制备高二氧化硅含量的有机-无机微乳液---瞿金清0610!!
微米级二氧化硅的制备工艺

微米级二氧化硅的制备工艺微米级二氧化硅是一种常见的无机材料,可以通过几种不同的制备工艺来获得。
下面将详细介绍其中三种常见的制备工艺:溶胶-凝胶法、气相法和等离子体法。
首先是溶胶-凝胶法。
这种制备工艺通常使用有机硅溶胶作为先驱体。
有机硅溶胶中常用的有机硅化合物有TEOS(四乙氧基硅烷)和TMOS(四甲氧基硅烷)。
制备过程中,有机硅溶胶被稀释在某种有机溶剂中,如乙醇或正丁醇中。
然后通过加入酸催化剂,如盐酸,来引发水解和缩聚反应。
水解和缩聚反应会形成聚合硅酸一聚体,这是二氧化硅的前体。
接下来通过适当的热处理,如驱除有机物和结晶化,使聚合硅酸一聚体转变为二氧化硅微粒。
最后,经过过滤、洗涤和干燥等步骤,可得到微米级二氧化硅产品。
其次是气相法,也称为化学气相沉积法(CVD)。
该制备工艺通过将气态前驱体在高温下催化分解,生成二氧化硅颗粒并在基底表面沉积。
常用的气态前驱体有硅烷(如SiH4)和SiCl4。
制备过程中,气态前驱体通过载气,如氢气,在反应器中输送到加热的基底表面。
在高温下,气态前驱体发生热解和氧化反应生成二氧化硅,并在基底表面形成薄膜。
经过多次循环沉积和退火处理,可实现微米级二氧化硅纳米颗粒的沉积。
该工艺可以根据需求进行优化,以获得所需的颗粒大小和薄膜性质。
第三种制备工艺是等离子体法。
等离子体法的制备过程是利用高频电场或微波辐射作用在气体中的二氧化硅前驱体上,形成等离子体。
在等离子体的作用下,前驱体分解成原子或离子并通过反应生成二氧化硅。
等离子体中形成的二氧化硅会沉积在基底上,形成微米级二氧化硅。
与气相法相比,等离子体法拥有更高的沉积速率和更好的控制能力。
这种制备工艺在微电子和纳米器件制造中被广泛应用。
总之,微米级二氧化硅的制备工艺包括溶胶-凝胶法、气相法和等离子体法。
不同的工艺适用于不同的应用需要,可以根据需求对制备工艺进行选择和优化,以获得理想的微米级二氧化硅产品。
高硅含量有机硅丙烯酸酯微乳液的合成

由于乳 液聚 合多 为水相 反应 体 系 , 聚合 时 , 在 有 机硅 单体 易发 生 水 解 缩 聚 , 别是 当有 机 硅 单 特 体含 量较 大 时 , 早期 的交 联使 聚合 反应 无法 进行 .
这也 是有 机硅 丙烯 酸酯 共 聚乳 液 合成 时面 临 的最 大难 题 - 由 于有 机 硅 含 量 不 高 , 致 这 类 乳 液 】 引. 导 的性 能得 不到很 大 的改 善. 为解 决 这个难 题 , 笔者
分 子结 构 : 1 有 机 硅 氧烷 分 子 中 的硅 原 子 处 于 () 四面体 中心 ,i C键 键 长较 大 , S— 非极 性 的烷 基具
有很 强 的憎水 性 ; 另外 , 聚硅 氧 烷 中的 S —O— i 链具 有空 间网 络 结构 , 中的水 分 子 易 挥发 出 其 来 , 而漆膜 易干燥 . 2 由 于烷基 的旋 转 占有 较 因 ()
大空 间 , 加 了相邻 有 机硅氧烷 分 子之 间 的距 离 . 增 故聚 硅 氧烷 分 子 间作 用 力 比碳 氢 化 合 物 要 弱 得 多, 从而 降低 了其表 面 张力 l ;3 聚 硅 氧烷 是 由 _ () 4
无机 硅 氧链 和 有机 碳 氢 链 两 部分 组 成 , 上 较 大 加
做 了大量 的努 力 , 改进 配方 的稳 定性 、 择 高硅 如 选 含 量共 聚有 机硅 单体 、 节 溶液 的 p 调 H等 , 得 了 取 满 意 的效果 . 验合 成 的高 硅 含 量 有机 硅 丙 烯 酸 实
酯 微乳 液 , 成 膜 物 中硅 的含 量 在 4 % 以上 , 其 0 在
烯酸 酯微 乳液 . 讨论 了相 关的 聚合反 应机 理 , 以及 不 同工 艺对 微 乳 液聚 合 的 影 响 , 最
一种无表面活性剂微乳液制备的单分散二氧化硅纳米球及其制备方法

专利名称:一种无表面活性剂微乳液制备的单分散二氧化硅纳米球及其制备方法
专利类型:发明专利
发明人:柴金岭,崔晓翠
申请号:CN201810570187.7
申请日:20180605
公开号:CN108751208A
公开日:
20181106
专利内容由知识产权出版社提供
摘要:本发明涉及一种无表面活性剂微乳液制备的单分散二氧化硅纳米球及其制备方法,涉及二氧化硅纳米球的制备技术领域。
本发明构建了由乙酸乙酯,异丙醇,水构成的无表面活性剂绿色微乳液体系,该体系中乙酸乙酯为油相,异丙醇为双溶剂;本发明提出了一种利用O/W型无表面活性剂绿色微乳液体系为模板制备SiO纳米球的方法,并且在O/W区通过调节乙酸乙酯的含量制备出了大小均匀、尺寸可控的二氧化硅纳米球,实现了对纳米二氧化硅尺寸的调控作用。
本发明制备的无表面活性剂的绿色微乳液体系,成份组成简单,绿色,无毒无污染,不但能显著节约成本,而且制备的纳米材料纯度更高。
申请人:山东师范大学
地址:250014 山东省济南市文化东路88号
国籍:CN
代理机构:济南圣达知识产权代理有限公司
代理人:郑平
更多信息请下载全文后查看。
高纯微米级球形二氧化硅微粉的制备方法

高纯微米级球形二氧化硅微粉的制备方法本文主要介绍了高纯微米级球形二氧化硅微粉的制备方法。
硅微粉具有广泛的应用,如能源存储、传感器、纳米膜等,高纯二氧化硅粉末特别是球形粉末在微米材料加工中有广阔的应用前景,但高纯硅微粒之间形貌受到重大制约。
为了解决这个问题,本文提出了一种高纯微米级球形二氧化硅微粉的制备方法,并对其进行了详细的研究。
一、原料的筛选首先,筛选原料。
选择高纯度的硅原料,用筛网将其筛选至相应的粒度,一般选用筛网筛网口径为80-95毫米之间,这样可以有效过滤出细小的颗粒,使得最后产品能够达到产品规格要求,具有较高纯度。
二、粉体粒度的调节其次,对于原料的颗粒粒径,要确保所有的颗粒处于较高的粒度分布水平,这需要使用称重、捏镏等手段进行调整,以确保产品的平均粒度。
三、合成颗粒经过前面的筛选和粒度调整,颗粒就可以进行合成。
一般使用水为溶剂,采用湿法生产,利用有机硅,聚氯乙烯等有机物反应制备出高纯度的球形结构,使得结构比较稳定,容易吸附形成细小颗粒,提升硅的终端粒度。
四、洗涤干燥最后,用洗涤剂洗涤,去除沾在颗粒表面的有机物,一般要采用雾化技术或是气流技术洗涤,再进行脱水。
最后,将高纯微米级球形二氧化硅微粉烘干,使颗粒结构更加稳定,提高产品精度。
总之,高纯微米级球形二氧化硅微粉的制备方法主要包括以下步骤:(1)筛选原料,用筛网将高纯度硅原料筛选到相应的粒度;(2)调节颗粒粒径,使用称重、捏镏等手段对粒径进行调节;(3)合成颗粒,采用湿法生产,利用有机硅、聚氯乙烯等有机物;(4)洗涤干燥,用雾化技术或是气流技术洗涤,并将产品烘干。
以上就是本文介绍高纯微米级球形二氧化硅微粉的制备方法的全部内容,通过这一制备方法可以制备一种具有一定粒径、比较稳定结构、较高纯度的高纯微米级球形二氧化硅微粉,使用范围更广,常见应用有能源存储、传感器、纳米膜等。
sio2纳米球的合成

sio2纳米球的合成
SiO2纳米球的合成一般有以下几种方法:
1.溶胶-凝胶法:该方法是将硅烷类原料在水、醇或有机溶剂中加催
化剂,形成溶胶,然后通过水解-缩合反应形成凝胶,最终经过热处理制
备成SiO2纳米球。
2.气相法:这种方法是将硅烷或氯化硅气体在惰性气体载气下通过高
