北师大版八年级下册期末模拟检测题

合集下载

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

2022-2023学年北师大版数学八年级下册 期末模拟检测卷(无答案)

数学八年级下册 期末模拟检测卷一、单选题(共10题;共30分)1.在式子中,分式的个数有( )A .2B .3C .4D .52.多项式 因式分解为( )A .B .C .D .3.若a <b ,则下面可能错误的变形是( )A .6a <6bB .a+3<b+4C .ac+3<bc+3D .﹣ >- 4.由线段a ,b ,c 组成的三角形是直角三角形的是( )A .,,B .,,C .,,D .,,5.如图,△ABC 中,AC=BC ,点D,E ,F 分别在边AC ,AB ,BC 上,且满足AD=BE ,AE=BF ,∠DEF=40°,则∠C 的度数是( )A .90°B .100°C .120°D .140°6.下列各组数中,不能构成直角三角形的一组是( )A .1,2,B . ,2,C .3,4,5D .6,8,127.如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )31203510,,,,,9π4678y ab c x y x a x y+++32242x x x -+()221x x -()221x x +()221x x -()221x x +2a 2b 2a =4b =5c =a =b =c =3a =4b =5c =5a =13b =14c =3252A .6B .7C .8D .98.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )A .a >bB .a <bC .a =bD .与a 和b 的大小无关9.若 的值为 ,则 的值是( ) A .B .C .D .10.如图,六边形ABCDEF 的内角都相等,∠DAB=60°,AB=DE ,则下列结论成立的个数是( )①AB ∥DE ;②EF ∥AD ∥BC ;③AF=CD ;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 既是中心对称图形,又是轴对称图形.A .2B .3C .4D .5二、填空题(共5题;共15分)11.把多项式 分解因式的结果为 .2a b +21237y y ++1821469y y +-12-117-17-1724x -12. 的解集是 13.如果分式的值为零,那么则x 的值是 .14.如图,在Rt △ABC 中,∠C=90°,AC=4,将△ABC 沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于 .15.在△ABC 中,∠ABC =60°,BC =8,点 D 是 BC 边的中点,点 E 是边 AC 上一点,过点D 作 ED 的垂线交边 AC 于点 F ,若 AC =7CF ,且 DE 恰好平分△ABC 的周长,则△ABC 的面积为 .三、计算题(共1题;共10分)16.(1)解方程: ;(2)解不等式组: 四、解答题(共6题;共65分)17.(6分)如图,BD 、CE 分别是△ABC 的边AC 和边AB 上的高,如果BD =CE .试证明:AB =AC .2335122x x x -≥⎧⎪⎨+>-⎪⎩242x x -+21133x x x-=---212143x x x -≤⎧⎪-⎨<⎪⎩18.(8分)已知实数a ,b ,c 满足 , ,求 的值.19.(10分)“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?20.(10分)如图,∠A=90°,∠AOB=30°,AB=2,△A ′OB ′可以看作是由△AOB 绕点O 逆时针旋转60°得到的,求点A ′与点B的距离0a b c ++=2221a b c ++=()555a b c abc ++÷21.(15分)已知某项工程,乙工程队单独完成所需天数是甲工程队单独完成所需天数的两倍,若甲工程队单独做10天后,再由乙工程队单独做15天,恰好完成该工程的,共需施工费用85万元,甲工程队每天的施工费用比乙工程队每天的施工费用多1万元.(1)单独完成此项工程,甲、乙两工程对各需要多少天?(2)甲、乙两工程队每天的施工费各为多少万元?(3)若要完成全部工程的施工费用不超过116万元,且乙工程队的施工天数大于10天,求甲工程队施工天数的取值范围?22.(16分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.710(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB//CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD.(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.。

北师大版八年级下册数学期末模拟考试(带答案)

北师大版八年级下册数学期末模拟考试(带答案)

北师大版八年级下册数学期末模拟考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.比较大小:3133x 2-x 的取值范围是________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

新北师大版八年级下册数学期末考试测试题

新北师大版八年级下册数学期末考试测试题

新北师大版八年级下册数学期末考试测试题八年级下数学期末测试第一套一、填空1、分解因式:ab-2ab+a= -ab+a2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2 cm,则其宽为 1.236 cm.3、若 2/4x+= 345.则 x+y+z= 1384.若 x+2(m-3)x+16 是完全平方式,则 m 的值是5.5.某超市从厂家以每件21元的价格购进一批商品,该超市可以自行定价,但物价局限定每件商品加价不能超过售价的20%,则这批商品的售价不能超过 25.2 元.6.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号): ①②③④.7.如图,正方形OEFG和正方形ABCD是位似形,点F的坐标为(1,1),点C的坐标为(4,2),则这两个正方形位似中心的坐标是 (2.5.1.5).8.如图,Rt△ABC中,∠ACB=90°直线EF∥BD,交AB于点E,交AC于点G,交AD于点F,若,1/CF=3/AD,则S△AEG= S四边形EBCG。

