恒星演化

合集下载

恒星的结构及其演化过程

恒星的结构及其演化过程

恒星的结构及其演化过程宇宙中的恒星是我们观察到的最常见的天体之一。

它们由气体和尘埃构成,经过数百万年的持续压缩和引力作用而形成。

恒星所发生的各种化学和物理过程塑造了它们的性质和演化,从而使人们对宇宙本身产生了更深刻的了解。

一、恒星的结构恒星的结构与物理性质密不可分,主要有以下四个部分组成。

(一)核心恒星的核心是它最重要的部分,可能占恒星总质量的10%至20%,但它却是恒星的引擎,燃烧氢元素并制造能源。

核心的温度很高,可以达到10亿度,压力也非常高,会使物质变得粘稠。

在核心,氢气通常以热核反应的方式燃烧,产生氦和能量。

这种反应是恒星的“核心聚变”,它提供了恒星的绝大部分能源。

(二)辐射区辐射区是位于恒星核心之外的区域,此区域还是通过辐射将能量从核心传递到恒星表面的区域。

由于在这个区域中存在着大量的光子,因此能量以光的形式传递。

(三)对流区恒星最外层的温度较低,通过对流将能量从恒星内部向上移动,由恒星的气体形成,并沿着恒星的表面向外运动。

这个过程常被称为“对流”。

(四)边界区边界区是指恒星与周围物质所接触的区域。

在边界区,恒星通过吸收周围物质来增加质量。

同时,边界区也是恒星辐射的区域,恒星辐射的边界区是由物质碰撞释放出的光和其他电磁辐射构成的。

二、恒星的演化恒星经历了多个阶段,其演化过程通常是由它们的质量所决定的。

大多数的恒星演化情况如下:(一)聚变阶段在这个阶段,恒星的核心燃烧氢元素,不断地制造氦和能量。

恒星最初的形成阶段通常是它们最亮的时期。

(二)子巨星或巨星阶段在恒星演化的后期,核心燃烧氢元素的能量减弱,星内压力下降,外部大气层也会膨胀,形成一个巨大的气体团。

这就是最终的“巨星阶段”。

(三)白矮星或中子星阶段恒星的演化最终会导致核心的崩塌。

通常情况下,恒星的质量越大,其生命就越短,它们最终会成为一颗白矮星或中子星。

这两种天体都非常稳定,但它们的形态和构造与恒星的核心燃烧阶段截然不同。

在白矮星或中子星的情况下,它们所释放出的能量是非常强大的,在宇宙中扮演着特殊的角色。

第三章 恒星的演化

第三章 恒星的演化

(3) He闪 (Helium Flash)
H-R图 恒星攀升到红巨星支的顶 点。
内部 过程
核 心 He 开 始 燃 烧 ( Tc~108 K)
→Tc↑(简并→Rc不变)
→ ε↑ → Tc↑→...
→核心He爆燃 (∆t ~ min, L ~ 1011L⊙)
→电子简并解除
(4) 水平支 (Horizontal Branch)
5M⊙恒星的演化
(3) 高质量(M > ~10M⊙)恒星的演化
观测表现 : O型星→蓝超巨星→黄超巨星→红超巨星→超新星
恒星内部物理过程 :
核心H枯竭→壳层H燃烧 → 核 心 He 燃 烧 → 核 心 He
枯竭
→壳层He和H燃烧 →核心C燃烧→核心C枯

→壳层C、He和H燃烧 →O, Ne, Si燃烧 … →Fe核
胀,表面温度降
τ ≈ 108 y低r 。
(2) 红巨星支 (Red Giant Branch)
H-R图 恒星向右上方攀升成为 红巨星。
内部 过程
He核进一步收缩Rc↓ → Tc↑,核区电子简并 →壳层H 燃烧 L↑ →R↑→T↓ →恒星包层产生对流
→Hayashi Track
τ ≈ 105 yr
Structure of A Red Giant
tn = E/L =η∆Mc2/L
≈ 0.7% 0.1Mc2/L ≈ (1010 yr) (M/M⊙) (L/L⊙)-1
(2) 热时标 (thermal timescale)
恒星辐射自身热能的时间,或光子从恒星内部到 达表面的时间。
tth = (0.5GM2/R)/L ≈ (2×107 yr) (M/M⊙)2 (R/R⊙)−1 (L/L⊙)−1

