最新中考数学一轮复习训练:《基本思想方法问题-分类讨论》

合集下载

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。

A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.若m 为实数,则点P (m -2,m+2)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.相交两圆公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于( )A .1B .2或6C .7D .1或77.如果关于x 的方程210x mx ++=的两个根的差为1,那么m 等于( )A .2±B .3C .5D .68.平面上A 、B 两点到直线l 的距离分别是2323与则线段AB 的中点C 到直线l 的距离是( )A .2B 3C .23D .不能确定 9.已知22(3)49x m x +-+是完全平方式,则m 的值是( )A .-3B .10C .-4D .10或-410.方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定二、填空题1.已知AB 是⊙O 的直径,AC 、AD 是弦,且AB =2,AC 2,AD =1,则∠CAD =_______.A BC 2.已知AB 、CD 是⊙O 的两条平行线,AB =12,CD =16,⊙O 的直径为20,则AB 与CD 之间的距离为________.3.方程560x x x ⋅-+=的最大根与最小根的积为______.4.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于________.5.已知ΔABC 中,∠C =90°,AC =3,BC =4,分别以A 和C 为圆心作⊙A 和⊙C ,且⊙C 与直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,那么r 的取值范围是______. 6.已知2225,7x y x y +=+=,则x y -的值等于_______.7.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第_____象限.8.两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .9.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为10.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为11.=+=-+-a 349332无解,求x x ax x 12. ==--+a 2112无解,求x ax13.若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为_____________.14.一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为_____三、解答题1.已知实数a ,b 分别满足221122,22,a a b b a b+=+=+求的值. 2.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同学们计算剪下的等腰三角形的面积.3.在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且Ad 与DC 的长度为27120x x -+=方程的两个根,⊙O 是△ABC 的外接圆,如果BD 长为(0)a a >.求△ABC 的外接圆⊙O 的面积.ME AB CDN 4.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y =x 上方及直线y=-x+2a 上方部分的面积为S ,(1)求12a =时,S 的值.(2)a 在实数范围内变化时,求S 关于a 的函数关系式.5.在直角坐标系XOY 中,O 为坐标原点,A 、B 、C 三点的坐标分别为A (5,0),B (0,4),C (-1,0),点M 和点N 在x 轴上,(点M 在点N 的左边)点N 在原点的右边,作MP ⊥BN ,垂足为P (点P 在线段BN 上,且点P 与点B 不重合)直线MP 与y 轴交于点G ,MG =BN. (1)求经过A 、B 、C 三点的抛物线的解析式.(2)求点M 的坐标.(3)设ON =t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等腰三角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.6.在直角坐标系xoy 中,一次函数32y =+的图象与x 轴交于点A ,与y 轴交于点B .(1)以原点O 为圆心的圆与直线AB 切于点C ,求切点C 的坐标.(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.9:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。

中考专题复习数学思想方法

中考专题复习数学思想方法
2.方程、不等式模型(方法型);如果关于x的一元二次方程x² -6x+c=0(c是常数)没有实根,那么c的取值范围是________.
3.映射模型(结构型);如图,直线l是一条河,P,Q两地相距8千米, P,Q两地到l的距离分别为2千米,5千米,欲在l上的某点M处修建一个 水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设 的管道,则铺设的管道最短的是()
(2)数形结合思想
由数想形
1.如图
6,直线 l
:
y
2 3
x
3与直线
y
a
(
a
为常数)的交点在第四象限,则
a 可能在(
)
A.1 a 2
B. 2 a 0
见形C思. 数3 a 2 D. 10 a 4
2.有如图所示的两种广告牌,其中图是由两个等腰直角三角形构成的,
图是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种
【特别提醒】 1.分类中的每一部分是相互独立的. 2.一次分类必须按同一个标准. 3.分类讨论应逐级进行,做到不重、不漏. 4.最后必须归纳小结,综合得出结论.
1. 已知点P到圆的最大距离为11,最小距离为7,则此圆的半径为 多少? 2.(2015·攀枝花中考)如图,在平面直角坐标系中,O为坐标原点,矩 形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD 为等腰三角形,则所有满足条件的点P的坐标为________.
(4)数学建模思想
1.函数模型(定义型);
10.一台印刷机每年印刷的书本数量 y(万册)与它
的使用时间 x(年)成反比例关系,当 x=2 时,y=20,
则 y 与 x 的函数图像大致是(