3/5.9.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 2.10、若不等式(m-2)x>2的解集是x<2/(m-2)。

则x 的取值范围是 (2/(m-2)。

+∞).11、化简的结果为 2a+2b,12、如果x<-2,则(x+2)·(25abx-y)= (2x+4)·(25abx-y);13、已知一个样本1、3、2、5、x,它的平均数是3,则这个样本的标准差为√2.二、选择题:1、如果a>b,那么下列各式中正确的是()A、a-3-b答案:A2、下列各式:(1-x)/(5π-3x^2),其中分式共有()个。

北师大版八年级下册数学期末试题及答案

北师大版八年级下册数学期末试题及答案

北师大版八年级下册数学期末试卷一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是A .B .C .D .2.a 、b 都是实数,且a<b ,则下列不等式正确的是A .a+x >b+xB .1-a<1-bC .5a <5bD .2a >2b 3.在平面直角坐标系内,将点M (3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是A .(6,3)B .(6,﹣1)C .(0,3)D .(0,﹣1)4.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是A .1或5B .1C .-1D .7或1-5.如图,l ∥m ,等边三角形ABC 的顶点B 在直线m 上,∠1=20°,则∠2的度数为A .60°B .45°C .40°D .30°6.化简22a b a b a b---的结果为A .-a b B .a b +C .a b a b+-D .a b a b-+7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是A .2x ≤B .2x ≥C .0x ≤D .0x ≥8.如图,点P 在∠AOB 的平分线上,PC ⊥OA 于点C,∠AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为()A .3B .2C .1D .129.若正多边形的一个外角是72 ,则该正多边形的内角和为()A .360B .540C .720D .900 10.下面式子从左边到右边的变形是因式分解的是()A .x 2﹣x ﹣2=x (x ﹣1)﹣2B .x 2﹣4x+4=(x ﹣2)2C .(x+1)(x ﹣1)=x 2﹣1D .x ﹣1=x (1﹣1x)11.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A .AB//DC ,AD//BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB//DC ,AD=BC12.甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m ,设甲队每天修路xm.依题意,下面所列方程正确的是A .120100x x 10=-B .120100x x 10=+C .120100x 10x=-D .120100x 10x=+二、填空题13.一个纳米粒子的直径是0.000000035米,用科学记数法表示为______米.14.分式方程231xx =-的解是_____.15.当x =_________时,分式242x x -+的值为0.16.将直线5y x =--向上平移2个单位,得到直线_____,将直线3y x =-向左平移2个单位,得到直线_____;17.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形周长的和是86cm ,矩形的对角线长是13cm ,那么该矩形的周长为_____.18.如图,菱形ABCD 的周长为16,面积为12,P 是对角线BD 上一点,分别作P 点到直线AB 、AD 的垂线段PE 、PF ,则PE +PF 等于____.19.将3x 2﹣27分解因式的结果是_______________________.20.关于x 的不等式3x m -<的解集中只有三个正整数,则m 的取值范围是_______.三、解答题21.解不等式组并把解集在数轴上表示出来.()32123232x x x ⎧--≥⎪⎨++>⎪⎩22.求下列分式的值:2224xx x x x x ⎛⎫+÷ ⎪-+-⎝⎭,并从x =0,﹣1,﹣2中选一个适当的值,计算分式的值.23.已知关于x 的方程233x k x x-=--(1)当3k =时,求x 的值?(2)若原方程的解是正数.求k 的取值范围?24.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A 、B ,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P 的位置.(作图不写作法,但要求保留作图痕迹.)25.