温热解或化学气相沉积法形成SiO2纳米球。
3.模板法:该方法是将SiO2纳米球通过模板(如多孔聚合物、球形
颗粒等)的形态进行制备。
这种方法的优点是可以调控SiO2纳米球的大小、形态和结构等。
4.微乳液制备法:该方法是将硅烷或硅醇类化合物溶解于微乳中,然
后通过水解缩合反应生成SiO2纳米球。
5.水热法:该方法是将硅源材料和NaOH等碱性物质在高温高压下进
行水热处理,生成SiO2纳米球。
以上几种方法各有特点,可以根据实际需要选择合适的方法进行制备。
高纯二氧化硅制备的研究

高纯二氧化硅制备的研究杨妮;俞小花;何恩;姚云;侯彦青;谢刚【摘要】This paper introduces the current situation of high-purity silicon dioxide preparation at home and a-broad, and studies the impact of pressure & temperature on silica leaching process, impact of acid & chelating a-gent on product purity, and impact of acidity & aging condition to silicon dioxide particle size. The results shows that under best process condition, silicon dioxide with purity of 99. 9604% and average particle size of 18. 37u,m can be prepared.%本文介绍了国内外制备高纯二氧化硅的现状,研究了在硅石制取高纯二氧化硅过程中,压力与温度对硅石浸出过程的影响,酸种类和螯合剂对产品纯度的影响,以及酸度、陈化条件对二氧化硅粒度的影响.实验表明:在最佳工艺条件下,可制得纯度为99.9604%,平均粒度为18.37μm的二氧化硅.【期刊名称】《矿冶》【年(卷),期】2011(000)003【总页数】4页(P68-71)【关键词】高纯二氧化硅;制备;影响因素【作者】杨妮;俞小花;何恩;姚云;侯彦青;谢刚【作者单位】昆明理工大学冶金与能源工程学院,昆明650093;昆明理工大学冶金与能源工程学院,昆明650093;昆明理工大学冶金与能源工程学院,昆明650093;昆明理工大学冶金与能源工程学院,昆明650093;昆明理工大学冶金与能源工程学院,昆明650093;云南冶金集团技术中心,昆明650031【正文语种】中文【中图分类】TQ127.2“高纯二氧化硅”通常是指二氧化硅中含有的金属杂质总量小于10-5,单个非金属杂质含量小于10-5〔1〕。
湿化学法制备超细二氧化硅材料的研究进展

湿化学法制备超细二氧化硅材料的研究进展摘要:综述了化学沉淀法、溶胶-凝胶法和微乳法三种湿化学方法在制备超细二氧化硅材料方面的运用,从反应机理、工艺控制、影响因素、存在问题方面进行了比较和评述。
a关键词:超细二氧化硅化学沉淀法溶胶-凝胶法微乳法随着对二氧化硅制备技术及对其相关领域的研究的不断深入,超细二氧化硅的应用领域日趋广阔,其主要应用于橡胶、塑料、粘合剂、涂料等领域。
至今为止,关于其制备方法已研究出很多,本文将以液相法为重心,分别对化学沉淀法、溶胶-凝胶法、微乳法三种方法进行阐述。
一、化学沉淀法[1]其机理为硅酸钠和无机酸为原料通过化学沉淀法合成了粒径小且分布窄的纳米二氧化硅。
该法的关键是减少粒子之间的团聚,而获得比表面积较大的粒子。
团聚体的形成不仅与其沉淀生成条件有关,还与湿凝胶的洗涤、脱水、干燥、煅烧各工序的控制条件有关,其中影响最大的因素是PH值和温度。
该法具有原料来源广泛、廉价,能耗小,工艺简单,易于工业化生产,但同时也存在产品粒径分布较宽的问题。
二、溶胶—凝胶法[2]该法是以四氯化硅和硅醇盐为原料,通过水解、聚合形成溶胶,再聚集成凝胶,最后再干燥、煅烧成产品。
使用该法时,对反应制得的弹性凝胶体的干燥方式有空气中自然干燥法、真干燥法、超临界干燥法、亚临界干燥法等。
而其普遍采用的是真空干燥法和超临界干燥法。
真空干燥法得到的产品具有一定的孔隙率,但该方法设备简单,费用低,安全性好,当对产物的孔隙率没有过高要求时采用此种方法;超临界干燥法能避免凝胶体积大幅度收缩、开裂,保护凝胶纤细的网络结构,制品结构得以保持,但成本高。
[3]溶胶凝胶法以其工艺简单、产品纯度高、化学组分均匀等特点被用于制备超细SiO2。
但与此同时,溶胶-凝胶法也存在着缺点,如体积收缩太大、凝胶和干燥时间太长、原料费用过高等。
三、微乳法微乳法多采用W/O型微乳体系,该体系是热力学稳定、液滴半径处于纳米级、各向同性的分散体系。
体系中,表面活性剂包围着水相连续分散于油相中,被包围的水核是一个“微型反应器”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PRODUCT ENGINEERING AND CHEMICAL TECHNOLOGY Chinese Journal of Chemical Engineering , 18(1) 156ü163 (2010)Preparation of Organic/Inorganic Hybrid Polymer Emulsions with High Silicon Content and Sol-gel-derived Thin Films *LIAO Wenbo ( Ϗ), QU Jinqing ( )**, LI Zhong ( ) and CHEN Huanqin (ч )School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, ChinaAbstract A novel polymer/SiO 2 hybrid emulsion (PAES) was prepared by directly mixing colloidal silica withpolyacrylate emulsion (PAE) modified by a saline coupling agent. The sol-gel-derived thin films were obtained byaddition of co-solvents into the PAES. The effects of Ȗ-methacryloxypropyltrimethoxysilane (KH-570) content andco-solvent on the properties of PAES films were investigated. Dynamic laser scattering (DLS) data indicate that theaverage diameter of PAES (96 nm) is slightly larger than that of PAE (89 nm). Transmission electron microscopy (TEM) photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles. The crosslinking