中考数学专题之数学思想方法问题

中考数学专题之数学思想方法问题

2
考点四 转化与化归思想 例4(2014· 重庆)如图,菱形ABCD的对角线AC, BD相交于点O,AC=8,BD=6,以AB为直径作一个 半圆,则图中阴影部分的面积为( A.25π-6 25 C. π-6 6 25 B. π-6 2 25 D. π-6 8 )
【点拨】由菱形的性质可知,在 Rt△ABO 中,AB
解析: 如图, 作 BC⊥AE 于点 C, 则 BC=DE=8 m, 设 AE=x m, 则 AB=x m, AC=(x-2)m, 在 Rt△ABC 中,AC2+BC2=AB2,即(x-2)2+82=x2,解得 x=17. 故选 D.
答案: D
2 . (2014· 龙 东 ) 今 年 学 校 举 行 足 球 联 赛 , 共赛 17 轮(即每队均需参赛 17 场),记分办法是:胜 1 场得 3 分,平 1 场得 1 分,负 1 场得 0 分.在这次足球比赛 中,小虎足球队得 16 分,且踢平场数是踢负场数的整 数倍,则小虎足球队踢负场数的情况有( A.2 种 C.4 种 B.3 种 D.5 种 )
2
2
解析:依题意,画出函数y=(x-a)(x-b)的图 象,如图.函数图象为抛物线,开口向上,与x轴两 个交点的横坐标分别为a,b(a<b).
方程 1-(x-a)(x-b)=0 转化为(x-a)(x-b)=1, 方程的两根是抛物线 y=(x-a)(x-b)与直线 y=1 的两 右侧为 n. 由抛物线开口向上,可知在对称轴左侧,y 随 x 增大而减小,则有 m<a;在对称轴右侧,y 随 x 增大而增大,则有 b<n. 综上所述,可知 m<a<b< n.故选 A. 答案: A
【点拨】当点 C 在点 B 的右侧时,点 C 表示的数 为 3,则 AC=3-(-3)=6;当点 C 在点 B 的左侧时, 点 C 表示的数为-1,则 AC=-1-(-3)=2,即 AC 等于 2 或 6,故选 D. 【答案】 D

中考数学精讲精练总复习专题分类讨论思想(方法)完美

中考数学精讲精练总复习专题分类讨论思想(方法)完美

A
FB
C
D E
OE=3 OF=4
O
EF=1或7
AB与CD在圆心两侧
C
E
D
O
A
F
B
(2)在Rt△ABC中,∠C=900,AC=3,BC=4. 若以C为圆心,R为半 径的圆与斜边只有一个公共点,则R的值为多少?
B
B
D
C
A
C
A
R=
12 5
从圆由小变大的过程中,可以得到: 当3<R 4时,圆与斜边只有一个公共点.
B
(1)
C 又∵AB=12,AC=15,AD=8,
∴AE=10.
②如图(2),作∠ADE=∠C交AC于 E,
A
又∵∠A=∠A, ∴△ADE ∽△ACB.
D B
E
C (2)
Байду номын сангаас
∴ AD AE , AC AB
又∵AB=12,AC=15,AD=8,∴AE=6.4. 由①、②得: AE长为10或6.4.
例4:如图,线段OD的一个端点O在直线OM上,∠DOM=30°,以OD
(统一标准,不重不漏)
3、逐类讨论; 4、归纳作出结论。
如 图, 平 面直 角 坐标 系 中, 四边 形OABC为 矩形 , 点A、B的 坐标
分 别为(4,0)、(4,3).动 点M、N分 别从O、B同 时出 发 , 以 每秒1个
单 位的 速 度运 动.其 中, 点M沿OA向 终点A运 动, 点N沿BC向 终
顶点的三角形与△ABC相似,求AE的长.
A
A
E
D
E
D
B
(1)
CB
(2)
C
△ADE∽△ABC 或 △ADE∽△ACB

