动的相位落后B 振动π/2C . A 振动的相位超前B 振动πD . A 振动的相位与B 振动同相29.同一点光源发出的两列光波产生相干的必要条件是…() 参看课本P336A . 两光源的频率相同,振动方向相同,相位差恒定B . 两光源的频率相同,振幅相同,相位差恒定C . 两光源发出的光波传播方向相同,振动方向相同,振幅相同D .两光源发出的光波传播方向相同,频率相同,相位差恒定30.如图所示,在一圆形电流I 所在的平面内选取一个同心圆形闭合环路L ,则由安培环路定理可知……………………………………………( ) 参看课本P235A . ,且环路上任一点B =0d 0L B l ⋅=⎰B . ,但环路上任一点B ≠0d 0L B l ⋅=⎰ C . ,且环路上任一点B ≠0d 0 L B l ⋅≠⎰D . ,且环路上任一点B =常量d 0 LB l ⋅≠⎰二. 填空题:31. 平行板电容器充电后与电源断开,然后充满相对电容率为εr 的各向均匀电介质. 则其电容C 将______,两极板间的电势差U 将________. (填减小、增大或不变) 参看课本P195,20032. 某质点沿x 轴运动,其运动方程为: x =10t –5t 2,式中x 、t 分别以m 、s 为单位. 质点任意时刻的速度v =________,加速度a =________. 参看课本P16-1733. 某人相对地面的电容为60pF ,如果他所带电荷为,则他相对地面的电C 100.68-⨯势差为__________,他具有的电势能为_____________. 参看课本P200,20234. 一人从10 m 深的井中提水,起始时,桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1m 要漏去0.1 kg 的水,则水桶匀速地从井中提到井口,人所作的功为____________.参看课本P70 (2-14)35.质量为m 、半径为R 、自转运动周期为T 的月球,若月球是密度均匀分布的实球体,则其绕自转轴的转动惯量是__________,做自转运动的转动动能是__________.参看课本P100 (3-4)36. 1mol 氢气,在温度为127℃时,氢气分子的总平均动能是_____________,总转动动能是______________,内能是_____________. 〔已知摩尔气体常量R = 8.31 J/(mol ·K ) 参看课本 P120 (4-8)37. 如图所示,两个平行的无限大均匀带电平面,其面电荷密度分别为+σ和-σ. 则区域Ⅱ的场强大小E Ⅱ=___________ . 参看课本P17738. 用一定波长的单色光进行双缝干涉实验时,要使屏上的干涉条纹间距变宽,可采用的方法是: (1) _________________________;(2) ________________________. 参看课本P34439. 通过磁场中任意闭合曲面的磁通量等于_________. 感生电场是由______________产生的,它的电场线是__________曲线. (填闭合或不闭合) 参看课本P212,25840. 子弹在枪膛中前进时受到的合力与时间关系为,子弹飞出枪口5400410N F t =-⨯的速度为200m /s ,则子弹受到的冲量为_____________. 参看课本P55-5641. 将电荷量为2.0×10-8C 的点电荷,从电场中A 点移到B 点,电场力做功6.0×10-6J . 则A 、B 两点的电势差U AB =____________ . 参看课本P18142. 如图所示,图中O 点的磁感应强度大小B =______________.参看课本P229-23043. 一个螺线管的自感L =10 mH ,通过线圈的电流I =2A ,则它所储存的磁能W =_____________. 参看课本P26744. 理想气体在某热力学过程中内能增加了ΔE =250J ,而气体对外界做功A =50J ,则气体吸收的热量Q = . 参看课本P132-13345. 一平面简谐波沿x 轴的正方向传播,波速为100 m/s ,t =0时的曲线如图所示,则简谐波的波长λ =____________,频率ν =_____________. 参看课本P30946. 两个同心的球面,半径分别为R 1、R 2(R 1R 2),分别<带有总电量为Q 1、Q 2. 设电荷均匀分布在球面上,则两球面间的电势差U 12= ________________________.参看课本P186-187三. 计算题:47. 一正方形线圈由外皮绝缘的细导线绕成,共绕有100匝,每边长为10 cm ,放在B = 5.0T 的磁场中,当导线中通有I =10.0A 的电流时,求: (1) 线圈磁矩m 的大小;(2) 作用在线圈上的磁力矩M 的最大值. 参看课本P225 (7-7)48.如图所示,已知子弹质量为m ,木块质量为M ,弹簧的劲度系数为k,子弹以初速v o射入木块后,弹簧被压缩了L.设木块与平面间的滑动摩擦因数为μ,不计空气阻力.求初速v o.参看课本P80 (2-23)49. 一卡诺热机的效率为40%,其工作的低温热源温度为27℃.