初中数学_初一_一元一次方程的应用(工程、盈利、储蓄、分配、行程问题)(修复的)

合集下载

初一数学一元一次方程应用题的工程问题完整版

初一数学一元一次方程应用题的工程问题完整版

初一数学一元一次方程应用题的工程问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】工程问题?基本的数量关系:⑴工作量=工作时间×工效?⑵⑶工作时间=工作量÷工效?⑷⑸工效=工作量÷工作时间?⑹常用的等量关系:⑴各部分工作量之和=工作总量?⑵各阶段工作时间之和=总时间?重要数据:①要清楚地表达出各个工作者的工作效率;②各阶段工作效率对应的工作时间。

题目类型:⑴有明确具体的工作量的工程问题:如运送1000吨煤,修一条长2500米的水渠,挖一个200m3的蓄水池等。

⑵没有具体准确的工作量的工程问题:如修一条公路(但公路的长度没有准确数据),做一项工程,挖一条水渠,这类题要把工作总量看作单位“1”。

利用时间可迅速表示出每个工作者的工作效率(这是七年级常用的方法)1、某工厂原计划用26天生产一批零件。

工作2天后,因改变了操作方法,每天比原来多生产5个零件,结果提前4天完成任务,则原来每天生产多少个零件这批零件有多少个2、某工程队派出大、小汽车共17辆去运75吨沙子,如果大汽车每辆每次可运沙子5吨,小汽车每辆每次可运沙子3吨,而且这些汽车恰好一次能运完这批沙子,那么其中大汽车有多少辆3、已知某水池有进水管一根,进水管工作15小时将空水池注满,出水管工作24小时可以将满池水放完;⑴如果单独打开进水管,每小时可以注入的水占水池的几分之几⑵如果单独打开出水管,每小时可以放出的水占水池的几分之几⑶如果将两管同时打开,每小时的效果如何如何列式。

⑷对于空池,如果进水管先开2小时,再同时打开两管,问注满水池还需要多少时间4、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天才能完成?5、一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做,剩下的部分需要几小时完成?6、某工程,甲队单独完成需要16天,乙队单独完成需要12天。

浙教初中数学七上《5.4 一元一次方程的应用》PPT课件 (10)

浙教初中数学七上《5.4 一元一次方程的应用》PPT课件 (10)

4、甲每天生产某种零件80个,乙每天生产这种零件x个
甲生产3天后,乙也加入生产同一种零件,再经过5天,
两人共生产
(3×80+5×80+5x)
个零件。
工程问题的基本数量关系:
工作总量=工作时间×工作效率
例6 甲每天生产某种零件80个,甲生产3 天后,乙也加入生产同一种零件,再经 过5天,两人共生产这种零件940个.问乙 每天生产这种零件多少个?
(4)根据怎样的数量关系列方程?
2.一收割 机队每天收割小麦12公顷,收割完一片麦地 的 后,该收割机改进操作,效率提高到原来的 倍,因此比预定时间提早1天完成.问这片麦地 有多少 公顷?
解:设这片麦地 有X公顷,由题意得
检验:x=180适合方程,且符合题意. 答:这片麦地 有180公顷
5
工程问题探索
一.教学目标:
1.进一步体会方程是刻画现实世界的有效的数学模型。
2.掌握调配问题工程问题的基本数量关系,进一步掌握分析数量 关系、列方程的方法 。
3.会用列表法、图示法分析应用题中的数量关系 。
二.教学重点:本节教学的重点是掌握调配问题、工程问题的基 本数量关系,进一步掌握分析数量关系,列方程的方法。
剩下工作由乙工作队完成,则修好这条公路共需要几天?
2 .已知开管注水缸,10分钟可满,拨开底塞,满缸水20 分钟流完,缸内的水流完后,现若管、塞同开,若干时间 后,将底塞塞住,又过了2倍的时间才注满水缸,求管塞 同开的时间是几分钟?
3.一个水槽有甲、乙两个水管。甲水管是进水管,,在5小时之内
可以把空水槽装满。乙水管是出水管,满槽的水在6小时内
三.教学难点:用图示的方法来分析应用题中的数量关系是本节 的教学难点。

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)

