2015年初中毕业生升学模拟考试(二)数学试卷附答案
2015年中考名校第二次模拟考试数学试题(卷)及答案

2015年中考名校第二次模拟考试 数 学 试 题 (卷)时间120分钟 满分120分 2015.6.12一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,恰有一项是符合要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上) 1、31-的绝对值数是( ) A . 3- B .3 C .31-D .31 2、当地时间4月25日12时许,尼泊尔中部地区突发7.9级(中国地震台网测定为8.1级)强烈地震。
据尼官方最新数字,地震已经造成尼境内至少6000人遇难,另有5000余人受伤。
为表达中国政府和人民对尼泊尔抗震救灾的坚定支持,中国政府决定向尼泊尔政府提供2000万元人民币紧急人道主义物资援助,包括帐篷、毛毯、发电机等灾区急需物资,帮助尼方开展救灾安置工作,请把2000万元用科学记数法表示为( )元。
A .4200010⨯ B .8210⨯ C .7210⨯ D .62010⨯ 3、下列计算正确的是( )A .623x x x =+B .3a ·62a a = C .3223=- D .27714=⨯ 4、如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB ,∠BEF=80º,则∠ABD 的度数为( )A .60ºB .50ºC .40ºD .30°5、在实数范围内分解因式328a a -的结果是( )A 、22(4)a a - B 、 )2)(2(2-+a a a C 、2(4)(4)a a a +- D 、)2)(2(-+a a a 6、九年级某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80.对这 组数据表述错误的是( )A .众数是80B .极差是15C .平均数是80D .中位数是757、将不等式组⎩⎨⎧-≤-+xx x x 316148 的解集在数轴上表示出来,正确的是( )P D CBAA B C D8、如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点B 出发,沿路线B→C→D作匀速运动,那么△ABP 的面积y 与点P 运动的路程x 之间的函数图象大致是( ) A B C D 9、分式方程 的解为( )A.B.C.D.无解10、在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为( )A.15° B .15°或75° C.75° D.15°或65°11、已知二次函数)0(122≠--=k x kx y 的图象与x 轴有两个交点,则k 的取值范围是A 、1->k 且0≠kB 、1->kC 、1<k 且0≠kD 、1<k12、如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A 、B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是( ) A.4π-8 B. 16π-16 C.16π-32 D. 8π-16二、填空题(每小题3分,共12分) 13、9的平方根是 。
2015西城中考数学二模题及答案(完整版)

2015二模统一练习(二)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动 次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示 应为A. 90.1210⨯B. 71.210⨯C. 81.210⨯D. 71210⨯ 2.如图,BD ∥AC ,AD 与BC 交于点E ,如果∠BCA =50°,∠D =30°, 那么∠DEC 等于A. 75°B. 80°C. 100°D. 120° 3.64的立方根是A. 8±B. 4±C. 8D. 44.函数y =x 的取值范围是A.2x ≠B. x ≥2C. x >2D. x ≥2-5.如图,△ABC 中,D ,E 两点分别在AB ,AC 边上,且DE ∥BC , 如果23AD AB =,AC =6,那么AE 的长为 A. 3 B. 4 C. 9 D. 126.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示.那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是 A. 35 B. 26 C. 25 D. 20 7.若一个正六边形的半径为2,则它的边心距等于A. 2B. 1C.8.如图,△ABC 的边AC 与⊙O 相交于C ,D 两点,且经过圆心O , 边AB 与⊙O 相切,切点为B .如果∠A =34°,那么∠C 等于 A .28° B .33° C .34° D .56°9.如图,将正方形OABC 放在平面直角坐标系xOy 中,O 是原点,若点A 的坐标为,则点C 的坐标为A .B .(-C .(D .(1)-10.在平面直角坐标系xOy 中,点M 的坐标为(,1)m .如果以原点为圆心,半径为1的⊙O 上 存在点N ,使得45OMN ∠=︒,那么m 的取值范围是A .1-≤m ≤1 B. 1-<m <1 C. 0≤m ≤1 D. 0<m <1 二、填空题(本题共18分,每小题3分)11.若2(2)0m ++ 则m n -= .12.