若要将其效率提高到50%,求高温热源的温度应提高多少?参看课本P148 (5-14)50. 质量均匀的链条总长为l,放在光滑的桌面上,一端沿桌面边缘下垂,其长度为a,如图所示.设开始时链条静止,求链条刚刚离开桌边时的速度.参看课本P70 (2-18)51.一平面简谐波在t =0时刻的波形如图所示,设波的频率ν=5 Hz,且此时图中P点的运动方向向下,求:(1) 此波的波函数;(2) P点的振动方程和位置坐标.参看课本P318 (10-11)52.如图所示,A和B两飞轮的轴杆可由摩擦啮合器使之连接,A轮的转动惯量J A=10 kg·m2.开始时,B轮静止,A轮以n A= 600 r/min的转速转动.然后使A和B连接,连接后两轮的转速n = 200 r/min.求: (1) B轮的转动惯量J B ;(2) 在啮合过程中损失的机械能ΔE.参看课本P105 (3-9及补充)53.如图所示,载流I的导线处于磁感应强度为B的均匀磁场中,导线上的一段是半径为R、垂直于磁场的半圆,求这段半圆导线所受安培力.参看课本P224-22554.如图所示的截面为矩形的环形均匀密绕的螺绕环,环的内外半径分别a和b,厚度为h,共有N匝,环中通有电流为I .求: (1) 环内外的磁感应强度B;(2) 环的自感L.参看课本P237-238 (7-23及补充)55.如图所示,一长直导线通有电流I,在与其相距d处放在有一矩形线框,线框长为l ,宽为a ,共有N 匝. 当线框以速度v 沿垂直于长导线的方向向右运动时,线框中的动生电动势是多少? 参看课本P255 (8-3)二. 填空题:31. 增大 减小32.33. 1000V 0.03 J1010m/s t -210m/s t -34. 1029 (或1050) J 35. 36. 4986J 3324J 8310 J 225mR 22245mR T π37. 38. (1) 将两缝的距离变小 (2) 将双缝到光屏的距离变大σε39. 零 变化的磁场 闭合 40.41.300V42.0.2N s ⋅0112I R μπ⎛⎫- ⎪⎝⎭43. 0.02 J44. 300 J45. 0.8 m 125 Hz46.1012114Q R R πε⎛⎫- ⎪⎝⎭三. 计算题:47. 线圈磁矩22100100.110A m m NIS ==⨯⨯=⋅线圈最大磁力矩max 10550N mM mB ==⨯=⋅48. 设子弹质量为m ,木块质量为M ,子弹与木块的共同速度v由动量守恒定律得①0()mv m M v =+由功能原理得 ②2211()()22m M gL kL m M v μ-+=-+由①、②式得 0v =49. 卡诺热机效率: 211T T η=-21300500K 110.4T T η⇒===--同理 21300600K 110.5T T η'==='--高温热源应提高的温度 11600500100KT T '-=-=n50. 设桌面为零势面,由机械能守恒定律得21222a a l mg mg mv l -=-+v ⇒=51. 解:(1) 由图中v P <0知此波沿x 轴负向传播,继而知原点此时向y 正向运动原点处0002A y v =->,023ϕπ⇒=-又x = 3m 处3300y v =>,32πϕ⇒=-由 得2x ϕπλ∆∆=2x λπϕ∆=∆30236m 223πππ-=⨯=⎛⎫--- ⎪⎝⎭此波的波函数 02cos 2x y A t ππνϕλ⎛⎫=++ ⎪⎝⎭20.10cos 10m 183t x πππ⎛⎫=+- ⎪⎝⎭(2) P 点处 P P 00y v =,<P 2πϕ⇒=P 点振动方程P P cos(2)y A t πνϕ=+0.10cos 10m 2t ππ⎛⎫=+ ⎪⎝⎭P 点位置坐标 p 363321m22x λ=+=+=52. (1) 由动量矩守恒定律得A A AB ()J J J ωω=+A A AB 2()2J n J J n ππ=+B 60020010(10)6060J ⨯=+⨯2B 20kg m J ⇒=⋅(2) 损失的机械能2222A A A B A A A B 222241111()(2)()(2)222216001200104(1020)4 1.31510J 260260E J J J J n J J n ωωππππ∆=-+=-+⎛⎫⎛⎫=⨯⨯-+⨯=⨯ ⎪ ⎪⎝⎭⎝⎭53. 依题意得 d 0x x F F =∑=d d sin d sin sin d y F F BI l BIR θθθθ===0sin d 2y F F BIR BIRπθθ===⎰54. (1)0d 2B r B r Iπμ⋅=⋅=∑⎰ 环外的磁感应强度 0B =环内的磁感应强度 02B r NIπμ⋅=02NI B rμπ=(2) 0d d d 2NIhBh r r rμΦπ==001d d ln 22b a NIh NIh br r aμμΦΦππ===⎰⎰环的自感 20ln 2N h N b L I I aμψΦπ===55. 线框的动生电动势1212()N B B lvεεε=-=-001122()NIlv NIlav d d a d d a μμππ⎛⎫=-= ⎪++⎝⎭。