恒星的演化过程

恒星的演化过程

恒星的演化过程恒星是宇宙中最重要的天体之一,它的演化过程影响着其周围的行星和星际物质。

在它们的漫长寿命中,恒星会经历从云状物到恒星形成,从主序阶段到红巨星阶段的不同演化阶段。

下面是恒星的演化过程的详细介绍。

1. 恒星形成恒星形成是整个演化过程中最关键和复杂的环节。

它的过程可以分为分子云崩塌、原恒星盘和原恒星诞生三个阶段。

首先,在一团巨大的分子云内部,由于引力和压力的作用,分子云逐渐收缩,形成一个小密度的核心。

在这个过程中,核心的温度和密度会不断上升,最终会达到能够在核心内部引发核聚变的条件。

当核心密度达到一定程度时,尘埃和气体就会向中心集中形成一个原恒星盘。

在这个原恒星盘中,恒星原料会聚集在中心,并逐渐形成一个中心高温高压的核心,促进核聚变反应的发生。

最终,这个小小的原恒星核将演化为一个新的恒星。

2. 主序阶段主序阶段是恒星演化过程中最长久的阶段,可以持续几十亿年到上百亿年之久。

在这个阶段中,恒星主要通过核聚变反应产生能量,并向外辐射。

在主序阶段中,恒星的质量、半径、亮度和表面温度等特征会随着时间的推移而发生变化。

较小的恒星会持续发生氢-氦核聚变反应,燃料逐渐消耗,而更大的星体则会迅速用尽燃料,向更高级别的演化阶段过渡。

3. 红巨星阶段当恒星的氢燃料用尽后,核反应就会停止。

在某些情况下,它会向氦闪阶段过渡,然后再转到更高级别的演化阶段。

然而,对于大多数恒星来说,它们会开始释放氦核反应的能量,并向外膨胀。

在这个阶段中,恒星的半径会动态地扩大,使它看起来更亮、更红。

这就是著名的红巨星现象。

在红巨星阶段的末期,恒星的核心会因为冷却而停止氦核反应。

如果恒星的质量足够大,核心会在水平分支演化到达第三次重心,开始释放所有的核反应能量,这期间会在星内产生内爆 Supernova 或黑洞、中子星等极端对象。

如果不够大,则会进入梦幻巨星阶段。

4. 末期演化在恒星演化的末期,其演化路径会受其质量、金属丰度、旋转速度和其他参数等因素的影响。

恒星演化

恒星演化

§2.2 主序星的演化
1. 恒星演化的基本原理
恒星在一生的演化中总是试图处于稳定状态 (流体静力学平衡和热平衡)。当恒星无法产生足 够多的能量时,它们就无法维持热平衡和流体静力 学平衡,于是开始演化。 恒星的一生就是一部和引力斗争的历史!
Russell-Vogt 原理
如果恒星处于流体静力学平衡和热平衡, 而且它的能量来自内部的核反应,它们的结 构和演化就完全唯一地由初始质量和化学丰 度决定。
部分天体的视星等
绝对星等M (absolute magnitude)