如图,方格纸中每一个小方格的边长为1个单位,试解答下列问题:(1)ABC ∆的顶点都在方格纸的格点上,先将ABC ∆向右平移2个单位,再向上平移3个单位,得到111A B C ∆,其中点1A 、1B 、1C 分别是A 、B 、C 的对应点,试画出111A B C ∆;(2)连接11AA BB 、,则线段11AA BB 、的位置关系为____,线段11AA BB 、的数量关系为___;(3)平移过程中,线段AB 扫过部分的面积_____.(平方单位)26.如图,已知CAE ∠是ABC 外角,若①12∠=∠,②//AD BC ,③AB AC =,在这三个条件中任选两个作为已知条件,第三个作为结论进行证明.(1)已知12∠=∠,//AD BC ,求证:AB AC =.(请完成证明)(2)除上述方案,请再选一种方案加以证明.27.如图,在ABCD 中,点E ,F 分别在AD 、BC 上,且AE CF =,连接EF ,AC 交于点O .求证:OE OF =.28.已知:如图,AB CD =,DE AC ⊥,BF AC ⊥,E ,F 是垂足,DE BF =.(1)直接写出图中所有的全等三角形(不需要说明理由);(2)选取一组对第三问有帮助的全等进行证明;(3)证明四边形ABCD是平行四边形.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、不是轴对称图形,是中心对称图形,故本选项不符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称图形,故本选项符合题意;D、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C根据不等式的基本性质:(1)若a>b ,则a±c>b±c ,(2)若a>b ,c>0,则ac>bc ,a b c c>;(3)若a>b ,c<0,则ac<bc ,a b c c <;逐一判断得到答案即可【详解】解:A .∵a <b ,∴a+x <b+x ,计算错误;B .∵a <b ,∴-a >-b ,∴1-a >1-b ,计算错误;C .∵a <b ,∴5a <5b ,计算正确;D .∵a <b ,∴22ab <,计算错误.故答案为:C .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A 【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A .【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.D 【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∵a 2+(m-3)a+4能用完全平方公式进行因式分解,∴m-3=±4,解得:m=-1或7.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.5.C【解析】【分析】过C作CM∥直线l,根据等边三角形性质求出∠ACB=60°,根据平行线的性质求出∠1=∠MCB,∠2=∠ACM,即可求出答案.【详解】解:过C作CM∥直线l,∵△ABC是等边三角形,∴∠ACB=60°,过C作CM∥直线l,∵直线l∥直线m,∴直线l∥直线m∥CM,∵∠ACB=60°,∠1=20°,∴∠1=∠MCB=20°,∴∠2=∠ACM=∠ACB-∠MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.B【解析】【分析】根据同分母的分式减法法则进行化简即可得到结果.【详解】解:22a b a b a b---22a b a b-=-()()a b a b a b+-=-a b =+,故选:B .【点睛】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键.7.A 【解析】【分析】根据函数图象,找出图象在x 轴上方的部分的x 的取值范围即可得解.【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A .【点睛】本题考查了一次函数与一元一次不等式,关键在于准确识图,找出符合不等式的图象的部分.8.C 【解析】【分析】过点P 作PE ⊥OB 于E ,根据角平分线上的点到角的两边距离相等可得PE=PC ,再根据直角三角形30°所对的边等于斜边的一半可得.【详解】解:如图,过点P 作PE ⊥OB 于E ,∵∠AOB=30°,点P 在∠AOB 的平分线上,∴∠AOP=∠POB=15°,∵OD=DP=2,∴∠OPD=∠POB=15°,∴∠PDE=30°,∴PE=12PD=1,∵OP 平分∠AOB ,PC ⊥OA ,PE ⊥OB ,∴PC=PE=1,故选:C .【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.9.B 【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B .【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.10.B 【解析】【分析】根据因式分解的定义即可判断.【详解】A.()2212x x x x --=--右边含有加减,不是因式分解;B.