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析

《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。

(B) 匀速率圆周运动。

(C) 行星的椭圆轨道运动。

(D) 抛体运动。

(E) 圆锥摆运动。

2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。

3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。

《大学物理》课后习题答案

《大学物理》课后习题答案

《大学物理》课后习题答案习题4-12HLh4-12 一个器壁竖直的开口水槽,如图所示,水的深度为H =10m ,在水面下h =3m 处的侧壁开一个小孔。

试求:(1)从小孔射出的水流在槽底的水平射程L 是多少?(2)h 为何值时射程最远?最远射程是多少? 解:(1)设水槽表面压强为p 1,流速为v 1,高度为h 1,小孔处压强为p 2,流速为v 2,高度为h 2,由伯努利方程得:222212112121gh v p gh v p ρρρρ++=++ 根据题中的条件可知: 21121,0,h h h v p p p -==== 由上式解得:gh v 22=由运动学方程:221gt h H =-,解得: gh H t )(2-=水平射程为:)(m 17.9)310(34)(42=-⨯⨯=-==h H h t v L(2)根据极值条件,令0=dhdL ,L出现最大值, 即22=--hhH h H ,解得:h=5m此时L的最大值为10m 。

4-14 水在粗细不均匀的水平管中作稳定流解:刚性双原子气体分子的自由度5i = (1)氧气分子的平均平动动能 2321k331.3810(2730) 5.710J 22kT ε--==⨯⨯⨯+≈⨯ 平均转动动能2321t 22 1.3810(2730) 3.810J22kT ε--==⨯⨯⨯+≈⨯ (2)34.010kg-⨯氧气的内能323' 4.01058.312737.110J 232102m i E RT M --⨯==⨯⨯⨯≈⨯⨯ 34.010kg-⨯氦气的内能333' 4.01038.31273 3.410J 24102m i E RT M --⨯==⨯⨯⨯≈⨯⨯5-17 储有1mol 氧气(可视为刚性分子),容积为31m 的容器以110m s υ-=⋅速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能。

试求气体的温度及压强各升高了多少?解:分子热运动增加的能量为23211'80%32101080% 1.28J 22E m v -∆=⨯=⨯⨯⨯⨯= 又由理想气体内能公式2i E RT ν=可得2iE R T ν∆=∆,则222 1.286.1610K 558.31E T R -∆⨯∆==≈⨯⨯由理想气体状态方程pV RT ν=可得28.31 6.16100.51Pa1R Tp V ν-∆⨯⨯∆==≈6-10 一压强为51.010Pa ⨯,体积为331.010m -⨯的氧气自0C 加热到100C ,问:(1)当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2)在等压和等体过程中各作了多少功? 解:(1)压强不变,即等压过程:对初状态应用理想气体状态方程111p V RT ν= ,代入到p()2iQR R Tν=+∆中,得5311p 1 1.010 1.0105()()(1)100222732pV i i Q R R T R R T RT ν-⨯⨯⨯=+∆=+∆=⨯+⨯21.2810J=⨯体积不变时,即等体过程:对初状态应用理想气体状态方程111p V RT ν= ,代入到V2iQR T ν=∆中,得5311V 1 1.010 1.010510091.6J222732pV i i Q R T R T RT ν-⨯⨯⨯=∆=∆=⨯⨯≈(2)等体过程,系统对外不做功,即0J W =;r R r RE Or(D) E ∝1/r 222等压过程:内能的变化量91.6J 2iE R T ν∆=∆=,由热力学第一定律可得12891.636.4JW Q E =-∆=-=6-12 2mol 的理想气体在300K 时,从33410m -⨯等温压缩到33110m -⨯,求气体所做的功和放出的热量? 解:等温过程:E ∆=;3211ln28.31300ln 6.910J 4T T V Q W RT V ν===⨯⨯⨯≈-⨯ 6-17 一卡诺热机的低温热源温度为7C ,效率为40%,若要将其效率提高到50%,问高温热源的温度应提高多少?解:由21-1=T Tη得原高温热源的温度为 21280467K 110.4T T η===--50%η=时对应的高温热源的温度为21280'560K 1'10.5T T η===-- 高温热源应提高的温度为560K 467K =93K -7-2 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为[ ]。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理习题及解答(打印版)