若一个凸n 边形的内角和为1080︒,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上 开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小 华在学习了小孔成像的原理后,利用如下装置来验证小孔 成像的现象.已知一根点燃的蜡烛距小孔20cm ,光屏在距 小孔30cm 处,小华测量了蜡烛的火焰高度为2cm ,则光屏上火焰 所成像的高度为______cm .14.请写出一个图象的对称轴是直线1x =,且经过(0,1)点的二次函数的表达式: _____________.15.如图,在平面直角坐标系xOy 中,直线3y x =与双曲线y =(n ≠0)在第一象限的公共点是(1,)P m .小明说:以看出,满足3nx x>的x 的取值范围是1x >.”你同意他的 观点吗?答: .理由是 .16.如图,在平面直角坐标系xOy 中,点D 为直线2y x = 象限内的任意一点,1DA ⊥x 轴于点1A ,以1DA 为边在1DA 作正方形111A B C D ;直线1OC 与边1DA 交于点2A ,以2DA 2DA 的右侧作正方形222A B C D ;直线2OC 与边1DA 交于点3A ,以3DA 为边在3DA 的右侧作正方形333A B C D ,……,按这种方式进行下去,则直线1OC 对应的函数表达式为 ,直线3OC 对应的函数表达式为 . 三、解答题(本题共30分,每小题5分)17.如图,△ABC 是等边三角形,D ,E 两点分别在AB ,BC 的延长线上,BD =CE ,连接AE ,CD .求证:∠E =∠D .18.计算:1012cos 30()1(3)3π-++-.19.已知2540x x --=,求代数式(2)(2)(21)(2)x x x x +----的值.20.解方程:231233x x x x-=--.21.列方程(组)解应用题:某超市的部分商品账目记录显示内容如下:求第三天卖出牙膏多少盒.22.已知关于x 的函数 2(3)3y mx m x =+--.(1)求证:无论m 取何实数,此函数的图象与x 轴总有公共点;(2)当m >0时,如果此函数的图象与x 轴公共点的横坐标为整数,求正整数m 的值.四、解答题(本题共20分,每小题5分)23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF.(1)求证:四边形AFCE是菱形;(2)若∠B=45°,∠FCE=60°,AB=D′F的长.24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.根据以上信息解决下列问题:(1)以下说法中,正确的是(请填写所有正确说法的序号)①从2011年至2014年,全市常住人口数在逐年下降;②2010年末全市常住人口数达到近年来的最高值;③ 2014年末全市常住人口比2013年末增加36.8万人;④从2011年到2014年全市常住人口的年增长率连续递减.(2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人?(3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过.(精确到0.1%)25.如图1,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,点F 在线段ED 上.连接AF 并延长交 ⊙O 于点G ,在CD 的延长线上取一点P ,使PF=PG .(1)依题意补全图形,判断PG 与⊙O 的位置关系,并证明你的结论;(2)如图2,当E 为半径OA 的中点,DG ∥AB ,且OA PG 的长.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=C D E A C B ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于 ,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示)(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt△OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)已知一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点,二次函数2224y x ax =-+(其中a >2).(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a 的代数式表示); (2)利用函数图象解决下列问题:①若25=a ,求当10y >且2y ≤0时,自变量x 的取值范围;②如果满足10y 且2y≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.28.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.29.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点,△PMN为图形G关于点P的τ型三角形.(1)如图1,已知点(0,A,(3,0)B,以原点O为圆心的⊙O的半径为1.在A,B 两点中,⊙O的τ型点是____,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可)(2)如图2,已知点(0,2)F m(其中m>0).若线段EF为原点O的τ型线,E,点(,0)且线段EF关于原点O的τ,求m的值;(3)若(0,2)H-是抛物线2=+的τ型点,直接写出n的取值范围.y x n北京市西城区2015年初三二模数学试卷参考答案及评分标准 2015. 