海洋微藻作为生物柴油生产的新型资源研究-文档资料
以海洋微藻为原料提取生物燃料的研究进展与发展趋势_王蒙

第5卷第1期2009年2月南 方 水 产S o u t hC h i n a F i s h e r i e s S c i e n c eV o l .5,N o .1F e b .,2009d o i :10.3969/j .i s s n .1673-2227.2009.02.013收稿日期:2008-11-06;修回日期:2008-12-08资助项目:广东省海洋渔业科技推广专项资金项目(2008)作者简介:王 蒙(1982-),男,硕士研究生,从事海洋生物学研究。
E -m a i l :1982-w m @163.c o m 通讯作者:李纯厚,E -m a i l :s c s l c h @v i p .163.c o m·综述·以海洋微藻为原料提取生物燃料的研究进展与发展趋势王 蒙1,2,李纯厚1,戴 明1(1.农业部海水养殖生态与质量控制重点开放实验室,中国水产科学研究院南海水产研究所,广东广州510300;2.上海海洋大学,上海201306)摘要:能源短缺已经引起了各国的广泛关注,各国科学家将目光投向生物燃料。
然而由于大量使用玉米、大豆等农产品生产生物乙醇等燃料,导致生物燃料“与人争粮”和“与粮争地”现象严重。
文章综述了用于提取生物燃料的海洋微藻藻种的筛选、纯化、大规模培养及采收方法的优缺点以及生物燃料的提取工艺等方面的主要进展,并对该产业的发展趋势进行了初步分析。
关键词:生物燃料;微藻;提取;筛选;培养中图分类号:T K 6文献标识码:A文章编号:1673-2227-(2009)02-0074-07T h e r e s e a r c hp r o g r e s s a n dd e v e l o p m e n t t r e n do ne x t r a c t i o n o fb i o f u e l f r o m m a r i n e m ic r o a l g a eW A N GM e n g 1,2,L I C h u n h o u 1,D A I M i n g1(1.K e y L a b .o f M a r i c u l t u r e E c o l o g y a n d P r o d u c t s Q u a l i t y a n d S a f e t y ,M i n i s t r y o f A g r i c u l t u r e ,S o u t h C h i n a S e aF i s h e r i e s R e s e a r c hI n s t i t u t e ,C h i n e s e A c a d e m y o f F i s h e r y S c i e n c e s ,G u a n g z h o u 510300,C h i n a ;2.S h a n g h a i O c e a nU n i v e r s i t y ,S h a n g h a i 201306,C h i n a )A b s t r a c t :E n e r g y s h o r t a g e s h a s c a u s e dw i d e s p r e a dc o n c e r ni na l l c o u n t r i e s .T h es c i e n t i s t s t u r nt o b i o f u e l s .H o w e v e r ,d u et ol a r g e -s c a l e u s e o f c o r n ,s o y b e a n s a n d o t h e r a g r i c u l t u r a l p r o d u c t s f o r p r o d u c t i o no f b i o f u e l s s u c ha s e t h a n o l ,a n dt h es i t u a t i o nt h a t b i o f u e l s c o m p e t e f o o dw i t hh u m a n a n dc o m p e t e a r t h w i t h c r o p s i s s e r i o u s .T h i s p a p e r r e