天体位于10 pc 距离处的视星等,它实际上反映了天体 的光度。 对同一颗恒星: F10/Fd = (10/d ) -2 M-m =-2.5 log(F10/Fd) = 5-5 log d (pc) 对不同的恒星: M1-M2 =-2.5 log (L1/L2) M-M⊙=-2.5 log (L/L⊙) 其中L⊙= 3.86×1033 ergs-1, M⊙= 4.75m 距离模数 (distance modulus) :m-M d=10(m-M+5)/5
恒星演化时标
(1) 核时标 (nuclear timescale)
恒星辐射由核心区(约1/10质量)核反应产生的所 有能量的时间。
tn = E/L =η△Mc2/L
≈ 0.7% 0.1Mc2/L
≈ (1010 yr) (M/M⊙) (L/L⊙)-1
(2) 热时标 (thermal timescale)
恒星辐射自身热能的时间,或光子从恒星 内部到达表面的时间。 tth = (0.5GM2/R)/L
≈ (2×107yr) (M/M⊙)2 (R/R⊙)-1 (L/L⊙)-1
(3) 动力学时标 (dynamical timescale)

恒星的演化过程是什么

恒星的演化过程是什么

恒星的演化过程是什么恒星的起源和演化,长久以来一直是天文学中最基本、也最令人感兴趣的问题。

小编就和大家分享恒星的演化过程,来欣赏一下吧。

恒星的演化过程(一)恒星的形成恒星形成可分为两个阶段:第一阶段是星云阶段,由极其稀薄的物质凝聚成星云并进一步收缩成原恒星。

第二阶段是原恒星阶段,由原恒星逐渐发展成为恒星。

一般把处于慢收缩阶段的天体称为原恒星。

原恒星进一步形成恒星的收缩过程要持续几百万到几千万年。

(二)恒星的演化恒星的演化如同人的一生,经历从青壮年到更年期、老年期的过程。

(1)恒星的“青壮年期”恒星的“青年期”和“壮年期”是一生中最长的黄金阶段,这时的恒星称为主序星。

人们迄今所知的恒星约有90%都属主序星。

在这段时间,恒星以几乎不变的恒定光度发光发热,照亮周围的宇宙空间。

核燃烧使恒星内部物质产生向外的辐射压力,当辐射压力与引力达到平衡时,恒星的体积和温度就不再明显变化。

(2)恒星的“更年期”恒星的“更年期”出现在恒星核心部分的氢完全转变成氦后,例如有7个太阳质量大小的恒星的“更年期”大约在形成的2600万年后出现。

这一阶段恒星核心经历这些不同的核聚变反应,恒星也经历多次收缩膨胀,其光度也发生周期性的变化。

最后产生巨大辐射压力,自恒星内部往外传递,并将恒星的外层物质迅速推向外围空间,形成红巨星、红超巨星。

(3)恒星的“老年期”恒星的“老年期”是从一颗恒星变成红巨星开始进入这一阶段的。

由于恒星的体积急剧增大,导致恒星的表面温度下降,因而颜色变红。

同时,恒星发光表面的面积剧增,致使整个恒星发出的光大大增强,从而大为增亮。

这种又红又亮的恒星就是红巨星。

(三)恒星的归宿恒星内部的热核反应是不会永远进行下去的,当恒星的核燃料耗尽时恒星也走到了它的尽头。

由于恒星自身物质之间的巨大引力始终存在,随着恒星内部热核反应的停止,尽管恒星外层部分会出现膨胀、爆发等复杂的变动,核心部分却必定在引力作用下发生急剧的收缩、即所谓引力坍缩。