degree data and Fou-rier transform infrared (FT-IR) spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation. Atomic force microscope (AFM) photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES. Thermogravimetric analysis (TGA) curves demonstrate that the PAES films display much better thermal stability than PAE. Keywords colloidal silica, polymer/SiO 2 hybrid emulsions, sol-gel process, water resistance1 INTRODUCTIONAcrylate polymer emulsions used for waterbornewood coatings are typical low volatility organic com-pound (VOC) content coatings with many excellent properties including good film appearance, high gloss, and good mechanical properties. However, they also exhibit poor water-/solvent- resistance and low hard-ness [1, 2]. One of the methods to improve their prop-erties is to combine of inorganic nanometer materials to form organic/inorganic composite coatings [3, 4]. Polymer/SiO 2 nano-composites have been received much attention in recent years and employed in a vari-ety of applications, such as coatings and optical-electric materials. The nano-SiO 2 acts as a reinforcing agent to improve the hardness, strength, and thermal stability of the polymers [5, 6].Many studies have been reported about the preparation of polymers/silica hybrid materials with organic monomers and inorganic precursors such as tetramethyloxysilane (TMOS) and tetraethyloxysilane (TEOS) through in situ emulsion polymerization and sol-gel processes [7 10]. In the hybrid materials, the inorganic and organic phases are combined by the in-teractions including hydrogen bonds and chemical covalent bonds. However, it is difficult to control pre-cisely the simultaneous hydrolysis and condensation of alkoxysilyl groups during the sol-gel process. Therefore, high concentrations of inorganic precursors in polymer emulsions greatly decrease the stability of hybrid emulsions in sol-gel and storage process [11 13]. Most of the polymer/SiO 2 films show poor transpar-ence due to the phase separation between inorganic and organic phases [3, 4].An alternative way is the direct mix of inorganic colloidal silica and polymer emulsion, to prepare the organic/inorganic hybrid emulsion with high silicon content and improve storage stability in sol-gel proc-ess. However, it is difficult to uniformly disperse in-organic colloidal particles in the polymer emulsion and film to obtain high gloss films [14 16].In some studies, saline coupling agents have been used to improve the properties of the organic/inorganic hybrid material as well as the chemical interaction between organic and inorganic components [17, 18]. However, these methods are suitable only for low contents of silicon in organic/inorganic composites [3, 4]. In present paper, we demonstrate the preparation of the polymer/silica hybrid with high content silicon (Fig. 1). The morphology, chemical structure, thermal stability, and properties of polymer/silica hybrid films are illustrated. 2 EXPERIMENTAL 2.1 MaterialsȖ-methacryloxypropyltrimethoxysilane (KH570), Ȗ-glycidoxypropy1trimethoxysilane (KH560), and Ȗ-aminopropyltriethoxysilane (KH550) were purchasedReceived 2009-06-03, accepted 2009-08-09.