用一元一次方程解决实际问题( 工程问题、行程问题与球赛积分问题)(课件)七年级数学上册(苏教版)
7x+7×1=21,解得x=2
答:赢一场积2分
情景引入(球赛积分问题)
喜欢体育的同学经常观看各种不同类别的球赛,但是你们知道它们的计分规则吗?以及比赛
是如何计算积分吗?我们将学习如何用方程解决球赛积分问题。
问题五:用式子表示总积分与胜负场积分之间的数量关系?
问题六:某队的胜场总积分能等于它的负场总积分吗?
【详解】设火车车身长为米,依题意得:
4.5 × 800 = 3400 + ,解得: = 200,
答:这列火车车身长200米.
一辆货车从甲地运送货物到乙地,速度为a千米/小时,然后空车按原路返回时
速度为b千米/小时,求货车从送货到返回原地的平均速度.
2
2

+

【详解】解:设甲乙两地的路程为S千米,+ =
可得:6 + 15 − 3 = 27,
解得: = 4,
15 − 12 = 3,
答:该队平了3场,
利用一元一次方程解决实际问题-球赛积分问题
校园足球联赛规则规定:胜一场得3分,平一场得1分,负一场得0分.某
队比赛8场保持不败,得18分,则该队共胜几场?若设该队胜了x场,则
可列方程为__________________.
【详解】
8场比赛不败,说明这8场比赛中只有赢或平局。
根据题意得:3x+(8-x)=18,
利用一元一次方程解决实际问题-球赛积分问题
某电台组织知识竞赛,共设道选择题,各题分值相同,每题必答,下面
记录了个参赛者的得分情况。参赛者得分,它答对了__________道题.
【详解】
参赛

答对题数
分析:1)如果某队胜m场,总场次为 14 场,则负 14-m 场;

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

七年级-人教版-数学-上册-第2课时-一元一次方程的应用——工程问题

例2 某项工作,甲单独做需要 4 小时,乙单独做需要 6 小 时,甲先做 30分钟,然后甲、乙合作.甲、乙合作还需要多少 小时才能完成全部工作?
解法1:设甲、乙合作还需要x小时才能完成全部工作.
根据题意,得
1 4
1 2Βιβλιοθήκη x1 6x
1.
解方程,得 x=2.1.
答:甲、乙合作还需要2.1小时才能完成全部工作.
归纳
工程问题中的等量关系 (1)在工作总量不明确、不具体的情况下,通常把工作总量看 成单位____1__. (2)工作总量=_工__作__效__率__×__工__作__时__间__. (3)甲、乙合作的工作效率=_甲__的__工__作__效__率_+_乙__的__工__作__效__率__. (4)所有人工作量的和等于__总__工__作__量__.
为 8(x+2) .
40
40
思考 根据前面的分析,完成表格:
项目
人均效率 人数 时间/h 工作量
第一阶段工作
1
40
第二阶段工作
1 40
x
4
x+2
8
4x 40
8(x 2) 40
问题 列出方程,对本题进行解答.
解:设安排 x 人先做 4 h. 根据先后两个时段的工作量之和应等于总工作量,列出方程
4x 8(x 2)=1.
第2课时 一元一次方程的 应用——工程问题
上节课,我们学习了如何运用一元一次方程来解决实际问 题中的配套问题,本节课,我们来探究一元一次方程与实际问 题——工程问题.
在学习新课之前,先完成下面的填空: 工作量=__工__作__效__率__×__工__作__时__间__; 工作效率=_工___作__量__÷__工__作__时__间__; 工作时间=__工__作__量__÷__工__作__效__率__.