()22442x x x -+=-是因式分解;C.()()2111x x x -+=-是整式的运算,不是因式分解;D.111x x x ⎛⎫-=- ⎪⎝⎭右边含有分式,不是因式分解.故选B 【点睛】此题主要考查因式分解的定义:把一个多项式化为几个整式的乘积形式.11.D 【解析】【详解】A 、由“AB//DC ,AD//BC”可知,四边形ABCD 的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B 、由“AB=DC ,AD=BC”可知,四边形ABCD 的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C 、由“AO=CO ,BO=DO”可知,四边形ABCD 的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D 、由“AB//DC ,AD=BC”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .12.A 【解析】【详解】甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-.故选A.13.3.5×10-8.【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n ,与绝对值大于1数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000035=3.5×10-8.故答案为3.5×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n由原数左边起第一个不为零的数字前面的0的个数所决定.14.x=3【解析】【分析】首先去掉分母,观察可得最简公分母是x﹣1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.【详解】解:23 1xx= -2=33x x-3x=.经检验x=3是分式方程的解,故答案为:x=3.【点睛】题目主要考查解分式方程,熟练掌握解分式方程的步骤是解题关键.15.2【解析】【分析】直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】∵242xx-+分式的值为0,∴x2-4=0,x+2≠0,解得:x=2.故答案为2.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.16.y=-x-3y=-3x-6【解析】【分析】由题意直接根据平移后解析式的变化规律横坐标右移减,左移加;纵坐标上移加,下移减进行分析即可.【详解】解:将直线y=−x−5向上平移2个单位,得到直线y=-x-3;将直线y=−3x 向左平移2个单位,得到直线y=-3(x+2)=-3x-6.故答案为:y=-x-3;y=-3x-6.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.17.34cm【解析】【分析】根据四个小三角形的周长和为86cm ,列式得AD AO DO DC DO CO ++++++BC BO ++86CO AB AO BO +++=cm ,再由矩形的对角线相等解题即可.【详解】解:如图,矩形ABCD 中,13AC BD ==cm ,由题意得,86AOD DOC BOC AOB C C C C +++= cm ,86AD AO DO DC DO CO BC BO CO AB AO BO ∴+++++++++++=cm∴2286AD AC DB DC BC AB +++++=cm21321386AD DC BC AB ∴+⨯+⨯+++=cm8626234AD DC BC AB ∴+++=-⨯=cm故答案为:34cm .【点睛】本题考查矩形的性质,是重要考点,掌握相关知识是解题关键.18.3【解析】【分析】直接利用菱形的性质得出AB=AD=4,S △ABD=6,进而利用三角形面积求法得出答案.【详解】解:连接AP ,如图,∵菱形ABCD 的周长为16,∴AB=AD=4,∴S 菱形ABCD=2S △ABD ,∴S △ABD=12×12=6,而S △ABD=S △APB+S △APD ,PE ⊥AB ,PF ⊥AD ,∴12•PE•AB+12•PF•AD=6,∴2PE+2PF=6,∴PE+PF=3,故答案为:3.【点睛】本题考查了菱形的性质:菱形的对边分别平行,四条边都相等,两条对角线互相垂直平分,并且分别平分两组内角.也考查了三角形的面积公式.19.3(x-3)(x+3)【解析】先提取公因式3,再利用平方差公式进行因式分解.【详解】3x 2﹣27=3(x 2-9)=3(x-3)(x+3).故答案为:3(x-3)(x+3).【点睛】考查了综合因式分解,解题关键是先提取公式后再利用平方差公式进行因式分解.20.01m <≤【解析】【分析】根据不等式只有三个正整数解列出关于m 的不等式求解即可;【详解】解不等式3x m -<得3x m <+,∵只有三个正整数,∴334m <+≤,∴01m <≤.故答案是:01m <≤.【点睛】本题主要考查了根据一元一次不等式的整数解求参数,准确计算是解题的关键.21.