6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分)17.证明:如图1.∵ △ABC 是等边三角形,∴ AC =BC ,∠ACB=∠ABC =60°.……………………………………………… 1分∵ D ,E 两点分别在AB ,BC 的延长线上,∴ ∠ACE =∠CBD =120°. …………………2分在△ACE 和△CBD 中,,,AC CB ACE CBD CE BD =⎧⎪∠∠⎩=⎪⎨,= ……………………… 3分∴ △ACE ≌△CBD .……………………… 4分∴ ∠E =∠D .…………………………………………………………………… 5分18.解: 1012cos 30()1(3)3π-++- 2311=+- ………………………………………………………………4分 1=. ………………………………………………………………………… 5分 19.解: (2)(2)(21)(2)x x x x +----=224(252)x x x ---+………………………………………………………………2分 =224252x x x --+-=256x x -+-.………………………………………………………………………3分 ∵ 2540x x --=,∴ 254x x -=.…………………………………………………………………… 4分∴ 原式=2(5)64610x x ---=--=-.……………………………………………5分 20.解:去分母,得 3(3)2x x --=.…………………………………………………… 1分 去括号,得 332x x -+=. ………………………………………………………2分 整理,得 21x =-.……………………………………………………………… 3分 解得 12x =-. …………………………………………………………………… 4分 经检验,12x =-是原方程的解. …………………………………………………5分 所以原方程的解是12x =-.21.解:设牙膏每盒x 元,牙刷每支y 元.…………………………………………………1分 由题意,得 713121,1415187.x y x y +=+=⎧⎨⎩…………………………………………………… 2分解得 85.x y ==⎧⎨⎩,……………………………………………………………………… 3分(124125)88-⨯=(盒). ………………………………………………………… 4分 答:第三天卖出牙膏8盒.………………………………………………………………5分 22.解:(1)当m =0 时,该函数为一次函数33y x =--,它的图象与x 轴有公共点.……………………………………………………………… 1分当m ≠0 时,二次函数2(3)3y mx m x =+--.2(3)4(3)m m ∆=--⨯-26912m m m =-++2269(3)m m m =++=+. ∵ 无论m 取何实数,总有2(3)m +≥0,即∆≥0, ∴ 方程2(3)30mx m x +--=有两个实数根.∴ 此时函数2(3)3y mx m x =+--的图象与x 轴有公共点.……………2分 综上所述,无论m 取何实数,该函数的图象与x 轴总有公共点.(2)∵m >0,∴ 该函数为二次函数,它的图象与x 轴的公共点的横坐标为(3)(3)2m m x m--±+=.∴ 11x =-,23x m=. ……………………………………………………… 3分∵ 此抛物线与x 轴公共点的横坐标为整数,∴正整数m =1或3.……………………………………………………………5分四、解答题(本题共20分,每小题5分) 23.(1)证明:如图2.∵点C 与点A 重合,折痕为EF ,∴12∠=∠,AE =EC .∵ 四边形ABCD 为平行四边形, ∴ AD ∥BC . ∴ 32∠=∠.∴ 13∠=∠.∴ AE =AF1分 ∴ AF =EC . 又∵ AF ∥EC ,∴ 四边形AFCE 是平行四边形.………………………………………… 2分 又AE =AF ,∴ 四边形AFCE 为菱形.………………………………………………… 3分(2)解:如图3,作AG ⊥BE 于点G ,则∠AGB=∠AGE=90°. ∵ 点D 的落点为点D ′ ,折痕为EF , ∴D F DF '=.∵ 四边形ABCD 为平行四边形, ∴ AD =BC .又∵AF =EC ,∴AD AF BC EC -=-,即DF BE =.∵在Rt△AGB 中,∠AGB=90°,∠B =45°,AB =∴ AG =GB =6.∵ 四边形AFCE 为平行四边形, ∴ AE ∥FC .∴ ∠4=∠5=60°.∵ 在Rt△AGE 中,∠AGE =90°,∠4=60°, ∴ tan60AGGE ==︒∴ 6BE BG GE =+=+.∴ 6D F '=+.…………………5分 24.解:(1)③④.………………………………… 2分(2)补全统计图见图4. ………………… 3分 1055万人. ………………………… 4分(3)1.3%. …………………………………………………………………………… 5分 25. 解:(1)补全图形如图5所示. ………………………………………………………… 1分 答:PG 与⊙O 相切.证明:如图6,连接OG .∵ PF =PG , ∴ ∠1=∠2.又∵OG =OA , ∴ ∠3=∠A .∵ CD ⊥AB 于点E ,∴ ∠A +∠AFE =90°.又∵∠2 =∠AFE ,∴ ∠3+∠1=90°. ……………………… 2分 即 OG ⊥PG .