v i e w e d t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f m e t h o d s f o r s c r e e n i n g ,p u r i f i c a t i o n ,l a r g e -s c a l e c u l t i v a t i o n a n dh a r v e s t i n g .B i o f u e l e x t r a c t i o n a r t a s w e l l a s t h ei n d u s t r i a l d e v e l o p m e n t t r e n dw e r e a n a l y z e d .K e yw o r d s :b i o f u e l ;m i c r o a l g a e ;e x t r a c t i o n ;s c r e e n i n g ;c u l t u r e 随着经济建设的飞速发展,能源短缺已成为世界各国极为关注的焦点。
微藻制取生物柴油研究进展

微藻制取生物柴油研究进展(不出现-固碳)一是稿子主要是讲微藻制生物柴油,建议把固碳部分单独写一个,这个稿子题目中就别出现固碳了。
制生物柴油是固碳的重要形式,但固碳不全是制生物柴油。
微藻能将二氧化碳转化为生物燃料、食品、饲料和高价值的生物活性物,而且这些光合微生物还可用于生物除污以及作为固氮生物肥料,好比日光驱动的细胞工厂。
微藻能够提供不同类型的可再生生物燃料,包括用海藻生物质经厌氧消化后产生的甲烷、从微藻油脂中提取的生物柴油以及直接光生物合成的生物氢气。
利用微藻做燃料的构想不自今日始,随着石油价格的节节上涨,这种想法目前越来越受到重视;而燃烧化石能源导致全球变暖给人们带来的新忧虑,使得微藻燃料具有了更重要的意义。
一、微藻来源与功能作用(一)微藻的来源微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物。
它是低等植物中种类繁多、分布极其广泛的一个类群。
无论在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方,微藻都能生存。
若要大规模地利用藻类生物质来制取生物柴油,就必须保证有充分的藻类生物质。
目前藻类的来源主要有2个途径,一是收集湖泊、河湾、水库、池塘等富营养化水体中天然生长的大量浮游藻类;二是人工户外养殖制备,这也是获取藻类生物质的最主要和最有效的方法。
微藻是一类在水中生长的种类繁多且分布极其广泛的低等植物,它是由阳光驱动的细胞工厂,通过微藻细胞高效的光合作用,吸收CO2,将光能转化为脂肪或淀粉等化合物的化学能,并放出O2。
微藻是光合效率最高的原始植物,也是自然界中生长最为迅速的一种低等植物,而且某些微藻可以生长在高盐、高碱环境的水体中,可充分利用滩涂、盐碱地、沙漠进行大规模培养,也可利用海水、盐碱水、工业废水等非农用水进行培养,还可以利用工业废气中的CO2。
因此,微藻生物柴油成为了潜在的能源研究热点。
(二)微藻制备生物柴油的优势1.微藻可以实现二氧化碳的减排随着石油、天然气和煤炭大量的消耗和使用,许多城市的空气质量状况较差,严重威胁着城市的发展和人们的健康。
海洋微藻生产生物柴油的应用前景

海洋微藻生产生物柴油的应用前景An application prospect of biodiesel from marine microalgae韩笑天1,郑 立2,孙 珊1,3,邹景忠1(1.中国科学院海洋研究所,山东青岛,266071;2.国家海洋局第一海洋研究所,山东青岛266061;3.青岛科技大学,山东青岛266042)中图分类号:T K6 文献标识码:A 文章编号:100023096(2008)0820076206 石油作为一种天然矿物资源的出现,极大地推动了现代文明和社会发展,为丰富人类的生活做出了极大贡献。
然而,近几年,随着储量日益减少,资源逐渐枯竭和因石化油燃烧带来的环境污染问题,全世界正面临着能源短缺和生态环境受害的危机,因此,寻求一种绿色的可持续发展的新能源成为世界各国科学家普遍关注的科学问题和发展趋势。
生物柴油是清洁的可再生能源,它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石油柴油代用品。