中考数学一轮总复习解题思想方法专项训练 第4讲分类讨论型问题

中考数学一轮总复习解题思想方法专项训练 第4讲分类讨论型问题

第4讲分类讨论型问题类型一由计算化简时,运用法则、定理和原理的限制引起的讨论例1(2016·南通模拟)矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为()A.3cm2B.4cm2C.12cm2D.4cm2或12cm21.(1)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为____________________.(2)已知平面上有⊙O及一点P,点P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.(3)若|a|=3,|b|=2,且a>b,则a+b=()A.5或-1 B.-5或1 C.5或1 D.-5或-1类型二在一个动态变化过程中,出现不同情况引起的讨论例2为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.2.(1)在平面直角坐标系中,直线y=-x+2与反比例函数y=1x的图象有唯一公共点,若直线y=-x+b与反比例函数y=1x的图象有2个公共点,则b的取值范围是()A.b>2 B.-2<b<2 C.b>2或b<-2 D.b<-2(2)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD 的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是()3.已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y轴相交于点C,且点A,C在一次函数y2=43x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.类型三 由三角形的形状、关系不确定性引起的讨论例3 (2017·湖州)如图,在平面直角坐标系xOy 中,已知直线y =kx(k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ⊥x 轴于点D ,交y =1x 的图象于点C ,连结AC.若△ABC 是等腰三角形,则k 的值是________.4.(1)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(1,3),M 为坐标轴上一点,且使得△MOA 为等腰三角形,则满足条件的点M 的个数为( )A .4B .5C .6D .8(2) (2016·北流模拟)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =6,一条线段PQ =AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP = .(3) (2016·临淄模拟)如图,在正方形ABCD 中,M 是BC 边上的动点,N 在CD 上,且CN =14CD ,若AB =1,设BM =x ,当x = 时,以A 、B 、M 为顶点的三角形和以N 、C 、M 为顶点的三角形相似.类型四由特殊四边形的形状不确定性引起的讨论例4(2017·鄂州模拟)如图1,在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°,点P从点A出发,以1cm/s的速度向点D运动,点Q从点C 同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形ABQP成为矩形?(2)当t为何值时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD是否能成为菱形?若能,求出t的值;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.5.(1)(2016·盐城模拟)在平面直角坐标系中有三点A(1,1),B(1,3),C(3,2),在直角坐标系中再找一个点D,使这四个点构成平行四边形,则D点坐标为.(2)(2016·江阴模拟)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s),当t=s时,以A、C、E、F为顶点的四边形是平行四边形.(3)(2016·金华模拟)如图,B(6,4)在函数y=12x+1的图象上,A(5,2),点C在x轴上,点D在函数y=12x+1上,以A、B、C、D四个点为顶点构成平行四边形,写出所有满足条件的D点的坐标.(4)(2016·萧山模拟)已知在平面直角坐标系中,点A、B、C、D的坐标依次为(-1,0),(m,n),(-1,10),(-7,p),且p≤n.若以A、B、C、D四个点为顶点的四边形是菱形,则n的值是.类型五由直线与圆的位置关系不确定性引起的讨论例5如图,已知⊙O的半径为6cm,射线PM经过点O,OP=10cm,射线PN与⊙O 相切于点Q.A、B两点同时从点P出发,点A以5cm/s的速度沿射线PM方向运动,点B 以4cm/s的速度沿射线PN方向运动.