恒星的构成和演化

恒星的构成和演化

恒星的构成和演化恒星是宇宙中闪耀的光源,它们以不同的亮度和颜色呈现出多样性。

本文将探讨恒星的构成和演化过程,帮助读者更好地理解宇宙中恒星的奥秘。

1. 恒星的构成恒星主要由气体和尘埃组成,其核心由氢和少量的氦构成。

恒星内部的高密度和高温度使得核聚变反应发生,将氢核融合成氦核,同时释放出巨大的能量。

这一过程被称为恒星的主序阶段,也是恒星的主要能源来源。

除了氢和氦,恒星还包含了其他元素,如碳、氧、氮等。

这些元素是在恒星内部的核聚变过程中产生的,被释放到宇宙中后,为新的恒星形成提供了丰富的物质基础。

2. 恒星的演化恒星的演化过程主要分为以下几个阶段:(1) 分子云的坍缩:恒星的形成始于巨大的分子云坍缩。

当分子云中的气体聚集到一定密度时,引力作用使其坍缩形成旋转的原恒星。

(2) 原恒星的主序阶段:在原恒星的核心温度达到数百万度时,核聚变开始,恒星进入主序阶段。

在这个阶段,恒星的核心温度和压力能够抵抗引力坍缩的压力,使恒星保持稳定的状态。

(3) 资源耗尽的红巨星:当恒星的氢燃料耗尽时,恒星内部的核聚变反应将减弱甚至停止。

恒星的核心会因引力压缩而变得更加致密,外层气体膨胀形成红巨星。

在这个阶段,恒星的体积会急剧扩大,温度下降。

(4) 超新星爆发:对于较大的恒星来说,红巨星阶段并不是终点。

当恒星的核心内部压力无法抵抗引力压缩时,核心会崩塌,形成超新星爆发。

超新星爆发释放出的能量相当于恒星整个寿命中的能量总和,同时将元素喷射到宇宙空间。

(5) 恒星残骸:超新星爆发会留下恒星的残骸,例如中子星或黑洞。

这些残骸是极端而充满活力的天体,对于研究宇宙的演化过程具有重要的意义。

3. 恒星的多样性恒星在质量、亮度和颜色等方面存在广泛的多样性。

质量较小的恒星,也称为红矮星,具有较低的表面温度和亮度。

质量较大的恒星,如超巨星,拥有巨大的亮度和高表面温度。

恒星的颜色与其表面温度有关。

较低温度的恒星呈现红色或橙色,而较高温度的恒星则呈现蓝色或白色。

恒星的演变

恒星的演变

(4) 水平支 (horizontal branch) H-R图:恒星向左下方移动至 水平支 内部过程: 核心He (壳层H)燃烧 →Rc↑ →Tc↓ →R↓ →T↑
(5) 渐进巨星支 (asymptotic giant branch) H-R图:恒星向右上方再次 攀升成为红超巨星 内部过程: 核心He枯竭(CO核) →R c↓ →Tc↑ →壳层He和H燃烧 →L↑ R↑ T↓
A Massive Star at The End of Its Life
核坍缩与超新星爆发
核心核反应停止 R c↓Tc↑ Fe核光致离解 4He光致离解 e- + p → n + νe 能量损失→ Pe↓ R c↓→Tc↑ 星核坍缩 当ρc =ρnu,核坍缩停止 →激波反弹 →壳层抛射 →II型超新星爆发 →中子星
产物:
膨胀气壳(超新星遗迹)+ 致 密天体(中子星或黑洞)
SN 1998aq in the galaxy NGC 3982
历史超新星
爆发时间 (AD) 光度极大星等 185 ? -8 393 -1 837 ? 1006 1054 1181 1572 1604 1680 1987 -8 ? -10 -5 -1 -4 -3 5? +2.9 发现者 中国天文学家 中国天文学家 中国天文学家 中/阿天文学家 中/日天文学家 中/日天文学家 Tycho Brahe Kepler John lamsteed Ian Shelton 遗迹 RCW 86 IC 443 SN 1006 Crab Nebula 3C 58 Tycho Kepler Cas A SN 1987A
第三章 恒星的演化
§3.1 主序星的演化 §3.2 恒星主序后的演化 §3.3 恒星演化的观测证据