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程解决问题应用题全集

七年级数学一元一次方程应用题解答题全集【配套问题】1、某服装厂生产一种运动服,已知每3m长的布料可做上衣2件或裤子3条,一件上衣一条裤子为一套,计划用800m长的布料生产服装,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2、某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱和螺母的工人各多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺母的工人有名.3、某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?4、一张圆桌由一个桌面和四条桌腿组成.如果1m3木料可以制作圆桌的桌面50个,或制作桌腿300条,那么5m3的木料如何分配可以使桌面和桌腿正好配套?最多能制作成多少张圆桌?【工程问题】1、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?2、已知甲、乙二人合作一项工程,甲25天独立完成,乙20天独立完成,甲、乙二人合5天后,甲另有事,乙再单独做几天才能完成?3、一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?4、甲、乙两工程队共同承包了一段长9200米的某“村村通”道路硬化工程,计划由两工程队分别从两端相向施工.已知甲队平均每天可完成460米,乙队平均每天比甲队多完成230米.(1)若甲乙两队同时施工,共同完成全部任务需要几天?(2)若甲乙两队共同施工5天后,甲队被调离去支援其他工程,剩余的部分由乙队单独完成,则乙队需再施工多少天才能完成任务?【销售打折问题】1、某服装店,打折销售服装,若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)每件服装的标价多少元?每件服装的成本价多少元?(2)为了尽快减少库仔,又要保证不亏本,商家最多能打几折?2、2020年,某商场开展“双十一”促销活动,将M,N两种电器捆绑售卖,M电器降价20%,N电器降价30%,已知M,N两种电器的原销售单价之和为2500元,小明参加活动购买M,N电器各一件,共付1900元.(1)M,N两种电器原销售单价各是多少元?(2)若商场在这次促销活动中M电器盈利25%,N电器亏损20%,你认为商场在这次促销活动中是盈利还是亏损了?M,N两种电器捆绑售卖一件盈利或亏损了多少元?3、某文具店今年1月份购进一批笔记本,共2290本.每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量为2200本,则2月份售价多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比2月份在(1)的条件下的售价减少了m%,结果3月份的销量比2月份在(1)的条件下的销售量增加了50%,3月份的销售利润达到6600元,求m的值.【课后作业】1、某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套.设安排x名工人生产镜片,则可列方程()A.60(28﹣x)=90x B.60x=90(28﹣x)C.2×60(28﹣x)=90x D.60(28﹣x)=2×90x2、一项工程,A独做10天完成,B独做15天完成,若A先做5天,再A、B合做,完成全部工程的,共需()A.8天B.7天C.6天D.5天3、超市正在热销某种商品,其标价为每件125元.若这种商品打8折销售,则每件可获利15元,设该商品每件的进价为x元,根据题意可列出的一元一方程为()A.125×0.8﹣x=15B.125﹣x×0.8=15C.(125﹣x)×0.8=15D.125﹣x=15×0.84、商场经销甲、乙两种商品,甲种商品每件售价70元,利润率为40%,乙种商品每件进价60元,售价90元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价用去2700元,求购进甲种商品多少件?1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

(完整)一元一次方程应用题归类汇总,文档

(完整)一元一次方程应用题归类汇总,文档

一元一次方程应用题分类汇总一元一次方程应用题归类聚集:形积变化问题、行船问题、工程问题、和差倍分问题、劳力调配问题、配套问题、分配问题、年龄问题、比赛积分问题、利润赢亏问题、储蓄问题、增长率问题、数字问题、古典数学、分段函数问题等〔一〕形积变化问题:解决这类问题,应从有关图形的面积、周长、体积等计算公式出发,根据题目中这些量的变化,建立相等关系,从而列出方程。

有关公式如下:〔1〕长方形的周长、面积公式:C长方形=2(长+宽),s长方形=长×宽〔2〕长方体、圆柱的体积公式:V长方体=长×宽×高,V圆柱=∏r2h〔3〕等积变形的相等关系:变形前的体积=变形后的体积&1、学校建花坛余下 24米长的小围栏,某班同学准备在自己教室前的空地上,建一个一面砖墙、三面围栏的长方形小花圃。

〔注意此题面积最大不是长与宽相等,因为这里24米只包括一个长两个宽,而不是两个长两个宽。

此题需要代数分别讨论后,再比拟得结论。

〕1〕请你设计一下,使长比宽多3米,算一算这时的面积。

2〕请你再设法改变长与宽,扩大花圃的面积,并和其他同学比一比,看谁设计的花圃面积最大2、有一个底面积 20×20长方体玻璃杯〔已满水〕向一个内底面积16×5,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?3、某工厂锻造直径为 60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?4:有一个底面积20×20长方体玻璃杯〔已满水〕向一个内底面积16×5,内高是10的长方体铁盒倒水,当铁盒装满水时,玻璃杯的水的高度下降多少?〔一〕行程问题:〔1〕行程问题中的三个根本量及其关系:路程=速度×时间S=vt〔2〕根本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

〔3〕解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

初一(八年级)数学一元一次方程应用题专题

初一(八年级)数学一元一次方程应用题专题

一元一次方程应用题归类列方程解应用题,是初中数学的重要内容之一。

许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。

常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

⨯mm内高为81mm的长方例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252.)体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数π≈314分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。

例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?4. 比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。

常用等量关系:各部分之和=总量。

例4.三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。

人教版初中数学七年级上册《一元一次方程的应用(行程问题)》课件

人教版初中数学七年级上册《一元一次方程的应用(行程问题)》课件

A车速度>B车速度 4、如果A车能追上B车,你能画出线段图吗?
A(B)