与石油柴油相比,生物柴油具有可再生、易生物降解、无毒、不污染环境等特点,可作为一重要新能源取代或者部分替代石油柴油[1~10]。
油脂原料的选择主要决定于原料成本以及其来源的广泛性。
据统计,生物柴油制备成本的75%是原料成本,因此采用廉价原料及提高转化率从而降低成本是生物柴油能否实用化的关键。
油料植物由于占用耕地面积、生长周期长、受气候影响等缺点,而不能成为生物柴油原料油脂供应的长久之策。
海洋微藻是海洋生态体系中有机物和能量的主要提供者,与其他原料相比,具有光合作用效率高、环境适应能力强、生长周期短、生物产量高的特点[11~13],本身可以生化合成油脂,且油脂含量高,所以海洋微藻作为制备生物柴油燃料的新来源展现出广阔的应用前景,受到了世界各国的广泛重视,作者就目前国内外对海洋微藻制油的研究进展做一介绍。
新一代生物柴油原料_微藻

新一代生物柴油原料——微藻 童 牧 周志刚(上海海洋大学农业部水产种质资源与利用重点开放实验室,上海 201306)摘 要:生物柴油是指来自生物体的油脂经转酯作用而形成的单烷基脂肪酸酯。
从目前的情况来看,以高等植 物、动物等油脂为原料生产的生物柴油根本无法满足人们的需求。
某些微藻因含油量高、易于培养、 单位面积产量大等优点,而被视为新一代的、甚至是唯一能实现完全替代石化柴油的生物柴油原料。
该文结合中国生物柴油的发展状况,剖析了利用微藻生产生物柴油的优势,并就其存在的劣势重点地 从优良藻种的筛选、产油培养条件与技术的改进、生物柴油提炼方法与过程系统化等方面,提出了应 对措施,并展望了其应用的前景。
关键词:微藻;生物柴油;中性脂;可再生能源;转酯作用 0 引言 石油是一个国家的经济和社会发展的命脉。
随着化石能源资源的枯竭,原油价格一路飙升,世界各国不得不考虑加快石油替代原料的研究与开发步伐,其中生物柴油被视为一种可再生的取代能源越来越受到重视[1]。
如今我国对石油的需求量已居世界第二,石油一旦出现危机必将会严重影响我国经济的发展与社会的稳定。
所以,中国工程院院长徐匡迪及众多的中国能源专家都认为“立足于本国原料大规模生产替代液体燃料——生物柴油(biodiesel),对增强中国石油安全具有重要的战略意义”[2]。
然而在生物柴油开发和利用的同时,世界各国都面临着生物质原料供应不足这样一个“瓶颈”问题,因此,寻找新一代的生物柴油原料已经迫在眉睫。
某些微藻(microalgae)因含油量高、易于培养、单位面积产量大等优点,被视为新一代的、甚至是唯一能实现完全替代石化柴油的生物柴油原料。
微藻也称单细胞藻类,是指那些在显微镜下才能辨别其形态的微小藻类。
相对于高等植物,它们能更有效地利用太阳能,将水和CO2等无机物质合成为有机物质[3]。
微藻能提供不同种类的生物燃料(biofuel),如甲烷、生物柴油、氢甚至生物乙醇等[4-6]。
国标-》应用工程微藻制备生物柴油的新途径

应用工程微藻制备生物柴油的新途径‟宋东辉1,侯李君1,施定基1工‟(1天津科技大学海洋科学与工程学院,天津,300457;2中国科学院植物研究所,北京,100093)摘要:生物柴油作为化石能源的替代燃料已在国际上得到广泛应用。
至今生物柴油的原料主要来自油料植物,但与农作物争地的情况以及较高的原料成本限制了生物柴油的进一步推广。
微藻作为高光合生物有其特殊的原料成本优势,微藻的脂类含量最高可达细胞干重的80%。
利用生物技术改良微藻,获得的高油脂基因工程微藻经规模养殖,可大大降低生物柴油原料成本。
本文介绍了国内外生物柴油的应用现状,阐述了微藻作为生物柴油原料的优势,对基因工程技术调控微藻脂类代谢途径的研究进展,以及在构建工程微藻中面临的问题和应采取的对策进行了综述和展望。
关键词:基因工程;微藻;生物柴油随着全球经济一体化的不断发展,石油作为战略资源已成为世界各国能源经济的最主要内容。
我国目前是世界上第二大能源生产和消费国,石油供给不足已经成为影响我国经济和社会发展的主要矛盾之一。
发展替代能源是保障能源安全的重大战略举措。
近年来生物柴油作为化石能源的替代燃料,已成为国际上发展最快、应用最广的环保可再生能源。
本文结合国内外生物柴油的研究进展,综述微藻基因工程制备生物柴油的可行性和发展趋势,以及我国在利用微藻基因工程解决生物柴油原料成本问题上的可能对策。
1国内外生物柴油原料的研发进展1.1世界各国制备生物柴油的原料选择生物柴油不含石蜡,闪点高,燃烧性能和效率要高于普通柴油,使用时更安全;同时可以通过种植、养殖或培养源源不断地得到,因而属于可再生资源;生物柴油产品中含硫和氮较少,可以减少产生s02 和NO对大气的排放量Ⅲ。