恒星的演化

恒星的演化

恒星的演化§主序星的演化1、恒星演化的基本原理:恒星在一生的演化中总是试图处于稳定状态(流体静力学平衡和热平衡)。

当恒星无法产生足够多的能量时,它们就无法维持热平衡和流体静力学平衡,于是开始演化。

引力在其中起了关键的作用。

恒星从星云中诞生,这个结果是引力造成的,因为引力使得星云中的物质聚集成了恒星。

但是另一方面,引力会使得它在体积上不断收缩,为了使得引力作用在某种程度上达到平衡,恒星需要在内部产生能量,产生能量的目的是为了抗衡引力,否则它会持续收缩。

在达到平衡的过程里,恒星要付出代价,恒星要不断消耗自身物质,产生新的元素,元素在转化的过程中能量释放出来,内部结构也会发生变化,最终有一天恒星没有任何能源可以供给,它的生命就结束了。

所以说恒星的一生是一部与引力斗争的历史。

2、Russel-Vogt原理如果恒星处于流体静力学平衡和热平衡,而且它的能量来自内部的核反应,它们的结构和演化就会完全唯一地由初始质量和化学丰度决定。

这个原理在实际上可能不是非常符合,因为恒星的质量会不可避免地发生变化,但是初始质量和化学丰度仍然是决定恒星结构和演化的重要因素。

这里我们主要谈质量的影响。

3、恒星演化时标核时标(Nuclear Timescale):恒星内部通过核心区(约占恒星质量的十分之一)核反应的产能时间。

比如太阳,它并不是把所有的质量都烧光了,它其实只有0.1倍太阳质量作为可用的燃料。

我们有下面的结果:t n=EL=ηΔMc2L≈0.7%0.1Mc2L≈(1010yr)(MM⊙)LL⊙E是它总的能量,L是光度,也就是它能量消耗的速率,E可以写成ΔMc2,,其中ΔM是恒星核心区的质量,并不是恒星的总质量,η是能量转换的效率。