∵ OG 为⊙O 的半径,∴ PG 与⊙O 相切. …………………… 3分(2)解:如图7,连接CG . ∵ CD ⊥AB 于点E ,∴ ∠OEC =90°. ∵ DG ∥AB ,∴∠GDC =∠OEC =90°. ∵∠GDC 是⊙O 的圆周角, ∴ CG 为⊙O 的直径. ∵ E 为半径OA 的中点,∴ 22OA OCOE ==. ∴ ∠OCE =30°即∠GCP =30°.又∵∠CGP=90°,2CG OA ==∴tan 4PG CG GCP =⋅∠==. …………………………… 5分 26.解:(1)CADBC . …………………………………………………………… 3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.解:(1)∵ 一次函数1y kx b =+(k ≠0)的图象经过(2,0),(4,1)两点, ∴ 20,4 1.k b k b +=⎧⎨+=⎩解得1,21.k b ⎧=⎪⎨⎪=-⎩……………………………………………………………… 1分∴ 1211-=x y . ………………………………………………………… 2分 ∵ 22224)(42a a x ax x y -+-=+-=,∴ 二次函数图象的顶点坐标为2(,4)a a -.………………………………… 3分(2)①当25=a 时,4522+-=x x y .………………………………… 4分 如图10,因为10y >且2y ≤0,由图象得2<x ≤4. (6)分②136≤a <52.……………………………7分 28.解:(1)CH=AB . ………………………………… 1分 (2)结论成立.………………………………… 2分证明:如图11,连接BE . 在正方形ABCD 中,AB=BC=CD=AD ,∠A=∠BCD=∠ABC=90°. ∵ DE=DF , ∴ AF=CE .在△ABF 和△CBE 中,,,,AB CB A BCE AF CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBE .∴ ∠1=∠2.……………………………………………………………………3分 ∵ EH ⊥BF ,∠BCE =90°,∴ H ,C 两点都在以BE 为直径的圆上. ∴ ∠3=∠2. ∴ ∠3=∠1.∵ ∠3+∠4=90°,∠1+∠HBC =90°, ∴ ∠4=∠HBC .∴ CH=CB .………………………………………………………………… 5分 ∴ CH=AB .………………………………………………………………… 6分(3)3.………………………………………………………………………7分29.解:(1)点A .………………………………………1分 画图见图12.(画出一个即可)…………2分 △AMN (或△AJK ). (3)分(2)如图13,作OL ⊥EF 于点L .∵ 线段EF 为点O 的τ型线, ∴ OL 即为线段EF 关于点O 的τ型三角形的高.∵线段EF 关于点O 的τ∴OL =. ……………………………… 4∵ 2OE =,OF m =,∴EL =. ∴ cos 1EL OE ∠==∴ cos 2cos 1OL OLOF ==∠∠∴m =………………………………………………………………………6分 (3)n ≤54-.……………………………………………………………………………8分。
2015年中考数学模拟考试卷(二)含答案

2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。
河南省开封市2015年中招第二次模拟考试数学试题(含详细答案)

河南省开封市2015年中招第二次模拟考试数学试题 考生注意:1.本试卷共8页,三大题,满分120分,考试时间100分钟。
2.请用黑色笔直接答在答题卡上。
3.答卷前将密封线内的项目填写清楚。
一、选择题(本大题共8题,每小题3分.共24分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡上。
1.|-3|的相反数是 ( )A .3B .-3C .31D .-31 2. 2015年,我国筹备成立亚洲基础设旌投资银行(亚投行)。
据统计,2010年至2020 年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8 000 000 000 000 美元基建投资,将8 000 000 000 000用科学记效法表示应为 ( )A . 08³1013B .8³l013C .8³1012D .80³l0113.下列几何体的主视图是三角形的是 ( )4.如右图,△ABC 中,∠A=90°,点D 在AC 边上,DE ∥BC ,若∠1=35°,则∠B 的度数为 ( )A .25°B .35°C .55°D .65°5.下列计算正确的是A . 3a-2a=lB . a 2 +a 5 =a 7C . (ab)3一ab 3D . a 2· a 4 =a 66.如右图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 袖于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为 ( )A .a-bB .2a+b=-1C .2a- b=lD .2a+b=l7.如右图,在菱形ABCD 中.AB=5,对角线AC=6.若过点A 作AE ⊥BC ,垂足为E ,则AE 的长为 ( )A .4B .5C .512D .524,8.如右图矩形ABCD 中.AD=8cm .AB= 6cm.动点E 从点C 开始沿边CB 向点B 以2cm /s 的速度运动至点B 停止,动点F 从点C同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止,如图可得到矩形CFHE .设运动时间为x(单位:s).此时矩形ABCD去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图 象表示大致是下图中的 ( )二、填空题(本大题共有7题.每小题3分,共21分)9.-32+38-+()02-5= . 10.分式方程3932-+-x x x =1的解是 11.如右图,点B 在x 轴上,∠ABO=90°,∠A= 30°,OA=4,将△OAB 绕点O 按顺时针方向旋转120°得到△OA'B ’,则点A ’的坐标是 。