由于生物柴油具有其他生物质燃料不可比拟的优良特性,世界各国纷纷开展生物柴油原料的研发和产业化工作,以替代储量日益减少且严重污染环境的化石燃料。
按照当前技术,利用动植物油脂等原料生产生物柴油,其原料成本占总生产成本的50.85%”】,所以原料成本是决定生物柴油价格的最主要因素。
微澡-生物柴油--论文

微藻生物柴油的发展前景及研究方向摘要:化石燃料是当前人类使用的主要能源,但其日益消耗殆尽,同时造成了严重的温室效应和环境污染问题,因此,生物柴油被当作化石燃料的绿色替代品,这种可再生的碳中性的能源对于环境和经济可持续发展是必要的.而微藻因含油量高,生长速率快,能利用温室气体CO2等优势,成为制备生物柴油最有潜力的原料之一。
该文介绍了生物柴油的优势,阐述了微藻作为生物柴油原料的优越性,对在微藻生物柴油技术国内外现状及面临的问题和今后的研究方向进行了综述和展望。
关键词:生物柴油微藻可再生能源综述:随着能源安全和环保问题日益严峻,开发利用环境友好的可再生性能源迫在眉睫。
目前,可替代石油产品的可再生能源主要是生物乙醇和生物柴油。
生物乙醇在国内外的发展已具有一定规模,尤其是利用非粮作物(如木质纤维素等难于水解的生物质)为碳源生产乙醇具有广阔的发展前景,但在低成本生产技术方面一直难以有重大突破。
近年来,生物柴油作为化石能源的替代品,已成为国际上发展最快、应用最广的环保可再生能源,但制约其大规模发展的关键问题是原料严重不足。
近年来,人们普遍认为微藻光自养生长过程合成的油脂是一种极有希望制备生物柴油的原料。
1.生物柴油的优势和缺点生物柴油是以生物体油脂为原料,通过分解、酯化而得到的长链脂肪酸甲酯,是一种可以替代普通柴油使用的环保、可再生能源。
生物柴油的油脂原料来自植物油脂(大豆油、玉米油、菜籽油、棕榈油等)、动物油脂(各种动物脂肪)、微藻脂肪酸以及废弃食用油(地沟油)等。
生物柴油作为化石燃料的替代品,与化石柴油及燃料乙醇等其他液体燃料相比,有突出的特性:生物柴油不含石蜡,闪点高,燃烧性能和效率要高于普通柴油,使用时更安全;同时可以通过种植、养殖或培养源源不断地得到,因而属于可再生资源;生物柴油产品中含硫和氮较少,可以减少产生S02和NO对大气的排放量。
以淀粉类作物和木质纤维素类物质发酵产生的燃料乙醇,燃烧后尾气排放污染小,但其热值只有普通汽油的2/3,比柴油更低,且乙醇易吸水使燃烧值下降。
以微藻为原料的第三代生物燃料的研究概况

以微藻为原料的第三代生物燃料的研究概况摘要温室效应与石化能源紧缺已成为全球问题,生物燃料作为一种可再生且环境友好的替代能源受到人们的普遍关注。
不少微藻油含量高,环境适应性强,净碳值几乎为零,是第三代的生物燃料最重要的原料之一。
本文综述了目前海藻在生产生物燃料过程中的优势、培养方法、技术概况等,提出了目前存在的问题及未来的发展期望。
关键词:微藻;生物燃料;培养方法;转化技术AbstractBiofuel is payed more and more attention as a kind of renewable and environmentally friendly alternate energy source as global warming and fossil energy shortage are becoming global problems. Many microalgaes have higher oil content, better enironmental adaptation and net carbon value is almost to zero. It's the most important raw material of the third generation biofuel. In this article, the advantages of the process of microalgaes' producing biofuel at present, the training method and the outline of technology is reviewed in this article. The problems exists now and the future prospect are proposed as well.Key Words:Microalgae;Biofuel;Training;Method;Transforming Technology1 前言20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。