上式是以太阳质量和太阳光度作为单位的。

一旦恒星的核燃料烧光了,它会快速地变化,进入新的平衡状态,新的平衡状态转变的时标比核反应时标要快得多。

热时标(Thermal Timescale):恒星辐射自身热能的时间,或光子从恒星内部到达表面的时间,是指恒星把自身能量或热量全部辐射光了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) 热时标 (thermal timescale) 恒星辐射自身热能的时间,或光子从恒星内部到 达表面的时间。 tth = (0.5GM2/R)/L ≈ (2×107 yr) (M/M⊙)2 (R/R⊙)−1 (L/L⊙)−1 (3) 动力学时标 (dynamical timescale) 如果恒星的内部压力突然消失,在引力作用下恒 星坍缩的时间。 td = R/V ≈ (R3/GM)1/2 ≈ (27 min) (R/R⊙)3/2(M/M⊙)−1/2
3. 超新星 (Supernovae) 和超新星遗迹 (Supernova Remnants) II/Ib/Ic型超新星—高质量恒星在演化末态发生的 剧烈爆炸。
星系M 51中的SN 1991T
特征:
光度L~107-1010 L⊙, Lf /Li ~ 108 爆发能E~1047-1052 ergs(其 中中微子占99%,动能占 1% ,可见光辐射占0.01%) 膨胀速度v~103-104 kms-1
5M⊙恒星的演化
(3) 高质量(M > ~10M⊙)恒星的演化
观测表现 : O型星→蓝超巨星→黄超巨星→红超巨星→超新星
恒星内部物理过程 : 核心H枯竭→壳层H燃烧 → 核 心 He燃 烧 → 核 心 He 枯竭 →壳层He和H燃烧 →核心C燃烧→核心C枯 竭 →壳层C、He和H燃烧 →O, Ne, Si燃烧 … →Fe核
(3) He闪 (Helium Flash)
H-R图 恒星攀升到红巨星支的顶 点。 内部 过程 核心He开始燃烧(Tc~108 K) →Tc↑(简并→Rc不变) → ε↑ → Tc↑→... →核心He爆燃 (Δt ~ min, L ~ 1011L⊙) →电子简并解除
(4) 水平支 (Horizontal Branch)
(2) 红巨星支 (Red Giant Branch)
H-R图 恒星向右上方攀升成为 红巨星。 内部 过程 He核进一步收缩Rc↓ → Tc↑,核区电子简并 →壳层H 燃烧 L↑ →R↑→T↓ →恒星包层产生对流 →Hayashi Track
τ ≈ 105 yr
Structure of A Red Giant
V838 Mon
Van Gogh: Starry Night
第三章 恒星的演化
§3.1 主序星的演化 §3.2 恒星主序后的演化 §3.3 恒星演化的观测证据 §3.4 密近双星的演化
§3.1 主序星的演化
(20.1)
1. 恒星演化的基本原理
恒星在一生的演化中总是试图处于稳定状 态(流体静力学平衡和热平衡)。当恒星无法 产生足够多的能量时,它们就无法维持热平衡 和流体静力学平衡,于是开始演化。
Sequence of Events in a Supernova Explosion
核反应停止,核坍缩 R c↓Tc↑ 外部下落物质激波反弹 →壳层抛射 →II型超新星爆发 Fe核光致离解 4He光致离解 e− + p → n + νe
当ρc = ρnu,中子简并 →核坍缩停止,中子星
电子数目、能量损失 → Pe↓
(4) 特大质量恒星的演化
星风引起的质量损失 高光度恒星通常有很强的星 风~10−6−10−4 M⊙yr−1 如沃尔夫-拉叶(WR)星。 演化过程 O型星→蓝超巨星→(红超巨 星)→WR星→Ib/Ic型超新星 →中子星/黑洞
Nebula M1-67 around star WR124
小结
不同初始质量恒星的演化结局
产物:
膨胀气壳(超新星遗迹)+ 致密天体(中子星或黑洞)
SN 1998aq in the galaxy NGC 3982
历史超新星
爆发时间 (AD) 光度极大星等 185 ? -8 393 -1 837 ? 1006 1054 1181 1572 1604 1680 1987 -8 ? -10 -5 -1 -4 -3 5? +2.9 发现者 中国天文学家 中国天文学家 中国天文学家 中/阿天文学家 中/日天文学家 中/日天文学家 Tycho Brahe Kepler John lamsteed Ian Shelton 遗迹 RCW 86 IC 443 SN 1006 Crab Nebula 3C 58 Tycho Kepler Cas A SN 1987A
不同质量主序星的演化时标
M (M⊙) tn (yr) 30 2×106 15 107 1.0 1010 0.5 6×1010
主序星的内部化学 组成的变化
随着核反应的进行,核 心区的H元素丰度逐渐 减小,直至枯竭,全部 转变成He。
演化路径 (Evolutionary Track)