2015年中学学业水平模拟(二)数学试题附答案

2015年中学学业水平模拟(二)数学试题(本试卷满分120分,考试时间l20分钟)第Ⅰ卷(选择题共30分)一、选择题(本大题共l0小题。
每小题3分。
共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.我国最长的河流长江全长约6300千米,用科学计数法表示为A .6.3× 102千米B .63 ×102千米C .6.3×103千米D .6.3×104 千米 2.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n mnm =22D .222)(mn n m =⋅3.如图,AB ∥CD ,BC ∥DE ,若∠B=40°,则∠D 的度数是A .40°B .140°C .160°D .60°4.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是 A .131 B .41 C .521 D .134 5.不等式组⎩⎨⎧->-<-32512x x 的解集是A .61<<xB .31<<-xC .31<<xD .61<<-x6.某单位3月上旬中的1至6日每天用水量的变化如图所示,那么这6天用水量的中位数是A .31.5B .32C .32.5D .337.分式方程111=-x 的解为 A .2=xB .1=xC .1-=xD .2-=x8.如图,以O 为位似中心将四边形ABCD 放大后得到四边形A′B′C′D′,若OA=4, OA′=8,则四边形ABCD 和四边形A′B′C′D′的周长的比为A .1:2B .1:4C .2:1D .4:19.若0)3()2(22=++-b a ,则2015()a b +的值是 A .0B .1C .-lD .201210.函数m mx y -=与)0(≠=m xmy 在同一坐标系内的图象可能是ABCD第Ⅱ卷(非选择题共90分)二、填空题(本大题共5小题。
15年(二模)九年级数学试题

2014—2015学年度第二学期教学质量阶段性检测九年级数学试题(满分:120分时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题、认真答题,你就会有出色的表现!第Ⅰ卷一、选择题:(本题满分24分,共有8道小题,每小题3分)请把唯一正确答案的字母标号涂在答题卡的相应位置1.12-的倒数是().A.2 B.12C.-2 D.12-2.下列图形中,中心对称图形有()个A .1 B. 2 C. 3 D.43.一种病毒的长度约为0.0000046mm,用科学记数法表示为().A.0.46×105-B.4.6 × 106-C. 46 ×106-D. 4.6×106 4.如图,AB是⊙O的直径,C、D是⊙O上的点,若∠ABC=64°,则∠BDC等于().A.26° B.64° C. 52° D. 128°D FECBA5.如图,在四边形ABCD中,∠A=90°,对角线BD平分∠ABC,若BC=5,AD=4,则△BCD 的面积为().A.6 B.10 C.12 D.20第4题OBDCAAB CD第5题图6.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的。
如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )。
A .(5, 2) B .(2, 5) C .(2, 1) D .(1, 2)7.若反比例函数()0ky k x =≠的图象经过点A (-2, 1),则当x <-1时,函数值y 的取值范围是( ) .A .y >2 B. -2<y <0 C .y >-2 D .0<y <2 8.已知函数ax ax y +=2与函数y =xa,则它们在同一坐标系中的大致图象是( )第Ⅱ卷二、填空题:(本题满分18分,共有6道小题,每小题3分) 请把正确答案填写在答题卡的相应位置9.化简:01127(3.14)3π---+=() .10.某工厂生产某种产品,今年产量为200件,计划通过技术革新,使今后两年的产量都比前一年增长相同的百分数,这样三年的产量达到1400件,设这个百分数为x ,根据题意,可列方程为 __________________.11.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12 3 4 5 6 7 8 9 10 黑棋数 132342113根据以上数据,估算袋中的白棋子数量为 枚.12.如图,将边长为3cm 的正方形ABCD 沿 其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A 1B 1C 1,若两个三角形 重叠部分的面积是49cm 2,则△ABC 移动 的距离A A 1是 cm . 第12题图第8题1 3.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB =AC =2cm ,∠ABC =30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)14.在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y kx b =+的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上。