* Supported by the Program for New Century Excellent Talents in University (NCET-08-0204), National Natural Science Foun-dation of China (20976060), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Edu-cation Ministry (China).** To whom correspondence should be addressed. E-mail: cejqqu@复合乳液硅溶胶模壳聚丙烯酸脂微乳液己二酸二酰肼Chin. J. Chem. Eng., Vol. 18, No. 1, February 2010157from Shanghai Yewu Chemical Co. Colloidal silica [30% (by mass), pH 11] was supplied by Foshan Nanhai Waterglass Co. Isopropanol, isobutanol, etha-nol, dipropylene glycol monomethyl ether (DPM), and dipropylene glycol n -butyl ether (DPnB) were sup-plied by Guangzhou Chemical Reagent Co. Nonyl phenyl polyoxyethylene ether-10 (OP-10), sodium dodecyl sulphonate (SDS), sodium bicarbonate (Na-HCO 3) and potassium persulfate (KPS) were used as received. Deionized water was applied for the polym-erization process.2.2 Preparation of polyacrylate emulsion (PAE)The polyacrylate emulsions were synthesized according to Ref. [19]. Polymerization was performed under a nitrogen atmosphere in a 500 ml, 4-neck flask equipped with a mechanical stirrer (fitted with a cres-cent Teflon blade), a temperature control system, an inlet for feeding monomer emulsion, an inlet for feed-ing initiator solution and a reflux condenser. The ket-tle was charged with deionized water (60 g), SDS (2.0g ), OP-10 (1.0 g ) and NaHCO 3 (0.25 g). Deionized water, SDS, BA, MMA, DAAM and MAA wereplaced in a graduated beaker with a magnetic stirrerand stirred to give a white monomer emulsion. Theshell monomer emulsion with KH570 was prepared by the same method. Separately, a solution with 1.5 g of ammonium persulfate in 30 g of deionized water was prepared. To make a seed latex, the kettle contents were heated to 80 82 °C and stirred as the following ingredients were added sequentially: (a) 1/4 of the core monomer emulsion, (b) a solution of ammonium persulfate. The mixture was stirred at 80 82 °C for 20 min. The rest of core monomer emulsion and the ini-tiator solution were added in 2 h with continuous stir-ring of the reaction flask. After 30 min, the shell monomer emulsion was added in 120 min. The initia-tor solution was added throughout the process at a rate of 10 15 droplet per minute. The reactor temperature was maintained at 80 82 °C until 30 min after the ad-dition was complete. Then the latex in the kettle was cooled to about 60 °C, and a 50/50 (mass ratio) solu-tion of dimethylethanolamine in deionized water wasadded with continuous stirring to adjust the pH to9.2 9.5 along with an ADH solution was added to the latex. The kettle temperature was reduced to about 40°C. The latex was filtered through a 100 ȝm filter (200-mesh sieve). The monomer composition was: MMA 70 g, BA 40 g, MAA 1.5 g, KH570 0 7 g,DAAM 1.0 g and ADH 0.5 g. 2.3 Preparation of polyacrylate/silica hybrid composite (PAES) films The colloidal silica (50 g) and co-solvent (10 g)Figure 1 The synthetic route of polyacrylate/SiO 2 hybrid composites硅胶体过硫酸铵二甲乙醇胺200目筛Chin. J. Chem. Eng., Vol. 18, No. 1, February 2010158were added to PAE (100 g) and stirred for 12 h, keep-ing the pH of PAES at about 8.0.The sol-gel derived films were prepared bydip-coating to form the PAES, and then dried at roomtemperature for 48 h and annealed at 80 ºC for 12 h. The PAE film was prepared by the same method as PAES.2.4 CharacterizationThe latex particle size and its distribution were determined by granularity measured instrument (ZS Nano S) from Malvern Co. (England). Fourier transform infrared (FTIR) spectra (Spectnlm2000, PERKIN ELMER Co. USA) were obtained to determine the chemical structures of PAE and PAES. The morpholo-gies were directly observed by using a JEM-100 CX II transmission electron microscopy (TEM) (Electron Co. Japan) with an acceleration voltage of 60 kV . The samples were diluted and stained with 1% phosphato- tungstic acid (H 3[P(W 3O 10)4]·14H 2O). The surface morphology of composite films was studied by a scanning probe microscopy (cspm-3000, Benyuan Nano Co.). Thermal stability and silica content of dried films were determined by the Thermo gravimet-ric analyzer (TG/DSC, STA449C) (NETZSCH Co. Germany) by heating the sample (8 10 mg) from 40to 650 °C at 15 °C·min ˉ1 at an air flowrate of 40ml·min ˉ1. The TGA samples were prepared by the method described in the film preparation. A known mass of an oven-dried film (W 0) was placed in a Sox-hlet extractor for continuous extraction with THF for 24 h, and the polymer gel after extraction was dried to a constant mass (W 1). The gel mass content (%) was calculated from W 1/W 0×100. The water- and solvent- resistance of the film was characterized by water/solvent absorption. Film samples (mass W 0, dimensions 25 mm×25 mm×1 mm) were immersed in water/ethanol at room temperature for 8 days, removed from the water/ethanol, and weighted (W 1). Then the film sam-ples were dried to a constant mass (W 2) at room tem-perature. The percentage of the water absorption (W A ), the ethanol absorption (W E ), the mass loss of polymer films in water (W x ) and ethanol (W y ) were calculated according to the following formulas [3, 20].12A 2100%w w W wu (1) 02x 0100%w w W w u (2) 12E 2100%w w W wu (3) 02y 2100%w w W w u (4)Solid contents of PAE and PAES were deter-mined by the weight loss method. The QBY type pendulum durometer was employed to measure thefilm hardness. The gloss of film was measured byglossmeter (60º).3 RESULTS AND DISCUSSION 3.1 PAES hybrid compositePAE was prepared with MMA, BA, AA, DAAMand KH-570 by the free radical emulsion polymeriza-tion, as illustrated in Fig. 1. Since KH-570 can co-polymerize with acrylic monomers and afford Si(Si(OH(a)(b)Figure 2 TEM photograph of PAES emulsionFigure 3 illustrates the particle size distributions of the colloidal silica, PAE, and PAES. The average diameter of colloidal silica is about 20 nm, and that of浸涂摇摆硬度计光泽度Chin. J. Chem. Eng., Vol. 18, No. 1, February 2010159PAES is 96 nm. The mean diameter of PAES is slightly larger than that of PAE (89 nm), which is probability attribute to the hydrolysis and condensa-tion between colloidal silica and Si(OHO SiCH CHO COH O SiO SiC OOHOHOSiChin. J. Chem. Eng., Vol. 18, No. 