利用海藻发展生物燃油

利用海藻发展生物燃油浅析摘要:本文介绍了国内外利用海藻发展生物燃油相关技术的研究进展情况,分析了实现产业化发展的关键问题,提出了我国在这一领域的战略思考和重点研究方向。
关键词:海藻;生物燃油;能源;减排;1引言随着全球经济的发展,能源将日趋紧张。
传统能源的迅速减少以及严重的污染问题,已经严重危害到全球的经济和环境。
我们必须减少对化石资源的依赖,加大可再生能源的开发和利用。
目前,生物质能生产主要以农作物为原料,对粮食、耕地、水等资源需求巨大,因为资源供给的限制,难以满足市场需求。
海洋生物质能的开发为解决这一问题提供了出路。
2利用海藻发展生物燃料研究的背景和现状生物质能是以生物质为载体,将太阳能以化学能形式贮存其中,能源主要依靠植物的光合作用产生。
生物能可以转化为固态、液态和气态燃料形式,替代传统的化石燃料,具有环保和可再生双重属性。
工程海藻的研究和开发,为生物质能产业提供充足和廉价的原料供给成为可能。
美国从1976年起就启动了微藻能源研究。
目前,美国的科学家已经培育出富油的工程小环藻,这种藻类比自然状态下微藻的脂质含量提高3至12倍。
2006年11月,美国亚利桑那州建立了可与1040兆瓦电厂烟道气相连接的商业化系统,成功地利用烟道气的二氧化碳,大规模光合成培养微藻,并将微藻转化为生物“原油”。
2007年,美国启动“微型曼哈顿计划”,计划实现微藻制备生物柴油的工业化。
美国能源局计划在各项技术全面进展的前提下,将微藻产油的成本于2015年降至2至3美元/加仑。
2007年,日本启动了大型海藻的能源计划项目,利用马尾藻生产汽车用乙醇。
预计到2020年,栽培面积将达1万平方公里,每年可收获6500吨干藻,可以生产约200万升燃料乙醇,相当于现有日本汽车油耗量的三分之一。
今年,我国微藻能源方向首个国家重点基础研究发展计划(“973计划”)项目“微藻能源规模化制备的科学基础”,已经正式启动。
该项目将以推动微藻能源规模化制备中核心技术的重大突破为目标,提高微藻能源规模化制备系统中各单元的效率为主线,研究从藻种选育到微藻能源规模化制备系统构建过程中亟待解决的生物学及工程学方面的关键科学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 藻类生长测定
• 从藻类扩大培养的第一天起至收集过滤藻 液,每天或隔天取一部分藻液用紫外分光 光度计测其OD值,以判断藻类的生长状况, 并取实验结束时的藻液用鲁哥氏液固定, 细胞计数时取0.1ml于浮游植物计数框在显 微镜下进行,并计算藻细胞密度与OD值的 比率,以确定生长期间藻细胞密度的变化。
藻株序号
总脂含量最高的藻株有三角褐指藻、血色紫球藻、尖细拟菱形藻,它们的总脂含量在 30%以上;其次为假微型海链藻,扭曲小环藻,热带骨条藻和旋链角毛藻,总脂含量 在20~30%之间,再其次为细弱海链藻,牟氏角毛藻,威氏海链藻,新月菱形藻,总 脂含量在10~20%之间;含量最低的为自养小球藻,多枝舟形藻和圆海链藻,均在 10%以下。
0.018
0.020
0.034
0.058
0.063
0.035Βιβλιοθήκη —0.101—
0.128
0.013
—
0.201
—
0.264
0.025
—
0.094
—
0.117
0.016
0.030
0.082
0.162
0.343
0.009
—
0.037
—
0.060
0.079
—
0.187
—
0.212
0.054 0.008 0.013 0.009 0.043
1)
值
1536.4
3529250
78.1
881199
128.8
1008877
995.3
3765446
305.1
2614860
650.0
1752022
9.5
159000
297.0
1400943
224.3 319.3 1308.8 215.0 1479.0
947886 2956787 6533111 2549407 3838235
2.1主要仪器与试剂
• 光照培养箱(宁波赛福PXX-280B),旋转蒸发 器(R206),超声波细胞破碎仪(JY92-II),显微 镜(Olympus BH-2),紫外分光光度计 (UNICAM UV300),气相色谱仪 (VARIAN CP3800)