-1<x≤3,把解集在数轴上表示见解析.【解析】【分析】分别解出不等式组中不等式的解集,然后在坐标轴上表示它们的公共部分,公共部分就是不等式的解集.【详解】解不等式3-(2x -1)≥-2,得x≤3;解不等式3232x x ++>,得x >-1.所以原不等式组的解集为-1<x≤3.把解集在数轴上表示如图.本题考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.22.-2【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后从0,-1,-2中选一个使得原分式有意义的值代入即可解答本题【详解】解:2224x x x x x x ⎛⎫+÷⎪-+-⎝⎭=(2)(2)(2)(2)(2)(2)x x x x x x x x x++-+-+- =(x+2)+(x ﹣2)=x+2+x ﹣2=2x ,当x =﹣1时,原式=2×(﹣1)=﹣2.【点睛】此题考查分式的化简求值,掌握运算法则是解题关键23.(1)9x =是原方程的根;(2)6k >-且3k ≠-.【解析】【分析】(1)将3k =代入分式方程,再根据分式方程的求解方法,求解即可;(2)用k 表示出分式方程的解,再根据解为正数,列不等式求解即可,注意到3x ≠.【详解】解:(1)将3k =代入得3233x x x-=--两边同乘以()3x -,去分母得:()233x x --=-解得:9x =经检验9x =是原方程的根(2)两边同乘以()3x -,去分母得()23x x k--=-解得:6x k=+由原方程解是正数,易知60k +>得6k >-考虑分式方程产生增根3x =的情况,3x ≠即63k +≠,综上所述:6k >-且3k ≠-【点睛】此题考查了分式方程的求解方法,以及分式方程增根的情况,熟练掌握分式方程的求解方法是解题的关键.24.作图见解析.【解析】【分析】先画角的平分线,再画出线段AB 的垂直平分线,两线的交点就是P .【详解】解:作图如下:∴点P 为所求作.【点睛】本题主要考查了以下知识点:1.线段垂直平分线的性质;2.角平分线的性质.25.(1)见解析;(2)平行,相等;(3)15.【解析】【分析】(1)直接利用平移的性质分别得出对应点位置进而得出答案;(2)利用平移的性质得出线段AA 1、BB 1的位置与数量关系;(3)利用三角形面积求法进而得出答案.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)线段AA1、BB1的位置关系为平行,线段AA1、BB1的数量关系为:相等.故答案为:平行,相等;×3×5=15.(3)平移过程中,线段AB扫过部分的面积为:2×12故答案为:15.【点睛】此题考查平移变换以及三角形面积求法,正确得出对应点位置是解题关键.26.(1)证明过程见解析;(2)见解析.【解析】【分析】(1)根据两直线平行,同位角相等、内错角相等,得到∠B=∠C相等,再利用等角对等边即可求解;(2)可以选择①和③作为条件,②作为结论证明;根据等腰三角形的性质得到∠B=∠C,根据三角形外角的性质得到∠1=∠B,根据平行线的判定定理即可得到AD∥BC.【详解】证明:(1)//AD BC,∠=∠,∴,2C∠=∠1B∠=∠,12∴∠=∠,B C∴=.AB AC(2)选择①和③作为条件,②作为结论加以证明.∵AB AC=,∴∠=∠,B C∵EAC ∠是ABC 的一个外角,∴2EAC B C B ∠=∠+∠=∠,又12EAC ∠=∠+∠,且12∠=∠,∴21EAC ∠=∠,∴1B ∠=∠,∴//AD BC .【总结】本题考查了平行线的性质和判定,等腰三角形的性质,三角形外角定理等知识点,熟练掌握各图形的性质及判定是解题的关键.27.见解析【解析】【分析】利用AAS 证得AOE COF ≅ 后即可证得结论.【详解】证明: 四边形ABCD 是平行四边形,//AD BC ∴,AEO CFO\Ð=Ð在AOE △和COF 中AOE COF AEO CFO AE CF ∠=∠⎧⎪∴∠=∠⎨⎪=⎩AOE COF∴≅ OE OF ∴=.【点睛】本题考查了平行四边形的性质及全等三角形的判定与性质,解题的关键是证得△AOE 和△COF 全等,难度不大.28.(1)△ABF ≌△CDE ,△ADE ≌△CBF ,△ADC ≌△CBA ;(2)见解析;(3)见解析.【解析】【分析】(1)根据全等三角形的判定方法,结合图形得出即可;(2)根据HL 证明三角形全等解答即可;(3)根据全等三角形的性质和平行四边形的判定解答即可.【详解】解:(1)图中所有全等的三角形为:△ABF ≌△CDE ,△ADE ≌△CBF ,△ADC ≌△CBA ;(2)DE AC ⊥ ,BF AC⊥90DEC AFB ∴∠=∠=o .在Rt ABF 和Rt CDE △中,AB CD DE BF=⎧⎨=⎩,()Rt ABF Rt CDE HL ∴≌△△;(3)由(2)知Rt Rt ABF CDE ≌△△,BAF DCE ∴∠=∠,//AB CD ∴,又AB CD = ,∴四边形ABCD 是平行四边形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定方法等,熟练掌握各图形的性质和判定是解决此类题的关键.。