大学物理习题及解答(打印版)

q V = 4πε o r
9
q .o V = o 4πε o R
q
.o
x
r
R dq
10
圆弧圆心、圆环轴线上的电场?
例题 均匀带电圆盘,半径为R,电荷面密度为 σ,求轴线上离盘心距离为x的P点的电势。(取无穷远 为电势零点) 解 将圆盘分为若干个圆环, 利用圆环公式积分。 P
例题 求半径为R、总电量为q的均匀带电球面的电 势分布。 q 解 由高斯定理求出其场强分布:
习题一 7.用总分子数N、气体分子速率v和速率分布函数f(v)表 示 速率大于v0的那些分子的平均速率=_________ ;
习题二 7. 氢分子的质量为3.3×10-24g,如果每秒有1023个氢分子 沿着与容器器壁的法线成45°角的方向以105cm·s-1的速 率撞击在2.0cm2面积上(碰撞是完全弹性的),则此氢 气的压强为___________ *103 Pa 2.33 2.33* 一个分子碰撞一次动量的变化为
-q
a
R
+q
R o
c
R
将Vo代入功的式子,得
A∞ o = −
q πε o a
q 6 πεo R qqo 6πεo R
8
∴ Aac = −
7
例题 一均匀带电直线段,长为L,电量为q;求直 线延长线上离一端距离为d的P点的电势。(取无穷远 为电势零点) 解 将带电直线分 为许多电荷元dq(点电 荷),利用点电荷电势公 式积分:
∂V ∂V = 0, E z = − =0 ∂y ∂z
17
18
3
例题7.1 两平行金属板A、B,面积S, 相距d, 带电:QA,QB,求两板各表面上的 电荷面密度及两板间的电势差(忽略金属板的 边缘效应)。 解 (σ1+ σ2)S=QA (σ3+ σ4)S=QB P1点: P2点:

大学物理教材习题答案

大学物理教材习题答案

⼤学物理教材习题答案第⼀章质点运动习题解答⼀、分析题1.⼀辆车沿直线⾏驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的加速度最⼤。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最⼤,速度最⼤。

2.有⼒P 与Q 同时作⽤于⼀个物体,由于摩擦⼒F 的存在⽽使物体处于平衡状态,请分析习题图1-2中哪个可以正确表⽰这三个⼒之间的关系。

答: C 。

三个⼒合⼒为零时,物体才可能处于平衡状态,只有(C )满⾜条件。

3.习题图1-3(a )为⼀个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移⼀直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在⽔平桌⾯上做直线运动,其速率随时间的变化如习题图1-4所⽰。

问:(1)设s 0=t 时,物体在cm 0.2=x 处,那么s 9=t 时物体在x ⽅向的位移是多少?(2)在某⼀时刻,物体刚好运动到桌⼦边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s 0.2cm/s 4a == 由图可得:0 2.0cm s =,00.8cm/s v =, 1.0cm/s t v =-,则由匀减速直线运动的位移与速度关系可得:22002() t a s s v v -=- 2200()/2t s v v a s =-+ 22[0.8( 1.0)]/20.2 2.0cm =--?+1.1c m =(2)当物体运动到桌⼦边缘后,物体将以⼀定的初速度作平抛运动。