相等关系:
B车先行路程 + B车后行路程 =A车路程
师生共探究
例2 两匹马赛跑,黄色马的速度是6m/s,棕色马 的速度是7m/s,如果让黄马先跑15m,棕色马再开 始跑,几秒后可以追上黄色马?
15米 棕色马路程= 黄色马路程+相隔距离
1、A、B两车分别从相距S千米的甲、乙两地 同时出发,相向而行,两车相距一段距离
sA
A
s1 sB B


s 相等关系: 总=SA+SB-s1
师生共探究


例1:A、B两车分别停在相距130
线段图分析:
千米的甲、乙两地,A车速35千
米/时,B车速30千米/时,若两
A
B
车同时相向而行,请问
(1)行了多长时间后两车相遇?
B车路程=A车先路程+A车后行路程
或B车路程=A车路程+相距路程
路程=平均速度×时间
为了适应经济发展,铁路运输再次提速;如果客车行驶的平均速度增加40 km/h, 提速后由合肥到北京 1110 km的路程只需行驶10 h.那么,提速前这趟客车平均每 时行驶多少千米
解:设提速前客车平均每时行驶 x km, 根据题意,得
10(x+40)=1110.
总路程 (km)


(2)行了多长时间后两车第一
A
B
次相距65千米?
(3)行了多长时间后两车第二


次相距65千米?
A
B


解题过程
(1)两车相遇65km
解:设两车行驶时间x小时相遇,根据题 意得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. . 一元一次方程的工程问题

【解题思路】1、审——读懂题意,找出等量关系。2、设——巧设未知数。3、列——根据等量关系列方程。4、解——解方程,求未知数的值。5、答——检验,写答案(注意写清单位和答话)。6、练——勤加练习,熟能生巧。触类旁通,举一反三。工作总量=工作时间×工作效率;工作时间=工作总量÷工作效率;

工作效率=工作总量÷工作时间甲的工作量+乙的工作量=甲乙合作的工作总量,工程问题常把工作总量看做“1”,解工程问题的关键是先找出单位时间内的工作效率。例:检修一处住宅的自来水管理,甲单独完成需要14天,乙单独完成需要18天,丙单独完成需12天,前7天由甲,乙合做,但乙中途离开了一段时间,后2天由乙丙合作完成。问乙中途离开了几天?分析:工程问题中,工作总量用1表示。工作效率指的是单位时间内完成的工作量。解法一:设乙中途离开了x天,则乙一共做了(7-x+2)天。根据题意得

解法二:设乙一共工作了x天,则工程问题常把工作总量看做“1”,解工程问题的关键是先找出单位时间内的工作效率。例1:填空:(1)一件工作,10天完成,工作效率是______,(2)一本书,25天看完,每天看全书的______,(3)一件工作,甲独做20小时完成,m小时完成的工作量是______,(4)一件工作,甲独做5天完成,乙独做7天完成,二人合作______天完成。

例:2:一项工程甲独做需6天完成,则:(1)甲独做一天可完成这项工程的__________, (2)若乙独做比甲快2天完成,则乙独做一天可完成这项工程的_______,(3)若甲乙合作完成这项工程需要_______天。

练习:1.一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲独做4小时,剩下的部分由甲、乙合作,剩下的部分要几小时完成?

2.一项工程,甲独做20小时完成,乙独做15小时完成,丙独做10小时完成,三队合作若干天后,丙另. . 有任务剩下的由甲、乙完成,这样,完成全部工程共用6小时,丙实际工作了几小时?

例3:一项工程,甲队独做15天完成,乙队独做12天完成。现在甲、乙合作4天后,剩下的工程由丙队8天完成。如果这项工程由丙队独做,需几天完成?

练习1. 一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?

2.一套家具,由一个老工人做40天完成,由一个徒弟做80天完成。现由2个老工人和4个徒工同时合作,几天可以完成?

例4:已知某水池有进水管和出水管各一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?

练习:1.有一个水池,用两个水管注水。如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。(1)如果甲、乙两管先同时注水20分钟,然后由乙单独注水。问还需要多少时间才能把水池注满?(2)假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。如果三管同时开放,多少小时才能把一空池注满水?

2.一个水池上有两个进水管,单开甲管,10小时可把空池注满,单开乙管,15小时可把空池注满。现先开甲管,2小时候后把乙管也打开,再过几小时池内蓄有43的水?(原为空池). . 习题:1、一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?

2、某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?

3、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?

4、修一条路,原计划每天修75米,20天修完,实际每天计划多修32 ,问可以提前几天修完? 5、一项工程300人共做, 需要40天,如果要求提前10天完成,问需要增多少人? 6、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的32,问甲、乙两队单独做,各需多少天?