1, February 2010160mechanical properties can not be improved further.Serious coagulation occurred in the emulsion in the reaction with 7% of KH570. We also investigated the effects of saline coupling agents on the stability of PAES and found that the saline coupling agents with epoxy or amino groups such as KH560 and KH550 may react with carboxy groups in the PA and decrease the storage stability, while KH570 with C C0 25.412.350.723.1 56.2 0.60 78 1 14.58.442.616.7 75.3 0.66 82 3 7.3 6.938.713.4 88.6 0.82 85 5 8.47.441.814.5 84.9 0.74 88 7 8.67.340.713.6 81.4 0.71 883.3 Sol-gel derived filmsWith the addition of 10% (polymers mass content) co-solvent into the PAES with 3% KH570, the PAES films were prepared and their properties were tested. The effects of solvent on the properties of PAES are listed in Table 2. The addition of solvent increases the film gloss and gel contents. During the drying process of PAES, as the water and neutralizing agent evapo-rate, the concentration of silica colloidal and polymer increase and the pH value of PAES decreases. The rest of the solvent induces the hydrolysis and condensation reaction of the colloidal silica, namely, the sol-gel process occurs to form Si-based polymers [22], which is distributed on the film surface and tested by the AFM photos. The AFM topographic images of PAES without and with isobutanol are shown in Figs. 7 and 8, respectively.硬度光泽度Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.Chin. J. Chem. Eng., Vol. 18, No. 1, February 2010161Table 2 Solvents induced in sol-gel process andproperties of PAES filmsSolvents W A/%W x/%Gel content/%HardnessGloss (60°)/%no solvents 17.4 9.0 40.2 0.79 69 isopropanol 11.2 5.8 89.2 0.86 95 isobutanol 12.3 6.1 88.3 0.85 97ethanol 15.7 7.5 83.4 0.75 82 methanol 14.5 6.9 85.3 0.80 84Figure 7 demonstrates that the average roughness (Ra) and root mean square roughness (Rq) of the PAES film without isobutanol are 13.6 and 18.2 nm, respectively, while those values are 1.61 and 2.15 nm of the PAES film with isobutanol shown in Fig. 8. The PAES film with isobutanol is uniform, and the boundaries between the silica and polyacrylate are ambiguous, while the film surface PAES without iso-butanol exhibits silica particles on an array of poly-acrylate latex particles. Thus with isobutanol sol-gel process occurs in the PAES emulsion and re-distribution occurs on the film surface to form a film with high gloss and excellent performance. We also studied the effects of solubility of solvent in wa-ter on the surface appearance of PAES film, which includes isopropanol, isobutanol, ethanol and dipro-pylene glycol monomethyl ether (DPM) and dipro-pylene glycol n-butyl ether (DPnB), and found that the(a) Two-dimensional (b) Three-dimensionalFigure 7AFM images of PAES film without isobutanol(a) Two-dimensional (b) Three-dimensionalFigure 8 AFM images of PAES film with isobutanolChin. J. Chem. Eng., Vol. 18, No. 1, February 2010162solubility greatly affects the film formation of PAES and sol-gel-derived silicon sol. The mechanism of sol-gel derived film formation by solvent is being studied. 