2.设计师正在设计⼀种新型的过⼭车,习题图1- 5为过⼭车的模型,车的质量为0.50kg ,它将沿着图⽰轨迹运动,忽略过⼭车与轨道之间的摩擦⼒。

大学物理习题答案

大学物理习题答案

B 班级 学号 姓名第1章 质点运动学1-2 已知质点的运动方程为r i 3j 6k e e tt-=++。

(1)求:自t =0至t =1质点的位移。

(2)求质点的轨迹方程。

解:(1) ()k j i r 630++= ()k j i r 6e 3e 1-1++= 质点的位移为()j i r ⎪⎭⎫⎝⎛-+-=3e 31e ∆(2) 由运动方程有t x e =,t y -=e 3, 6=z 消t 得 轨迹方程为 1=xy 且6=z1-3运动质点在某瞬时位于矢径()y x,r 的端点处,其速度的大小为( D ) (A)dt dr (B)dt d r(C)dt d r (D)22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx1-5某质点的运动方程为k j i r 251510t t ++-=,求:t =0,1时质点的速度和加速度。

^解:由速度和加速度的定义得k j r v t dt d 1015+==, k va 10==dtd 所以 t =0,1时质点的速度和加速度为 015==t j v 11015=+=t kj v1010,ka ==t1-8 一质点在平面上运动,已知质点的运动方程为j i r 2235t t +=,则该质点所作运动为[ B ](A) 匀速直线运动 (B) 匀变速直线运动 (C) 抛体运动 (D) 一般的曲线运动*1-6一质点沿Ox 轴运动,坐标与时间之间的关系为t t x 233-=(SI)。

则质点在4s 末的瞬时速度为 142m·s -1 ,瞬时加速度为 72m·s -2 ;1s 末到4s 末的位移为 183m ,平均速度为 61m·s -1 ,平均加速度为 45m·s -2。

解题提示:瞬时速度计算dt dxv =,瞬时加速度计算22dtx d a =;位移为()()14x x x -=∆,平均速度为()()1414--=x x v ,平均加速度为 ()()1414--=v v a】~1-11 已知质点沿Ox 轴作直线运动,其瞬时加速度的变化规律为t a x 3=2s m -⋅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
习题
5
5-2.如习题5-2图所示的直角三角形ABC 的A 点上有电荷q 1=1.8×10?9
C ,B 点
上有电荷
q 2=-4.8×10?9 C ,试求C 点的电场强度(设BC=0.04m ,AC=0.03m )。

解:设CB 为x 轴,AC 为y 轴,则C N E x
/107.204
.0410
8.442
09
⨯=⨯⨯=-πε,
C N E /108.103
.04108.142
09
y ⨯=⨯⨯=
-πε,C N E E E y x /102.34
22⨯=+=,电场方向和CB 的夹角为
︒==7.33arctan
x
y E E ϕ
5-3.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心处的电场强度。

[解]将半圆环分成无穷多小段,取一小段dl ,带电量l R
Q q d d π=
dq 在O 点的电场强度2
0204d 4d d R l
R Q R q E πεππε== 从对称性分析,y 方向的电场强度相互抵消,只存在x 2
020
202x x 2d 4sin d R Q
R Q E E E επθεπθπ
=
===⎰
⎰方向沿x 5-4.如习题5-4图所示,真空中一长为L 的均匀带电细直杆,总电量为
q ,试求在直杆延长线上到杆的一端距离为d 的点P 的电场强度。

[解]建立如图所示坐标系ox ,在带电直导线上距O 点为x 处取电荷元
x L
q
q d d =
,它在P 点产生的电电场强度度为 则整个带电直导线在P 点产生的电电场强度度为 故()i
E
d L d q
+=
04πε
5-5.一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ。

求板内外的电场分布,并画出电场强度随坐标x 变化的图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板)。

解:做底面平行带电平板、侧面垂直于带电平板的圆柱状高斯面,高斯面的中心位于带电平板的中央平面上。

设圆柱状高斯面的高度为2x ,根据高斯定理,有:
0022222ερερxS ES d x dS ES d x =<=
>
时,时,,得
⎪⎩⎪⎨⎧>≤≤-<=2/2/2/-d/2x )d/(2x/)d/(2-000d x d x d E ερερερ
5-6.一半径为R 的带电球体,其电荷体密度分布为?=Ar (r ≤R ),?=0(r >R ),A 为常量。

试求球内、外的场强分布。

[解]在带电球体内外分别做与之同心的高斯球面。

应用高斯定理有0
2
4επq
r
E =

q 为高斯球面内所包围的电量。

设距球心r 处厚度为d r 的薄球壳所带电量为d q r ≤R 时403
d 4Ar r Ar
q r
ππ==

习题5-2图
A
B
C
解得02
4εAr E =(r ≤R )(或2
4Ar ε=
r E e ) r >R 时高斯面内包围的是带电体的总电量Q
应用高斯定理0
2
4επQ
r
E =