2015年中考二模名校考试数学试题及答案

2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
2015年区二模数学答案

3 2 2
3 ..............................................................................................2 分
22.(本题满分 7 分) (1)画图正确...............................................................................................................................................3 分 △ABC 的面积为6..................................................................................................................................1 分 (2) 画图正确.................................................................................................................................................3 分 23.(本题满分 8 分) (1)解:m = 100,x = 40,y = 0.18........................................................................................................3 分 (2)补图正确..................................................................................................................................................2 分 (3)解: 估计该校学生劳动的总时间为 2640 小时..........................................................................................3 分 24.(本题满分 8 分) (1)在△ABC 中,∵AC=BC,∠ACB=90,CG 平分∠ACB, ∴∠CAB=∠CBA=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年初中毕业生升学模拟考试(二)数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,最大的数是A .3-B .-2C .0D .12.下列运算正确的是A. 33a a a ⋅=B. ()33ab a b = C. ()236aa =D. 842a a a ÷=3.下列几何体中,主视图是三角形的是A .B .C .D .4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为 A .58B .13C .15D .385.如图1,点B ,O ,D 在同一直线上,若∠1=15°,∠2=105°,则∠AOC 的度数是 A .75° B .90° C .105°D .125°6.在平面直角坐标系中,点P (-2,3)关于y 轴的对称点的坐标A .(-2,-3)B .(2,-3)C .(-2,3)D .(2,3) 7.把多项式24a a -分解因式,结果正确的是A .()4a a -B .(2)(2)a a +-C .(2)(2)a a a +-D .2(2)4a --8.如图2是一个正六边形,图中空白部分的面积等于20,则阴影部分 的面积等于 A .10B .210C .20D .2209.如图3,反比例函数y =kx的图象经过点M ,则此反比例 函数的解析式为 A .y =-12xB .y =-2xC .y =12xD .y =2x10.已知a 和b 是有理数,若a +b =0,ab ≠0,则在a 和b 之间一定图3图2ACBO12图1A .存在负整数B .存在正整数C .存在负分数D .不存在正分数11.如图4,AB 是半圆的直径,点O 是圆心,点C 是AB 延长线的一点,CD 与半圆相切于点D .若AB =6,CD =4,则sin ∠C 的值为A .43 B .53 C .54 D .3212.若实数x ,y满足4x -,则以x ,y 的值为两边长的等腰三角形的周长是A .12B .16C .16或20D .2013.如图5,P 为边长为2的正三角形内任意一点,过P 点分别做三边的垂线,垂足分别为D ,E ,F ,则PD+PE+PF 的值为A .23 B .3C .2D .3214.某旅行团在一城市游览,有甲、乙、丙、丁四个景点,导游说:“①要游览甲,就得去乙;②乙、丙只能去一个;③丙、丁要么都去,要么都不去;”根据导游的说法,在下列选项中,该旅行团可能游览的景点是 A .