(北师大版)八年级数学下册期末考试卷汇总(共10套)

(北师大版)八年级数学下册期末考试卷汇总(共10套)

(北师大版)八年级数学下册期末考试卷汇总(共10套)(北师大版)2020-2021学年八年级数学下册期末模拟检测试卷及答案(4)(时间80分钟 满分120分)一、精心选一选,相信自己的判断力!( 每小题3分.共24分.每题只有一个正确答案,将正确答案填在下面的表格内) 题号 1 2 3 4 5 6 7 8 答案1.若不等式1)1(->-a x a 的解集是1<x ,则a 的取值范围是 A.1≤a B. 1>a C.1<a D.0<a2.下列多项式能因式分解的是A.x 2-y B.x 2+1 C.x 2+xy +y 2D.x 2-4x +43.某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是A .乙班B .甲班C .两班一样整齐D .无法确定4.点P 为ABC ∆的边AB 上一点(AC AB >),下列条件中不一定能保证ACP ∆∽ABC ∆ 的是A. B ACP ∠=∠B.ACB APC ∠=∠C.AC AP AB AC = D. ABACBC PC =5.下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡是直角都相等。

其中真命题的个数的是A.1个B.2个C.3个D.4个6.如图,点C 是线段AB 的黄金分割点)(BC AC >,下列结论错误的是A.ACBC AB AC = B. BC 2=AB ·ACC.215-=AB AC D.618.0≈AC BC7.把一箱苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生的人数为 A.3人 B.4人 C.5人 D.6人 8.若分式yx yx -+中的x 、y 的值都变为原来的3倍,则此分式的值 A.不变 B.是原来的3倍 C.是原来的31 D.是原来的61二、耐心填一填:(每题3分,共24分)9.分式3223x x -+,当x=_______时无意义,当x=________值为零10.已知a b =2,则a bb+=__________11.一个样本含有20个数据:68、69、70、66、68、64、65、65、69、62、67、66、65、67、63、65、64、61、65、66.这组数据的极差为12. 命题:直角三角形两锐角互余,条件_____ __________,结论_______ ________ 13.在1:50000的南京市区地图上,南京地铁一号线全长约43.4cm ,那么南京地铁一号线实际全长约 km.14.如图,点P 是ABC ∆的内角平分线的交点,若︒=∠120BPC ,则=∠A ︒ . 15.如图,已知函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 .16.如图,正方形ABCD 内接于腰长为22的等腰直角ΔPQR,∠P=900,则AB=__________.6题图三、细心做一做:(共72分)17.把下列各式因式分解:(每小题4分,计8分)① 9-12t+4t 2②2x -4x 2x -23+18.解不等式组:⎪⎩⎪⎨⎧-<-+≤-453143)3(265x x x x (6分)19.解方程:)1(718++=+x x x x +x6(6分)20.已知x =13+,y =13-,求2222xy y x y x +-的值.(6分)21. (6分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形。

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试题含答案

北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。

2022-2023学年北师大版八年级物理下册期末模拟试卷(含答案)

2022-2023学年北师大版八年级物理下册期末模拟试卷(含答案)

2023年北师大版八年级物理下册期末模拟试卷物理试卷共四大题23小题,满分70分。

物理的考试时间共120分钟。

一、填空题(共10题,20分)1.炎炎夏日,停在露天停车场的汽车内有一瓶矿泉水,太阳光透过矿泉水瓶后可能把汽车内的易燃物引燃,这是因为装有水的矿泉水瓶相当于一个透镜,会使光线。

如图所示,一束平行光经过中间为“空气凹透镜”的玻璃砖后将会。

(后两空选填“会聚”“发散”或“平行射出”)2.为了防止校园踩踏事故的发生,同学们下楼时不能走得太快。

如果走得太快,当前面的同学意外停下来时,后面的同学由于,会继续向(选填前或后)运动,这样容易拥挤而发生踩踏事故。

3.工程师把拦河坝设计成下宽上窄的形状,是因为液体内部压强随液体深度的增加而(选填“增大”、“减小”或“不变”);如图所示,船闸是利用原理工作的。

4.如图所示,升旗杆顶部有一个轮,使用它不能省力,但可以改变。

5.一凸透镜的焦距为15cm,当把蜡烛放在此凸透镜左侧12cm时,如图所示,则从该凸透镜(选填“左”或“右”)侧通过透镜可以看到一个、的(选填“实”或“虚”)像。

6.一个箱子重30N,放在水平面上,受6N的水平推力,箱子未动,这时箱子受到的摩擦力是N。

当水平推力增大到10N时,箱子恰好做匀速直线运动。

当水平推力增大到15N时,箱子将(选填“加速”“匀速”或“减速”)运动。

7.A、B两个实心正方体的质量相等,密度之比ρA:ρB=27:1,若按甲、乙两种不同的方式,分别将它们叠放在水平地面上(如图所示),则地面受到的压力之比是,地面受到的压强之比是。