2044r AR E ε=(r >R )(或r E 2
04
4r
AR ε=) 当A >0时,电场强度方向均径向向外;当A <0时,电场强度方向均指向球心。

5-7.如习题5-7图所示,一半径为R 的无限长圆柱面形薄筒,均匀带电,单位长度
上的带电量为
?,试求圆柱面内外的电场分布。

解:由条件知电场分布具有轴对称性,做半径为r 的同轴圆柱高斯面,由高斯定理,
020
2ελl πrl ,E R r πrl ,E R r =⋅>=⋅<时时,得⎪⎩⎪
⎨⎧><=R r r
R r E ,2,
00πελ
5-8.如习题5-8图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度为E 0,两平面外侧电场强度大小都是E 0/3,方向如图。

求两平面
A 、
B 上的面电荷密度?A 和?B 。

[解]无限大平面产生的电场强度为0
2εσ
=
E
则0A A
2εσ=
E 0
B
B 2εσ
=E 解得00A
32E εσ-=00B 3
4
E εσ=
5-9.如习题5-9图所示为一真空中半径为R 的均匀带电球面,
总电量为q (q <0)。

今在球面上挖去非常小的一块面积△S (连同电荷),
且假设不影响原来的电荷分布,求挖去△S 后球心处电场强度的大小和方向。

解:原来球心处电场强度为零,挖去△S 后球心处电场强度等于△S 处电荷产生的电场强度的负值,即等于
4
022*******
R S q R S q R επππε∆=
∆,方向由△S
指向球心。

5-10.习题5-10图为两个半径均为R 的非导体球壳,表面上均匀带电,带电量分别
为+Q 和-Q ,两球心距离为d (d>>2R ),求两球心间的电势差。

[解]设带正电的球壳中心的电势为1U ,带负电的为2U 。

根据电势叠加原理有 两球心间的电势差
⎪⎭

⎝⎛-=
-
=
-=d R Q d
Q R
Q U U U 112220002112πεπεπε
5-11.如习题5-11图所示为一均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为R 1,球
壳外表面半径为R 2。

设无穷远处电势为零,求空腔内任一点的电势。

习题5-8图
000
习题5-7图
习题5-9图
习题5-10图
解:利用电势叠加法,将球壳分成无穷多个半径为r ,厚度为d r 的薄球壳,有
5-12.电量q 均匀分布在长为2l 的细杆上,求在杆外延长线上与杆端距离为a 的点P 的电势(以无穷远为电势零点)。

[解]取如图所示的电荷元d q ,x l
q
q d 2d =
,它在P 点产生的电势为 则整个带电直线在P 点产生的电势为
5-13.如习题5-13图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。

设两板面积都是S ,板间距为d ,S d <<,忽略边缘效应,
求B 板两个表面的感应电荷面密度和A 、B 两板间的电势差。

[解](1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号
相同,因此当板B 不接地,电荷分布为
B 板靠近A 一侧S 2Q
-
=σ,远离A 一侧S
2Q =
σ 因而板间电场强度为S
Q E
02ε=
电势差为S
Qd
Ed U 0AB
2ε=
= 5-14.如习题5-14图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面
带电量之和为?。

试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。

[解]导体板内场强0=内
E ,由高斯定理可得板外场强为
故A 、B 两点间电势差为
为λ+和λ-,两
5-15.半径都是R 的两根无限长均匀带电直导线,其电荷线密度分别直导线平行放置,相距为d (d >>R )。

试求该导体组单位长度的电容。

[解]由高斯定理可求出,两导线之间任一点的电电场强度度为
两导线间的电势差为 该导体组单位长度的电容R
d R
R
d U
ln ln
C 0
πεπελ
=
-=∆=
5-16.一电容为C 的空气平行板电容器,接端电压为U 的电源充电后随即断开。

试求把两个极板间距增大至n 倍时外力所做的功。

[解]断开电源后Q 不变,电容由原来的d
S
C
0ε=
,变为nd
S
C 0ε=
'
外力所做的功即相当于系统静电能的改变量 由于Q 不变,C n C '=,所以nU U ='
因此222
1
U n C W '=
' 即外力做功()12
12
-=n CU A
习题5-13图
B
A
d +Q
P x
dq dx O x
B A -Q/2
Q/2
Q/2Q/2


Ⅱ a
b
d
?。

相关文档
最新文档