设运动时间为t(s).(1)求PQ的长;(2)当t为何值时,直线AB与⊙O相切?6.(2016·泗洪模拟)如图,已知⊙P 的半径为2,圆心P 在抛物线y =12x 2-1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【压轴把关题】如图,在平面直角坐标系中,点A ,B 的坐标分别是(-3,0),(0,6),动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从点B 出发,沿射线BO 方向以每秒2个单位的速度运动.以CP ,CO 为邻边构造▱PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标; (2)当点C 在线段OB 上时,求证:四边形ADEC 为平行四边形;(3)在线段PE 上取点F ,使PF =1,过点F 作MN ⊥PE ,截取FM =2,FN =1,且点M ,N 分别在第一、四象限,在运动过程中,设▱PCOD 的面积为S.①当点M ,N 中,有一点落在四边形ADEC 的边上时,求出所有满足条件的t 的值; ②若点M ,N 中恰好只有一个点落在四边形ADEC 内部(不包括边界)时,直接写出S 的取值范围.【分类讨论应不重复、不遗漏】在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.课后练习36 分类讨论型问题A 组1.若等腰三角形的一个内角为50°,则其他两个内角为( ) A .50°,80° B .65°,65° C .50°,65° D .50°,80°或65°,65° 2.已知线段AB =8cm ,在直线AB 上画线段BC ,使BC =5cm ,则线段AC 的长度为( ) A .3cm 或13cm B .3cm C .13cm D .18cm3.在同一坐标系中,正比例函数y =-3x 与反比例函数y =kx 的图象的交点的个数是( )A .0个或2个B .1个C .2个D .3个4.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值( )A .只有1个B .可以有2个C .可以有3个D .有无数个5.若⊙O 的弦AB 所对的圆心角∠AOB =60°,则弦AB 所对的圆周角的度数为( ) A .30° B .60° C .150° D .30°或150°6.一次函数y =kx +b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,则kb 值为( ) A .14 B .-6 C .-4或21 D .-6或147.(2016·无锡模拟)在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD ·DC ,则∠BCA 的度数为 .8.(2017·无锡模拟)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.(1)判断点M (1,2),N (4,4)是否为和谐点,并说明理由;(2)若和谐点P (a ,3)在直线y =-x +b (b 为常数)上,求点a ,b 的值.第8题图B 组9.如图,已知函数y =2x 和函数y =kx 的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则满足条件的P 点坐标是 .第9题图 第10题图10.(2016·泰州模拟)如图,点A 、B 在直线l 上,AB =10cm ,⊙B 的半径为1cm ,点C 在直线l 上,过点C 作直线CD 且∠DCB =30°,直线CD 从A 点出发以每秒4cm 的速度自左向右平行运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (秒)之间的关系式为r =1+t (t ≥0),当直线CD 出发 秒直线CD 恰好与⊙B 相切.第11题图 第12题图11.如图,点P 是反比例函数y =43x (x >0)图象上的动点,在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形是一个含有30°角的直角三角形,则符合条件的点Q 的坐标是________________________________________________________________________.12.(2017·绍兴市上虞区模拟)如图,正方形ABCD 的边长为3cm ,E 为CD 边上一点,∠DAE =30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q .若PQ =AE ,则AP 等于____________________cm.C组13.(2017·常州模拟)如图,已知抛物线y=ax2+bx+c经过点A(-1,0),B(3,0),C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.