3.4 TGA analysisThe thermal decomposition of dried PAES filmswas investigated at a heating rate of 15 ºC·min ˉ1 in an air flow, as illustrated in Fig. 9. The temperature cor-responding to 5% loss is defined as the initial de-graded temperature of polymer (T d ). The T d values of the curves a and b are 269 and 311 °C, respectively, so that the thermal stability of PAES film is much better than that of PAE. The phenomenon is due to the for-mation of Si O Sipoappearance bluish bluish W A /% 32.8 11.2 W x /% 14.15.8 W E /% soluble 38.7 W y /% soluble 13.4 crosslinkage/% 0 89.2 hardness 0.43 0.86 gloss (60°)/%89 95 stability + +surface drying time/h10.5 solid content/% 4542.5 inorganic materials content/% 027.04 CONCLUSIONSThe polymer/silica hybrid emulsions (PAES) with high silicon contents (up to 27%) were prepared by directly mixing colloidal silica with PAE modified with KH570. DLS data indicates that the average di-ameter of PAES (96 nm) is slightly larger than that of PAE (89 nm). TEM photos disclose that colloidal sil-ica particles are dispersed uniformly around polyacry-late particles and some colloidal silica particles are adsorbed on the surface of PAE particles. FT-IR spec-tra confirm the chemical structure change and the formation of Si O Si crosslinking network. The polyacrylic/SiO 2 hybrid emulsions with 3% KH570 (based polymer) display excellent film properties. AFM photos show that the solvent induces the sol-gel process of colloidal silica and self-assembly on the film surface during drying of emulsion. TGA curves demonstrate that the PAES film displays much better thermal stability than PAE. REFFERENCES1Zou, M.X., Zhao, Q.C., Nie, J., Zhang, Z.C., “Preparation and char-acterization of polysiloxane polyacrylates composite lattices by two seeded emulsion polymerization and their film properties”, J . Appl . Poly . Sci ., 103, 1406 1411 (2007).2Zou, M.X., Huang, F.Z., Nie, J., Zhang, Z.C., Ge, X.W., “Preparation and characterization of polysiloxane-polyacrylate composite lattices and their film properties”, Polym . Int ., 54, 861 869 (2005).3Tamai, T., Watanabe, M., “Acrylic polymer/silica hybrids prepared by emulsifier-free emulsion polymerization and sol-gel process”, J . Poly . Sci ., Part A : Polym Chem ., 44, 273 280 (2006).4Watanabe, M., Tamai, T., “Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials: Role of the silane coupling agent”, J . Poly . Sci ., Part A : Polym . Chem ., 44, 4736 4742 (2006). 5Patel, S., Bandyopadhyay, A., Vijayabaskar, V ., Bhowmick, A.K., “Effect of microstructure of acrylic copolymer/terpolymer on the properties of silica based nanocomposites prepared by sol-gel tech-nique”, Polymer , 46, 8079 8090 (2005).6Huang, S.L., Chin, W.K., Yang, W.P., “Structural characteristics and properties of silica/poly(2-hydroxyethyl methacrylate) (PHEMA) nanocomposites prepared by mixing colloidal silica or tetraethylox-ysilane (TEOS) with PHEMA”, Polymer , 46, 1865 1877 (2005). 