8.有一潜水艇悬浮在水中,当用压缩空气把水舱中的水排出一部分时,潜水艇将(选填“上浮”或“下沉”)。

在刚露出水面至最终漂浮的过程中,潜水艇所受浮力(选填“变大”“变小”或“不变")。

9.如图所示,轻质细杆BC可绕竖直墙上的B点转动,末端C点挂一重物,重力为200N,拉力F 始终沿水平方向,此时θ=45º,则拉力F=N。

新北师大版八年级下学期期末考试数学模拟试题

新北师大版八年级下学期期末考试数学模拟试题

新北师大版八年级下学期期末考试数学模拟试题一、单选题1、因式分解(x-1)2-9的结果是()A.(x+8)(x+1) B.(x+2)(x-4) C.(x-2)(x+4) D.(x-10)(x+8)2、下列各式从左到右的变形正确的是 ( )A. B.C .D .3、如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A.6 B.7 C.8 D.124、一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做得不够完整的一题是()A.x2-y2=(x-y)(x+y)B.x2-2xy+y2=(x-y)2 C.x2y-xy2=xy(x-y)D.x3-x=x(x2-1)5、因式分解(a-1)2-9的结果是()A.(a+2)(a-4) B.(a+8)(a+1)C.(a-2)(a+4) D.(a+2)(a-10)6、计算的结果为( ) A. B . C.-1 D.27、如图,在四边形ABCD中,AD∥BC、AB∥CD,过点P画线段EF、GH分别平行于AB、BC,则图中共有平行四边形()个.A. 4 B. 5 C. 9 D. 88、如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A. B .C. D .9、如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.S□ABCD=4S△AOB B.AC=BD C.AC⊥BD D.□ABCD是轴对称图形10、若不等式组的解集为,则a的取值范围为()A.a>0 B.a=0C.a>4 D.a=411、不等式组的解集是()A . B . C . D.无解12、若,则的值为().A. B. C. D.二、填空题(注释)13、不等式组的解集是 _____________.14、某中学组织学生到离学校15千米的某景区旅游,活动组织人员和学生队伍同时出发,行进速度是学生队伍的1.2倍,以便提前半小时到达目的地做好准备工作.求组织人员和学生队伍的速度各是多少?设学生队伍的速度为x千米/小时,根据题意可列方程.15、化简:的结果为________16、当x=_______时,分式的值为零.17、已知,分式的值为18、关于x的不等式3x-2a≤-2的解集如图所示,则a=______.19、如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为 _______.20、某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.三、解答题(注释)21、(本题满分8分)解不等式组,并写出它的所有整数解.22、解下列不等式组或方程(每小题7分,共14分)(1)(2)-=23、观察:(1)计算:(2)计算:(n为正整数)(3)拓展应用:①解方程:②计算24、为执行中央“节能减排,美化环境,建设美丽新农村” 的国策,我市某村计划建造A、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼(1)满足条件的方案共有哪几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱?造价最低是多少万元?25、先化简,再求值:,其中是不等式的最大整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版八年级下册期末模拟检测题(本试卷满分:120分,时间:120分钟)一、选择题(每小题3分,共30分) 1.如图,在△中,,点是斜边的中点,,且,则∠( ) A.B.C.D.2.如图,在□ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数为( ) A.7 B .8 C .9 D.113.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.下列命题,其中真命题有( ) ①4的平方根是2;②有两边和一角相等的两个三角形全等;③连接任意四边形各边中点的四边形是平行四边形.A.0个B.3个C.2个D.1个5.已知不等式组2112x x a-⎧⎪⎨⎪⎩≥,≥的解集是,则的取值范围为( )A.B.C.D.6.分式方程123-=x x 的解为( ) A. B.C.D.7.下列条件中,能判定四边形是平行四边形的是( )A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直第1题图第3题图8.要使分式有意义,则应满足( )A .≠-1B .≠2C .≠±1D .≠-1且≠29.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( ) A.24 B.36C.40D.4810.若解分式方程441+=+-x mx x 产生增根,则( )A. B.C.D.二、填空题(每小题3分,共24分)11.如图,在△中,∠,是△的角平分线,于点,.则∠等于______.12.关于的不等式组⎩⎨⎧<->-ba x ab x 22,的解集为,则的值分别为_______.13.若□的周长是30,相交于点,且△的周长比△的周长大, 则= .14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为________. 15.分解因式:__________.16.张明与李强共同清点一批图书,已知张明清点完本图书所用的时间与李强清点完本图书所用的时间相同,且李强平均每分钟比张明多清点本,则张明平均每分钟清点图书 本.17. 若分式方程的解为正数,则的取值范围是 .EACDB第11题图18.如图(1),平行四边形纸片的面积为,,.沿两条对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图(2)所示,则图形戊的两条对角线长度之和是 ___ .