第13题图参考答案第36讲 分类讨论型问题【例题精析】例1 ∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,AD ∥BC ,∴∠AEB =∠CBE ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∴∠AEB =∠ABE ,∴AB =AE ,①当AE =1cm 时,AB =1cm =CD ,AD =1cm +3cm =4cm =BC ,此时矩形的面积是1cm ×4cm =4cm 2;②当AE =3cm 时,AB =3cm =CD ,AD =4cm =BC ,此时矩形的面积是:3cm ×4cm =12cm 2;故选D .例2 (1)由题意,得三口之家应缴购房款为:0.3×90+0.5×30=42(万元); (2)由题意,得①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18;③当x >m 时,y =0.9×30+0.5×3(m -30)+0.7×3×(x -m)=2.1x -18-0.6m.∴y =⎩⎪⎨⎪⎧0.9x (0≤x ≤30)1.5x -18(30<x ≤m )2.1x -18-0.6m (x>m )(45≤m ≤60). (3)由题意,得①当50≤m ≤60时,y =1.5×50-18=57(舍).②当45≤m <50时,y =2.1×50-0.6m -18=87-0.6m.∵57<y ≤60,∴57<87-0.6m ≤60,∴45≤m <50.综合①②得45≤m <50.例3 ∵点B 是y =kx 和y =9x 的交点,y =kx =9x ,解得:x =3k ,y =3k ,∴点B 坐标为⎝⎛⎭⎫3k ,3k ,点A 是y =kx 和y =1x 的交点,y =kx =1x ,解得:x =1k ,y =k ,∴点A坐标为⎝⎛⎭⎫1k ,k ,∵BD ⊥x 轴,∴点C 横坐标为3k,纵坐标为13k=k3,∴点C 坐标为⎝ ⎛⎭⎪⎫3k ,k 3,∴BA ≠AC ,若△ABC 是等腰三角形,①AB =BC ,则⎝⎛⎭⎫3k -1k 2+(3k -k )2=3k -k 3,解得:k =377;②AC =BC ,则⎝⎛⎭⎫3k -1k 2+⎝⎛⎭⎫k 3-k 2=3k -k 3,解得:k =155;故答案为k =377或155.例4 (1)∵∠ABC =90°,AP ∥BQ ,∴当AP =BQ 时,四边形ABQP 成为矩形,由运动知,AP =t ,CQ =3t ,∴BQ =22-3t ,∴t =22-3t ,解得t =112.∴当t =112时,四边形ABQP成为矩形; (2)当P 、Q 两点与A 、B 两点构成的四边形是平行四边形时,就是(1)中的情形,此时t =112.当P 、Q 两点与C 、D 两点构成的四边形是平行四边形时,∵PD ∥QC ,∴当PD=QC 时,四边形PQCD 为平行四边形.此时,16-t =3t ,t =4;当P 、Q 两点与B 、D 两点构成的四边形是平行四边形时,同理,16-t =22-3t ,t =3;当P 、Q 两点与A 、C 两点构成的四边形是平行四边形时,同理,t =3t ,t =0,不符合题意;故当t =112或t =4或t =3时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形. (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD =BQ =BP 时,四边形PBQD 能成为菱形.由PD =BQ ,得16-t =22-3t ,解得t =3,当t =3时,PD =BQ =13,AP =AD -PD =16-13=3.在Rt △ABP 中,AB =8,根据勾股定理得,BP =AB 2+AP 2=64+9=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为v cm /s 时,能够使四边形PBQD 在时刻t s 为菱形,由题意得,⎩⎨⎧16-t =22-vt ,16-t =64+t 2,解得⎩⎪⎨⎪⎧t =6,v =2.故点Q 的速度为2cm /s 时,能够使四边形PBQD 在某一时刻为菱形.例5 (1)连结OQ ,∵PN 与⊙O 相切于点Q ,∴OQ ⊥PN ,即∠OQP =90°.∵OP =10,OQ =6,∴PQ =102-62=8(cm ). (2)过点O 作OC ⊥AB ,垂足为C.∵点A 的运动速度为5cm /s ,点B 的运动速度为4cm /s ,运动时间为t s ,∴PA =5t ,PB =4t.∵PO =10,PQ =8,∴PA PO =PB PQ =t2.∵∠P =∠P ,∴△PAB ∽△POQ ,∴∠PBA =∠PQO =90°.∵∠BQO =∠CBQ =∠OCB =90°,∴四边形OCBQ 为矩形,∴BQ =OC.∵⊙O 的半径为6,∴BQ =OC =6时,直线AB 与⊙O 相切.①当AB 运动到如图1所示的位置时,BQ =PQ -PB =8-4t ,由BQ =6,得8-4t =6,t =0.5.