一元一次方程的分配型问题1、某文艺团体组织了一场义演为“希望工程”募捐,共售出1000张门票,已知成人票每张8元,学生票每张5元,共得票款6950元,成人票和学生票各几张?

2、甲、乙两个水池共蓄水50t,甲池用去5t,乙池又注入8t后,甲池的水比乙池的水少3t,问原来甲、. . 乙两个水池各有多少吨水?

3、今年哥俩的岁数加起来是55岁。曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?一元一次方程的储蓄问题①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率,利息的20%付利息税;②纯利息=本金×利率×期数×(1-利息税率);利息 = 本金×利率×期数;本息和=本金+利息,或:本息 = 本金×(1+利率×期数);利息税=利息×税率(20%)。例:小颖的父母存三年期教育储蓄,三年后取出了5000元钱,你能求出本金是多少吗?

例:为了准备小颖6年后上大学的费用5000元,她的父母现在就参加了教育储蓄。下面有两种储蓄方式:(1)直接存入一个6年期;(2)先存一个3年期的,3年后将本息和自动转存一个3年期。你认为那种储蓄方式?开始存入的本金少?

1.某学生按定期一年存入银行100元,若年利率为2.5%,则一年后可得利息______元;本息和为_______元(不考虑利息税);

2.小颖的父母给她存了一个三年期的教育储蓄1000元,若年利率为2.70%,则三年后可得利息_ ___元;本息和为__ ___元;

3.某人把100元钱存入年利率为2.5%的银行,一年后需交利息税______元;4.某学生存三年期教育储蓄100元,若年利率为p%,则三年后可得利息_______元;本息和为_______元;5.小华按六年期教育储蓄存入x元钱,若年利率为p%,则六年后本息和______________元;. . 6. 李阿姨购买了25000元某公司1年期的债券,1 年后扣除 20%的利息税之后得到本息和为 26000 元,

这种债券的年利率是多少?

7.为了使贫困学生能够顺利完成大学学业,国家设立了助学贷款.助学贷款分0.5~1年期、1~3年期、3~5年期、5~8年期四种,贷款利率分别为5.85%,5.95%,6.03%,6.21%,贷款利息的50%由政府补贴。某大学一位新生准备贷6年期的款,他预计6年后最多能够一次性还清20000元,他现在至多可以贷多少元?

8. 王叔叔想用一笔钱买年利率为2.89%的3 年期国库券,如果他想 3 年后本息和为 2 万元,现在应买这种国库券多少元?

9.一年定期的存款,年利率为1.98%, 到期取款时须扣除利息的20%,作为利息税上缴国库,假如某人存入一年的定期储蓄1000元,到期扣税后可得利息多少元?

一元一次方程的盈利问题商品利润= 商品售价-商品进价;利润率=商品利润÷商品进价×100%;商品售价=标价×折扣数÷10;商品售价=商品进价×(1+利润率)。一、填空1、商品原价200元,九折出售,卖价是元. 2、商品进价是30元,售价是50元,则利润是元. 3、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是元. 4、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元. 5、某商品按定价的八折出售,售价是14.8元,则原定售价是. 二、计算1,福州某琴行同时卖出两台钢琴,每台售价为9600元。其中一台盈利20%,另一台亏损20%。这次琴行. . 是盈利还是亏损,或是不盈不亏?

2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易是盈利还是亏损,或是不盈不亏?

3、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可降多少元出售此商品?

4、某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?

5、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

行程问题【基本关系式】(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型①相遇问题:快行距+慢行距=原距②追及问题:快行距-慢行距=原距③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度. . 顺速–逆速 = 2水速;顺速 + 逆速 = 2船速顺水的路程 = 逆水的路程注意:抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系。

常见的还有:相背而行;环形跑道问题。

【经典例题】例1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。(1)分析:相遇问题,画图表示为:等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时后两车相遇,由题意得,140x+90(x+1)=480 解这个方程,230x=390

,23161x

答:快车开出23

161小时两车相遇

(2)分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。解:设x小时后两车相距600公里,

由题意得,(140+90)x+480=600解这个方程,230x=120 ∴ x= 23

12

答:2312小时后两车相距600公里。(3)分析:等量关系为:快车所走路程-慢车所走路程+480公里=600公里。解:设x小时后两车相距600公里,由题意得,(140-90)x+480=600 50x=120 ∴ x=2.4 答:2.4小时后两车相距600公里。(4)分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。解:设x小时后快车追上慢车。由题意得,140x=90x+480 解这个方程,50x=480 ∴ x=9.6 答:9.6小时后快车追上慢车。(5)分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。

相关文档
最新文档