7Ma, J.Z., Hu, J., Zhang, Z.J., “Polyacrylate/silica nanocomposite materials prepared by sol-gel process”, Eur . Polym . J ., 43, 4169 4177 (2007).8Yu, Y .Y ., Chen, C.Y ., Chen, W.C., “Synthesis and characterization of organic-inorganic hybrid thin films from poly(acrylic) and mono-dispersed colloidal silica”, Polymer , 44, 593 601 (2003).9Yu, Y .Y ., Chen, W.C., “Transparent organic-inorganic hybrid thin films prepared from acrylic polymer and aqueous monodispersed colloidal silica”, Mate . Chem . Phys ., 82, 388 395 (2003).10Hern ҧndez, J.C., Pradas, M.M., Ribelles, J.L., “Properties of poly(2-heydroxyethyyl acrylate)-silica nanocomposite obtained by sol-gel process”, J . Non -Crys . Soli ., 354, 1900 1908 (2008).11Zou, H., Wu, S.S., Shen, J., “Polymer/silica nanocomposites: prepa-ration, characterization, properties, and applications”, Chem . Rev ., 108 (9), 3893 3950 (2008).12Huang, S.L., Chin, W.K., Y ang, W.P ., “Viscosity, particle size distribu-tion, and structural investigation of tetramethyloxysilane/2-hydroxyethyl methacrylate sols during the sol-gel process with acid and base cata-lysts”, J . Poly . Sci ., Part B : Polym . Phys ., 42 (18), 3476 3486 (2004).浅蓝色交联度表干时间固含量无机物含量Edited by Foxit ReaderCopyright(C) by Foxit Software Company,2005-2008For Evaluation Only.Chin. J. Chem. Eng., Vol. 18, No. 1, February 201016313Ni, K.F., Shan, G.R., Weng. Z.X., Sheibat-Othman, N., Fevotte, G., Lefebvre, F., Bourgeat-Lami, E., “Synthesis of hybrid core-shell nanoparticles by emulsion (co)polymerization of styrene and Ȗ-methacryloxypropyltrimethoxysilane”, Macromolecules, 38, 7321 7329 (2005).14Qu, A.l., Wen, X.F., Pi, P.H., Cheng, J., Yang, Z.R., “Synthesis of composite particles through emulsion polymerization based on silica/fluoroacrylate-siloxane using anionic reactive and nonionic surfactants”, J. Coll. Inter. Sci., 317, 62 69 (2008).15Alain, G., Landfester, K., Schorkc, F., Wang, C.P., “Hybrid polymer latexes”, Prog. Polym. Sci., 32 (12), 1439 1461 (2007).16Huang, F.M., Zhang, G.W., Hu, C.P., Ying, S.K., “Preparation and characterization of hybrid aqueous dispersions composed of silica sol and poly(styrene-co-acrylate)”, Chin. J. Chem. Eng., 13 (6), 816 823 (2005).17Tissot, I., Novat, C., Lefebvre, F., Bourgear-Lami, E., “Hybrid latex particles coated with silica”, Macromolecules, 34 (17), 5737 5739 (2001). 18Tissot, I., Reymond, J. P., Lefebvre, F., Bourgear-Lami, E., “SiOH-functionalized polystyrene latexes. A step toward the synthe-sis of hellow silica nanoparticles”, Chem. Mater., 14, 1325 1331 (2002).19Luo, C.F., Qu, J.Q., Chen, H.Q., “Synthesis and properties of ambi-ent self-crosslinkable polyacrylate latex with sealed function”, CTESC Journal, 60 (7),1823 1830 (2009).20Wang, S.C., Chen, P.C., Yeh, J.T., Chen, K.N., “A new curing agent for self-curable system of aqueous-based PU dispersion”, Reactive & Functional Polymers, 67, 299 311 (2007).21Xiao, X.Y., Liu, J.F., “Synthesis and characterization of fluo-rine-containing polyacrylate emulsion with core-shell structure”, Chin. J. Chem. Eng., 16 (4), 626 630 (2008).22Smarsly, B., Garnweitner, G., Assink, R., Jeffrey Brinker, C., “Prepa-ration and characterization of mesostructured polymer-functionalized sol-gel-derived thin films”, Progress Organic Coatings, 47, 393 400 (2003).。