②当AB 运动到如图2所示的位置时,BQ =PB -PQ =4t -8,由BQ =6,得4t -8=6,t =3.5.综上,当t =0.5s 或3.5s 时,直线AB 与⊙O 相切.【变式拓展】1.(1)0或-1 (2)4或2 (3)C 2.(1)C (2)D3.根据OC 长为8可得一次函数中的n 的值为8或-8.分类讨论:①n =8时,易得A(-6,0),如图1,∵抛物线经过点A 、C ,且与x 轴交点A 、B 在原点的两侧,∴抛物线开口向下,则a <0,∵AB =16,且A(-6,0),∴B(10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =-6+102=2,要使y 1随着x 的增大而减小,∵a <0,∴x ≥2;②n =-8时,易得A(6,0),如图2,∵抛物线过A 、C 两点,且与x 轴交点A ,B 在原点两侧,∴抛物线开口向上,则a >0,∵AB =16,且A(6,0),∴B(-10,0),而A 、B 关于对称轴对称,∴对称轴为直线x =6-102=-2,要使y 1随着x 的增大而减小,且a >0,∴x ≤-2.4.(1)C (2)6或12 (3)12或45 5.(1)(3,0)或(-1,2)或(3,4) (2)2或6 (3)(2,2)或(-6,-2)或(10,6) (4)2,5,18 6.(6,2)或(-6,2)【热点题型】【分析与解】(1)∵OB =6,C 是OB 的中点,∴BC =12OB =3.∴2t =3,即t =32s .∴OE=32+3=92,E(92,0). (2)如图1,连结CD 交OP 于点G ,在▱PCOD 中,CG =DG ,OG =PG ,∵AO =PE ,∴AG =EG .∴四边形ADEC 是平行四边形. (3)①(Ⅰ)当点C 在线段BO 上时,第一种情况:如图2,当点M 在CE 边上时,∵MF ∥OC ,∴△EMF ∽△ECO.∴MF CO =EF EO ,即26-2t =23+t ,解得t =1.第二种情况:如图3,当点N 在DE 边时,∵NF ∥PD ,∴△EFN ∽△EPD.∴FN PD =EF EP 即16-2t =23,解得t =94.(Ⅱ)当点C 在BO 的延长线上时,第一种情况:如图4,当点M 在DE 边上时,∵MF ∥PD ,∴EMF ∽△EDP.∴MF DP =EF EP 即22t -6=23,解得t =92.第二种情况:如图5,当点N 在CE 边上时,∵NF ∥OC ,∴△EFN ∽△EOC.∴FN OC =EF EO 即12t -6=23+t ,解得t =5.综上所述,所有满足条件的t 的值为1,94,92,5.②278<S ≤92或272<S ≤20.【错误警示】当PD ∥BC 时,△APD ∽△ABC ,当PE ∥AC 时,△BPE ∽△BAC ,连结PC ,∵∠A =36°,AB =AC ,点P 在AC 的垂直平分线上,∴AP =PC ,∠ABC =∠ACB =72°,∴∠ACP =∠PAC =36°,∴∠PCB =36°,∴∠B =∠B ,∠PCB =∠A ,∴△CPB ∽△ACB ,故过点P 的△ABC 的相似线最多有3条.故答案为:3.课后练习36 分类讨论型问题A 组1.D 2.A 3.A 4.B 5.D 6.D 7.115°或65°8.(1)∵1×2≠2×(1+2),4×4=2×(4+4),∴点M 不是和谐点,点N 是和谐点. (2)由题意,得当a >0时,(a +3)×2=3a ,∴a =6.∵点P (6,3)在直线y =-x +b 上,代入,得b =9;当a <0时,(-a +3)×2=-3a ,∴a =-6.∵点P (-6,3)在直线y =-x +b 上,代入,得b =-3.∴a =6,b =9或a =-6,b =-3.B 组9.(0,-4),(-4,-4),(4,4) 10.43或611.(0,2)、(0,8)、(0,23)或(0,833) 12.1或2C 组13.(1)y =-x 2+2x +3.(2)如图,连结BC ,直线BC 与直线l 的交点为P ,此时,△P AC 的周长最短(点A 与点B 关于l 对称).设直线BC 的解析式为y =kx +b ,将B (3,0),C (0,3)代入上式,得⎩⎪⎨⎪⎧3k +b =0,b =3,解得:⎩⎪⎨⎪⎧k =-1,b =3.∴直线BC 的函数关系式为y =-x +3.当x =1时,y =2,即点P 的坐标为(1,2).(3)抛物线的对称轴为直线x=-b2a=1,设M(1,m),已知A(-1,0),C(0,3),则MA2=m2+4,MC2=m2-6m+10,AC2=10.①若MA=MC,则MA2=MC2,得m2+4=m2-6m+10,解得m=1;②若MA=AC,则MA2=AC2,得m2+4=10,解得m=±6;③若MC=AC,则MC2=AC2,得m2-6m+10=10,解得m1=0,m2=6.当m=6时,M,A,C三点共线,构不成三角形,不合题意,故舍去.综上可知,符合条件的点M的坐标为(1,6)或(1,-6)或(1,1)或(1,0).第13题图。