甲、丙B .甲、丁C .乙、丁D .丙、丁图5图415.如图6,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是 A .8B .9C .8或9D .无法确定16.如图7,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,以3cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA --AC 方向运动到点C 停止,若△BPQ 的面积为y (cm 2),运动时间为x (s),则下列最能反映y 与x 之间函数关系的图象是图6图7②BCD③C ①④图92015年邯郸市初中毕业生升学模拟考试(二)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若实数a 满足12=+a a ,则2015222+--a a = . 18.如图8,射线AB ,CD 分别与直线l 相交于点G 、H ,若∠1=∠2,∠C =65°,则∠A 的度数是 .19.如图9,等腰△ABC 纸片(AB =AC )按图中所示方法,恰好能折成一个四边形,首先使点A 与点B 重合,然后使点C 与点D 重合,则等腰△ABC 中∠B 的度数是 .20.有一个数学游戏,其规则是:对一个“数串”中任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,产生一个新“数串”,这称为一次操作.例如:对于数串2,7,6,第一次操作后产生的新数串为2,5,7,-1,6;对产生的新数串进行同样的操作,第二次操作后产生的新数串为2,3,5,2,7,-8,-1,7,6;……对数串3,1,6也进行这样的操作,第30次操作后所产生的那个新数串中所有..数.的.和.是________. 图8 ACB DGH 12 lA6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)(1)对于a,b定义一种新运算“☆”:a ☆b = 2a-b,例如:5 ☆ 3 = 2×5-3 = 7.若(x ☆5)<-2,求x的取值范围;(2)先化简再求值:44222+--xxxx÷42-xx,其中x的值是(1)中的正整数解.22.(本小题满分10分)某公司共20名员工,员工基本工资的平均数为2200元.现就其各岗位每人的基本工资情况和各岗位人数,绘制了下列尚不完整的统计图表:各岗位每人的基本工资情况统计表请回答下列问题:(1)将各岗位人数统计图补充完整; (2)求该公司服务员每人的基本工资;(3)该公司所有员工基本工资的中位数是________元,众数是_______元;你认为用基本工资的平均数和中位数来代表该公司员工基本工资的一般水平,哪一个更恰当?请说明理由.(4)该公司一名员工向经理辞职了,若其他员工的基本工资不变,那么基本工资的平均数就降低了.你认为辞职的可能是哪个岗位上的员工呢?说明理由.岗位经理 技师 领班 助理 清洁工 服务员23.(本小题满分11分)如图10,点A ,B ,C 在一个已知圆上,通过一个基本的尺规作图作出的射线AP 交已知圆于点D ,直线OF 垂直平分AC ,交AD 于点O ,交AC 于点E ,交已知圆于点F .(1)若∠BAC = 50°,则∠BAD 的度数为 ,∠AOF 的度数为 ; (2)若点O 恰为线段AD 的中点.① 求证:线段AD 是已知圆的直径; ② 若∠BAC = 80°,AD =6,求弧DC 的长; ③ 连接BD ,CD ,若△AOE 的面积为S ,则四边形 ACDB 的面积为 .(用含S 的代数式表示)图10如图11,抛物线y=ax2 + c经过点A(0,2)和点B(-1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.图1125.(本小题满分11分)如图12-1和12-2,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .过点A 作AF ⊥AE ,过点C 作CF ∥AD ,两直线交于点F . (1)在图12-1中,证明:△ACF ≌△ABE ;(2)在图12-2中,∠ACB 的平分线交AB 于点M ,交AD 于点N .① 求证:四边形ANCF 是平行四边形; ② 求证:ME =MA ;③ 四边形ANCF 是不是菱形?若是,请证明; 若不是,请简要说明理由.图12-1BFC图12-2为了创建全国卫生城,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送.若两车合作,各运12趟才能完成,需支付运费共4800元;若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍;已知乙车每趟运费比甲车少200元.(1)分别求出甲、乙两车每趟的运费;(2)若单独租用甲车运完此堆垃圾,需运多少趟;(3)若同时租用甲、乙两车,则甲车运x趟,乙车运y趟,才能运完此堆垃圾,其中为x,y 均为正整数.①当②求y与x的函数关系式.①求w与x的函数关系式,直接写出w的最小值;②当x≥10且y≥10时,甲车每趟的运费打7折,乙车每趟的运费打9折,直接写出w的最小值.参考答案及评分标准一.