核反应4 H → 4He →核心区粒子数n↓→Pc↓ → 核心收缩R c↓ → 核心区温度Tc↑,核反应 产能率ε↑ → 光度L↑ → 包层压力P↑ → 恒星半径R↑ 主序带:主序星从核心H 燃烧开始到结束在H-R图 上占据的带状区域
恒星初始质量 (M⊙) M < 0.01 0.01 < M < 0.08 0.08 < M < 0.25 0.25 < M < 8 8 < M < 12 (?) 12 < M < 25 (?) M > 25 (?) 演化结局 行星 褐矮星 He白矮星 CO白矮星 ONeMg白矮星 超新星→中子星 超新星→黑洞、中子 星?
主序星的演化
(1) 零龄主序 (Zero Age Main-Sequence, ZAMS) 刚刚开始核心H燃烧的恒星,在H-R图上占据主序 带的最左侧。 (2) 演化时标 ——核反应 (4 1H→4He + γ) 时标 tn=ηΔMc2/L ≈(1010 yr) (M/M⊙) (L/L⊙)−1 ≈(1010 yr) (M/M⊙)−2.5 for M > M⊙ or (1010 yr) (M/M⊙)−2 for M < M⊙
Evolutionary Stages of a 25 M⊙ Star
Stage Hydrogen burning Helium burning Carbon burning Neon burning Oxygen burning Silicon burning Core collapse Core bounce Explosion Temperature (K) 4 × 107 2 × 108 6 × 108 1.2 × 109 1.5 × 109 2.7 × 109 5.4 × 109 2.3 × 1010 about 109 Density (g/cm3) 5 700 2 × 105 4 × 106 107 3 × 107 3 × 109 4 × 1014 varies Duration of stage 7 × 106 years 5 × 105years 600 years 1 year 6 months 1 day 1/4 second milliseconds 10 seconds
τ ≈ 10 4 yr
热脉冲 (Thermal Pulses) H-R图:恒星移至渐进巨星 支顶点。 内部过程: 壳层He闪(不稳定燃烧)
→恒星脉动(热脉冲)
→抛射红巨星的包层 (25%-60%恒星质量) →行星状星云 + 高温简并 CO核心
(6) CO核坍缩成白矮星 H-R图:恒星向左方移动。 内部过程: 核心收缩→T↑ 行星状星云向外弥散
§3.2 恒星主序后的演化
(20.1-20.3, 21.2-21.4)
当恒星核心区的氢完全 耗尽,恒星开始脱离主 序。2-20.3) (1) 脱离主序——亚巨星支
(Subgiant Branch) H-R图 恒星逐渐向右脱 离主序。 内部 核心H枯竭, He 过程 核收缩,壳层H 燃烧,体积膨 胀,表面温度降 低 τ ≈ 108 yr 。
R c↓→Tc↑, 星核坍缩
Three Dimensional Simulation of a Core Collapse Supernova
Prior to SN Implosion
Middle of SN Bounce
End of SN Explosion
50 milliseconds
Photos by Michael S. Warren, Los Alamos National Laboratory
演化轨迹与物理过程 1. 恒星向右方移动成为红 (超)巨星。(核心H枯竭→ 壳层H燃烧) 2. 恒星向左方移动。 (核心He平稳燃烧) 3. 恒星向右上方攀升至红超 巨星。(核心He枯竭 →壳层He和H燃烧 ) 4. 恒星向左方移动,然后折 向右下方(?) (红超巨星 →行 星状星云 + 高温简并CO核 CO核坍缩→高温白矮星 白矮星冷却→黑矮星 )
H-R图:恒星向左下方移动至水平支 内部过程: 核心He (+壳层H)燃烧 →Rc↑→Tc↓→R↓→T↑
τ ≈ 5 ×107 yr
(5) 渐进巨星支 (Asymptotic Giant Branch, AGB) H-R图:恒星向右上方再次 攀升成为红超巨星 内部过程: 核心He枯竭(CO核) →R c↓ →Tc↑ →壳层He和H燃烧 →L↑ R↑ T↓
恒星统计与演化
如果相同质量的恒星的演化过程基本相 同,在H-R图上恒星的不同类型反映它们处 于不同的演化阶段。 如果恒星的诞生率和死亡率一致,在H-R图 上某一类恒星数目的多少就反映了恒星在 该演化阶段所停留时间的长短。
2. 主序星的演化
主序星的性质 均匀的化学组成 核心H燃烧 质量范围: 0.08 M⊙ < M < ~100 M⊙ 质光关系和质量-半径关系 L ~ M 2.5−4, R ~ M 0.5−1
(1) 与低质量恒星演化的主要区别 恒星内部的H燃烧通过CNO循环进行,内部温 度更高,辐射压对维持恒星的力学平衡起更大 的作用,主序寿命更短。Live fast, die young. He核不再是简并的,C和更重元素的燃烧可以 平稳进行。 核心区核反应产生的能量主要以对流的方式向 外传递。
相关文档
最新文档