中考数学专题复习教学案--分类讨论题(附答案)

中考数学专题复习教学案--分类讨论题(附答案)

分类讨论题类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.例1.(·沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50° B.80° C.65°或50°D.50°或80°【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

故顶角可能是50°或80°.答案:D .同步测试:1.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm2. (·江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A 落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.例2.(•湖北罗田)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __.【解析】圆与斜边AB只有一个公共点有两种情况,1、圆与AB相切,此时r=2.4;2、圆与线段相交,点A在圆的内部,点B在圆的外部或在圆上,此时3<r≤4。

中考数学复习专题一:分类讨论思想

中考数学复习专题一:分类讨论思想

专题一:分类讨论简要分析在数学中,当被研究的问题存在多种情况,不能一概而论时,就需要按照可能出现的各种情况分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法叫分类讨论思想,它不仅是一种重要的数学思想,同时也是一种重要的解题策略.在研究问题时,要认真审题,思考全面,根据其数量差异或位置差异进行分类,注意分类应不重不漏,从而得到完美答案. 典型例题例1 已知⊙O 的半径为13cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,则AB 、CD 之间的距离为【 】A .17cmB .7cmC .12cmD .17cm 或7cm例2 如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【 】【分析】△AMN 的面积=12AP×MN ,通过题干已知条件,用x 分别表示出AP 、MN ,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x <2;例3 已知直角三角形两边x 、y 的长满足224560x y y -+-+=,则第三边长为 .例4 先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x ->. 解:∵29(3)(3)x x x -=+-, ∴(3)(3)0x x +->.由有理数的乘法法则“两数相乘,同号得正”,有 (1)3030x x +>⎧⎨->⎩ (2)3030x x +<⎧⎨-<⎩解不等式组(1),得3x >, 解不等式组(2),得3x <-,故(3)(3)0x x +->的解集为3x >或3x <-, 即一元二次不等式290x ->的解集为3x >或3x <-. 问题:求分式不等式51023x x +<-的解集. OOOO x x x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . ABCDMN P 九年级____班姓名________第2题图例5 某园艺公司对一块直角三角形的花圃进行改造.测得两直角边长为6m 、8m .现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边的直角三角形...........求扩建后的等腰三角形花圃的周长.【分析】原题并没有给出图形,要根据题意画出符合题意的图形,画出图形后,可知本题实际上应三类情况讨论:一是将△ABC 沿直线AC 翻折180°后,得等腰三角形ABD ,如图1;二是延长BC 至点D ,使CD =4,则BD =AB =10,得等腰三角形ABD ,如图2;三是作斜边AB 的中垂线交BC 的延长线于点D ,则DA =DB ,得等腰三角形ABD ,如图3.先作出符合条件的图形后,再根据勾股定理进行求解即可.图1668DC BA图2486BC AD图3x +6x 68BCDA考点训练一、选择题1.如图,点A 、B 、P 在⊙O 上,且∠APB =50°,若点M 是⊙O 上的动点,要使△ABM为等腰三角形,则所有符合条件的点M 有【 】A .1个B .2个C .3个D .4个2. 如图,已知⊙B 与△ABD 的边AD 相切于点C ,AC=4,⊙B 的半径为3,当⊙A 与⊙B 相切时,⊙A 的半径是【 】A .2B .7C .2或5D .2或83.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值是【 】A .6B .7C .7D .8第1题图4. ⊙O 的半径为5㎝,弦AB ∥CD ,AB=6㎝,CD=8㎝,则AB 和CD 的距离是【 】A .7㎝B .8㎝C .7㎝或1㎝D .1㎝5. 已知一个等腰三角形两内角的度数之比为1∶4,则此等腰三角形顶角的度数是【 】A .20°B .120°C .20°或120°D .36°二、填空题6. 已知:如图,O 为坐标原点,四边形OABC 为矩形,A (10,0),C (0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .7. 如图,在正方形网格中,点A 、B 、C 、D 都是格点,点E 是线段AC 上任意一点.如果AD=1,那么当AE= 时,以点A 、D 、E 为顶点的三角形与△ABC 相似.8. 二次三项式 942+-mx x 是完全平方式,则m = .9. 腰长为5,一条高为4的等腰三角形的底边长为 错误!未找到引用源。

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习分类讨论问题(含答案)

初中数学专题复习(1) 分类讨论问题【简要分析】在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【典型考题例析】例1:已知一次函数y x =-+3333与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。

分析:本题中△PAB 由于P 点位置不确定而没有确定,而且等腰三角形中哪两条是腰也没有确定。

△PAB 是等腰三角形有几种可能?我们可以按腰的可能情况加以分类:(1)PA=PB ;(2)PA=AB ;(3)PB=AB 。

先可以求出B 点坐标()033,,A 点坐标(9,0)。

设P 点坐标为()x ,0,利用两点间距离公式可对三种分类情况分别列出方程,求出P 点坐标有四解,分别为()()()()-+-903096309630,、,、,、,。