• 氯仿、甲醇均用分析纯。
2.2样品采集与藻种分离筛选
2.5 总脂测定
• 采用氯仿-甲醇(CHCL3-CH3OH)提取法。 将冻干的滤膜剪成小片,分几次加入氯仿甲醇(1:2)混合液振荡提取脂肪直至滤膜上藻 体颜色变白,在所得氯仿-甲醇抽提液中 加入蒸馏水使溶液最终比例为氯仿-甲醇 -水(8:4:3)[10]。溶液分层后,取氯仿层 即下层液体,倒入已知重量的旋转瓶中, 用旋转蒸发器旋转蒸干,测出旋转瓶中剩 余物质重量即为总脂重量。
2.7 热解产油实验
• 把藻类接种于多个10升的三角瓶中扩大培养, 同2.3 的方法和条件进行培养与样品收集、 处理。取获得的藻粉在流化床反应器上进 行快速热解,温度450℃,收集获得的热解 液化产物和固体焦炭,分别称重,并计算 产油率。
3、实验结果3.1 藻种分离筛选
3.2 不同藻类的生长
中文学名 三角褐指藻 细弱海链藻 威氏海链藻 假微型海链藻
— — 0.019 — 0.058
0.189 0.087 0.061 0.050 0.136
— — 0.116 — 0.206
0.237 0.108 0.164 0.084 0.342
7 0.435 0.089
— — — 0.371 — — — — 0.200 — 0.385
终藻密度(x103个·ml- 藻密度/OD比
生长相对较快的藻种为三角褐指藻、自养小球藻、牟氏角毛藻、假微型海链藻和 新月菱形藻。
3.3 不同微藻细胞内的总脂含量和产量
总脂含量
总脂产量
50
250
40
200
总脂含量/(%干重) 总脂产量/mg·L-1
30
150
20
100
10
50
0
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
• 1.采样地点:主要采样地点包括厦门港、东 山鲍鱼养殖区、舟山群岛水域、香港水域, 除厦门港为自己取样外,其余样品均委托 厦门大学生命学院硅藻实验室协助采集。
• 2.采集方法:样品采集包括采水和拖网两种。 • 3.分离方法:采用微细吸管分离法进行藻株
分离。
2.3 藻类培养与样品处理
• 实验前,在500ml锥形瓶(每个藻种取三个重 复样)中进行藻种的扩大培养,在光照5000 lx,12 h:12 h下,用f/2培养液,20℃培养, 在微藻指数生长期末期时进行收获。用 Whatman玻璃纤维滤膜过滤收集藻泥,冷冻 干燥,称重,于4℃中保存待用。
圆海链藻 牟氏角毛藻 旋链角毛藻 扭曲小环藻 新月菱形藻 尖细拟菱形藻 多枝舟形藻 血色紫球藻 自养小球藻
1 0.024 0.003
— — — 0.017 — — — — 0.005 — 0.027
不同藻种生长期间的OD值及其藻密度/OD比值
天数
2
3
4
5
6
0.055
0.112
0.288
0.347
0.407
海洋微藻作为生物柴油生产 的新型资源研究
1、绪论
• 生物柴油是一种发展潜力巨大的可再生能源,海 洋微藻作为其原料生物具有资源丰富和产油量高 等明显优势。本项目分离筛选到了13种海洋硅藻, 对这些硅藻和另2种微藻的生长、总脂含量及脂肪 酸进行了测定分析,发现硅藻的脂含量(占干重 %)普遍较高,最高为三角褐指藻(36.2%).以高 产生物油为目标,最终筛选获得了生长快、总脂 与饱和脂肪酸含量高、资源易得的4种赤潮硅藻 (三角褐指藻、假微型海链藻、旋链角毛藻、热 带骨条藻),它们是生物柴油生产的理想生物。 三角褐指藻的热解产油试验得到了34.2%(占干重 比例)的产油率,证实了利用海洋微藻生产生物 油燃料的可行性及把赤潮硅藻化废为宝的优势, 有明显的经济和社会价值与应用前景。
2.6 脂肪酸测定
• 脂肪酸的提取参考Lepage(1984)的方法略加修改[11]。将 冻存的200mg带膜藻粉放入带盖的螺口试管①中,加入4ml CHCL3-CH3OH混合液(V/V=2:1),充N2一分钟后密 闭封口;用超声波细胞破碎仪萃取30分钟(温度低于40℃, 萃取时间分两次进行,间隔时间萃取液置于-20℃);往 带螺旋帽的水解管②加入0.3ml的内标溶液(0.2mg/ml), 用N2吹干后,倒入螺口试管①萃取液,摇匀反应,接着用 N2浓缩吹干后,加入2mol/L HCL-CH3OH溶液,充N2后 密闭于100℃水浴中反应40分钟;冷却后用2ml正己烷分两 次提取,合并提取液(正己烷层)于具塞离心管中,用N2 吹至100µl左右,在气相色谱仪上进行脂肪酸测定。