三、解答题(共66分)19.(6分)阅读下列解题过程:已知为△的三边长,且满足,试判断△的形状.解:因为,①所以. ②所以.③所以△是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为;(2)错误的原因为;(3)请你将正确的解答过程写下来.20.(6分)甲、乙两地相距,骑自行车从甲地到乙地,出发后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.21.(6分)为了提高产品的附加值,某公司计划将研发生产的件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?22.(8分)某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了本课外读物,有名学生获奖,请解答下列问题:(1)用含的代数式表示;(2)求出该校的获奖人数及所买课外读物的本数.23.(8分)如图,在□ABCD中,E、F分别是DC、AB上的点,且.求证:(1);(2)四边形AFCE是平行四边形.24.(8分)(2013•永州中考)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长25.(12分)在△中,,AB的垂直平分线交AC于点N,交BC的延长线于点M,.(1)求的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?期末检测题答案及解析1.B 解析:因为点是的中点且,所以所在的直线是的垂直平分线,所以因为所以设则所以所以,所以∠. 2.C 解析:根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,则图中的四边形DEOH 、DEFC 、DHGA 、BGOF 、BGHC 、BAEF 、AGOE 、CHOF 和ABCD 都是平行四边形,共9个.故选C.3.C 解析:其中第一、三、四个图形既是轴对称图形又是中心对称图形,第二个图形只是轴对称图形,故选C.4.D 解析: 4的平方根是,有两边和一角相等的两个三角形不一定全等.故命题①②都是假命题,只有命题③是真命题,故选D.5.B 解析:由.232121212≥≥-≥-x x x ,所以,得又由不等式组⎪⎩⎪⎨⎧≥≥-ax x ,1212的解集是,知6.C 解析:方程两边同乘,得x x 233=-,解得 3=x .经检验:3=x 是原方程的解.所以原方程的解是3=x . 7.B 解析:利用平行四边形的判定定理知B 正确. 8.D 解析:要使分式有意义,则,∴且,∴且.故选D . 9.D 解析:设,则,根据“等面积法”,得,解得,所以□的面积为.10.D 解析:方程两边都乘,得又由题意知分式方程的增根为,把增根代入方程,得.11. 解析:因为∠,所以又因为是△的角平分线,,所以.因为所以,所以.又因为即,所以.12.解析:解关于的不等式组⎩⎨⎧<->-,,b a x a b x 22得⎩⎨⎧+<+>.22b a x b a x ,由关于的不等式组⎩⎨⎧<->-b a x a b x 22,的解集为,知⎩⎨⎧=-=⎩⎨⎧=+-=+.333232b a b a b a ,解得,,13.9 解析:△与△有两边是相等的,又△的周长比△的周长大3,其实就是比大3,又知AB +BC =15,可求得.14.解析:由图可知A 点坐标为,根据绕原点O 旋转后横纵坐标互为相反数,所以旋转后得到的坐标为,根据平移“上加下减”原则,知向下平移2个单位得到的坐标为.15.解析:16.20 解析:设张明平均每分钟清点图书本,则李强平均每分钟清点图书(本,由题意列方程得,解得=20.经检验=20是原方程的解.17.<8且≠4 解析:解分式方程,得,得=8-.∵ >0,且-4≠0,∴ 8->0且8--4≠0,∴ <8且≠4. 18.解析:因为,平行四边形的面积是,所以边上的高是.所以要求的两条对角线长度之和是.19.(1)③ (2)忽略了的可能(3)解:因为, 所以. 所以或.故或.所以△是等腰三角形或直角三角形.20.解:设的速度为 km/h ,则的速度为km/h .根据题意,得方程.6020335050=-x x 解这个方程,得.经检验是原方程的根. 所以.答:两人的速度分别为km/hkm/h .21.解:设甲工厂每天加工件产品,则乙工厂每天加工件产品,根据题意,得105.112001200=-xx ,解得. 经检验:是原方程的根,所以.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品. 22.解:(1).(2)根据题意,得⎩⎨⎧<--+≥--+,,3)1(5830)1(583x x x x解不等式组,得156.2x <≤ 因为为正整数,所以. 当时,所以该校有6人获奖,所买课外读物共26本. 23.证明:(1)∵ 四边形ABCD 为平行四边形,∴.又∵ ,∴,即. (2)∵,AF ∥CE ,∴ 四边形AFCE 是平行四边形.24.(1)证明:∵ AN 平分∠BAC ,∴.∵ BN ⊥AN ,∴ ∠ANB =∠AND =90°. 在△ABN 和△ADN 中,∵ ∠1=∠2 ,AN =AN ,∠ANB =∠AND ,∴△ABN≌△ADN,∴BN= DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,DN=NB.又∵点M是BC的中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.25. 解:画出图形如图所示.(1)因为,所以∠∠.所以.因为MD是AB的垂直平分线,所以∠,所以∠∠.(2)同(1),同理可得.(3)AB的垂直平分线与底边BC的延长线所夹的锐角等于∠A的一半.(4)将(1)中的改为钝角,这个规律的认识无需修改,仍有等腰三角形一腰的垂直平分线与底边或底边的延长线相交,所成的锐角等于顶角的一半.26.分析:(1)找出四边形各顶点关于直线对称的对应点,然后顺次连接即可;(2)平移后顶点与点重合,可知其平移规律为先向下平移3个单位,再向左平移6个单位,继而根据平移规律找出各顶点的对应点,然后顺次连接;(3)根据旋转中心和旋转方向,找出旋转后各点的对应点,然后顺次连接.解:(1)所画图形如图所示,四边形即为所求.(2)所画图形如图所示,四边形即为所求.形如图所示,四边形即为所求.(3)所画图。

相关文档
最新文档