(不适合条件的解已舍去)点拨:解答本题极易漏解。

解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类画出各种符合条件的图形。

另外,由点的运动变化也会引起分类讨论。

由于运动引起的符合条件的点有不同位置,从而需对不同位置分别求其结果,否则漏解。

例2:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。

如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题突破六┃ 基本思想方法问题—— 分类讨论
此时只要 MN=AC,以 A,C,M,N 为顶点的四边形是平行四 边形. 4 2 ∴- x +4x=3, 3 3 ∴x1 =x 2 = . 2 当点 M 在 OD 之外运动时: 1 4 2 13 4 2 MN= x-(- x + x)= x -4x, 3 3 3 3 此时只要 NM=AC,以 A,C,M,N 为顶点的四边形是平行四 边形.
专题突破六┃ 基本思想方法问题—— 分类讨论
图 Z 6 -2
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】
专题突破六┃ 基本思想方法问题—— 分类讨论
解:(1)当 x=1 时,y=4-1=3,∴点 C(1,3). 当 x=3 时,y=4-3=1,∴点 D(3,1). ∴ 4 2 13 ∴y=- x + x. 3 3 解得
专题突破六┃ 基本思想方法问题—— 分类讨论
∴PD2=AD·BD, ∴( 3t)2=(2+t)·(1-t), -1+ 33 解得 t= (t>0). 8 -1+ 33 ∴当△ABP 是直角三角形时,t 的值为 1 或 . 8
专题突破六┃ 基本思想方法问题—— 分类讨论 探究三 根据图形的不同位置进行分类讨论
专题突破六 基本思想方法 问题——分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论
考向互动探究
探究一 根据概念进行分类讨论
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】破六┃ 基本思想方法问题—— 分类讨论
4 2 3+ 3 2 3- 3 2 ∴ x -4x=3,∴x1= ,x 2= . 3 2 2 3 3+ 3 2 3- 3 2 ∴点 M 的横坐标是 或 或 . 2 2 2
例 3 [2014·莱芜] 如图 Z6-2,过 A(1,0) ,B ( 3, 0 ) 作 x 轴的垂线,分别交直线 y=4-x 于 C,D 两点.抛物线 y=ax2 +bx+c 经过 O,C,D 三点. (1)求抛物线的表达式. (2)点 M 为直线 OD 上的一动点,过 M 作 x 轴的垂线交抛物 线于点 N,问是否存在这样的点 M,使得以 A,C,M,N 为顶点的 四边形为平行四边形?若存在,求出此时点 M 的横坐标;若不存 在,请说明理由.
专题突破六┃ 基本思想方法问题—— 分类讨论
(2)存在这样的点 M,使得以 A,C,M,N 为顶点的四边形是 平行四边形. 1 由题意易求直线 OD 的表达式为 y= x, 3 1 4 2 13 ∴可设点 M(x, x),则点 N(x,- x + x). 3 3 3 当点 M 在 O,D 之间运动时: 4 2 13 1 4 2 MN=- x + x- x=- x +4x, 3 3 3 3
(2)当△ABP 是直角三角形时,求 t 的值.
图 Z 6 -1
专题突破六┃ 基本思想方法问题—— 分类讨论 【例题分析】
专题突破六┃ 基本思想方法问题—— 分类讨论 【方法提炼】
专题突破六┃ 基本思想方法问题—— 分类讨论
1 3 3 解:(1)当 t= 秒时,则 OP=1,S△ABP= . 2 4 (2)当△ABP 是直角三角形时, ①∵∠A<∠BOC=60°,∴∠A 不可能是直角; ②若∠ABP=90°,则在 Rt△OPB 中,∠BOC=60°,OB=1. 1 ∵cos60°= , OP OP ∴OP=2,∴t= =1; 2
解:解第一个不等式得 x≤3; 解第二个不等式得 x<a. ∵a 是不等于 3 的常数, ∴当 a>3 时,不等式组的解集为 x≤3; 当 a<3 时,不等式组的解集为 x<a.
专题突破六┃ 基本思想方法问题—— 分类讨论
探究二 根据图形形状进行分类讨论
例 2 [2014·福州] 如图 Z6-1,点 O 在线段 AB 上,AO=2, OB=1,OC 为射线,且∠BOC=60°,动点 P 以每秒 2 个单位长 度的速度从点 O 出发,沿射线 OC 做匀速运动,设运动时间为 t 秒. 1 (1)当 t= 秒时,则 OP= 2 ,S△ABP= ;
专题突破六┃ 基本思想方法问题—— 分类讨论
③若∠APB=90°,作 PD⊥OB 于点 D. 由题意知 OP=2t. 在 Rt△POD 中,∠POD=60°, OD ∵cos60°= ,∴OD=t,则 BD=1-t,PD= 3t. OP ∵PD⊥AB,∴△APD∽△PBD, AD PD ∴ = , PD BD
相关文档
最新文档