选择题一、选择题 二、填空题17.2013 18.115 ° 19.72° 20.100 三、解答题21. (1) 解:2x -5<-2 ……………………………………………………2分x <23…………………………………………………………… 3分 (2) 解:原式=x x x x x x )2)(2()2()2(2-+⋅--………………………………………… 5分=x+2, …………………………………………… 7分 ∵x <23且x 为正整数解 ∴x =1, ……………………………………………………………… 8分 ∴当x =1时,原式= x +2=3 ………………………………………………………10分 22.(1)5人(图略 )……………………………………………………………… 1分 (2)解:(2200×20-10000-4000×2-2400×2-1600×5-1000×2)÷8=1400(元) ……………………………………………………………… 3分 (3)1500;1400. ……………………………………………………………… 5分 答:中位数能代表该公司员工的基本工资水平.理由:因为平均数受极端值的影响,不能真实反映员工的基本工资水平,所以中位数能代表该公司员工的基本工资水平. …………………………………………………………… 7分 (4)辞职的可能是技师或领班.理由:因为向经理辞职,所以该员工职位肯定比经理低;又因为基本工资的平均数降低了,所以该员工的基本工资比基本工资的平均数高,所以辞职的可能是技师或领班. … 10分23. (1)25°; 65°………………………………………………………………… 2分(2)①证明:连接CD ,∵直线OF 垂直平分AC ,交AC 于点E , ∴∠AEO =90° , AE=CE , ∵AO=OD , AE=CE , ∴OE ∥CD ∴∠AEO=∠ACD=90°∴线段AD 是已知圆的直径……………………………………………………………… 6分 ②解:连接OC由作图可知,AP 是∠BAC 的平分线 ∴∠CAD =21∠CAB =40°, ∵弧CD 所对的圆周角为∠CAD 、圆心角为∠COD ∴∠COD =2∠CAD =80° ∴弧CD 的长=34180380ππ=⋅………………………………………………………… 9分③ 8S ……………………………………………………………………11分24.解:(1)∵抛物线y =ax 2 + c 经过点A (0,2)和点B (-1,0);∴ ⎩⎨⎧=+=02c a c解得: ⎩⎨⎧=-=2,2c a∴此抛物线的解析式为222+-=x y ……………………………………………… 4分(2)∵此抛物线平移后顶点坐标为(2,1)∴抛物线的解析式为y=-22)2-x (+1 令y=0, 即-22)2-x (+1=0 解得 222x 1+= 22-2x 2=∵点C 在点D 的左边 ∴C(22-2,0) D (222+,0) …………………………………………………… 9分(3)2<n<6 …………………………………………………………………… 11分 25.(1)证明:∵∠BAC =90°,AB=AC , ∴∠B =∠ACB =45°, ∵AD ⊥BC ∴∠DAC =21∠CAB =45° ∵CF ∥AD∴∠DAC =∠AC F=45°, ∴∠B =∠AC F=45° ∵AF ⊥AE ∴∠E AF =90°∵∠E AF=∠E AC +∠C AF =90° ∠BAC=∠E AC +∠BAE=90° ∴∠C AF=∠BAE ∵AB=AC ,∴△ACF ≌△ABE ; …………………………………………………………… 3分(2)①证明:∵∠BAC =90°,AB=AC ,AD ⊥BC ∴∠BAD =45°,∵AE 平分∠BAD , ∴∠BAE =21∠DAB =22.5°, ∵△ACF ≌△ABE ; ∴∠BAE =∠CAF =22.5°, ∵∠ACB 的平分线交AB 于点M ∴∠ACM =21∠ACB =22.5°, ∵∠ ACM =∠CAF =22.5° ∴AF ∥CN∵AD ∥FC∴四边形ANCF 是平行四边形;……………………………………………………… 6分 ②证明:∵∠BAC =90°,∠BAE =22.5°, ∴∠EAC=67.5°,∵∠BCA=45°, ∴∠AEC =67.5°,∵∠EAC =∠AEC =67.5°,∴CA=CE∵∠ACB 的平分线交AB 于点M ∴∠ACM =∠ECM ∵MC=MC∴ △ACM ≌△ECM∴AM=EM …………………………………………………………………… 9分③答:不是.理由:∵∠CAF =22.5°,∠ACF =45° ∴FA≠FC∴四边形ANCF 不是菱形 ………………………………………………………… 11分26.(1)解:设甲、乙两车每趟的运费分别为m 元、n 元,由题意得⎩⎨⎧=+=-4800)(12200n m n m解得: ⎩⎨⎧==100300n m答:甲、乙两车每趟的运费分别为300元、100元 . ………………………………… 2分(2)解:设单独租用甲车运完此堆垃圾,需运a 趟, 由题意得12(aa211+)=1 解得 a =18经检验a =18是原方程的解答:单独租用甲车运完此堆垃圾,需运18趟. …………………………………………5分(3)① 16; 13 . …………………………………………………………………… 7分②解:13618=+yxy=36-2x …………………………………………………………………… 9分探究:①w=300x +100y=300x +100(36-2x)=100x +3600 (0<x <18,且x 为正整数)w的最小值3700元. ……………………………………………………………………11分②解:w=300×0.7x+100×0.9y=300×0.7x+100×0.9(36-2x)=30x+3240∵x≥10且y≥10∴10≤x≤13,且x为正整数w的最小值3540元. ……………………………………………………………………13分。