中考数学基础知识专题训练一

合集下载

中考数学专题训练专题一几何题型中点M型试题

中考数学专题训练专题一几何题型中点M型试题

卜人入州八九几市潮王学校专题一中点M型根本条件:①∠PMQ=∠B=∠C;②M是BC的中点根本结论:①△EMF∽△EBM∽△MCF.②EM平分∠BEF,FM平分∠EFC.③EM2=EB·EF,FM2=FC·EF.常见特例:特例一:条件:①等边△ABC;②∠MPN=60°,③P是BC的中点。

特例二:条件:①等腰直角△ABC,AC=BC,∠C=90°;②∠EDF=45°;③点D是AB的中点。

特例三:条件:①AB =AC;②∠BAC=120°,∠EDF=30°,③D是BC的中点。

特例四:条件:①矩形ABCD;②∠GEF=90°,③E是AB的中点。

特例五:条件:①直角梯形ABCD中,AB∥CD,∠A=90°;②E是AD的中点;③∠BEC=90°。

稳固练习:1.:梯形ABCD中,AD∥BC,∠A=90°,E为AB的中点,假设AD=2,BC=4,∠CED=90°,那么CD长为。

2.如图,在正方形ABCD中,点E、F在边BC、CD上,假设AE=2,EF=1,AF=5,那么正方形的边长为。

3.:等边△ABC中,AB=8,点D为AB的中点,点M为BC上一动点,以DM为一边,在点B异侧作等边△DMN。

DN交AC于点F,当∠DAN=90°时,那么FN的长为。

4.如图,以矩形OABC的邻边OA、OC分别为x轴、y轴的正方向建立平面直角坐标系,F为线段OA上的一点,将△COF沿直线CF翻折,点O落在AB的中点E处,且OC=6.(1)求直线EF的解析式;(2)将直线EF绕点F逆时针旋转90°,得到直线m,直线m交y轴于点D,求点D的坐标。

1.如图,在△ABC中,AB=AC,∠BAC=α,点D为BC边的中点,BE⊥AC于E,DF⊥AB于F.(1)当00<α<900,〔如图1〕,求证:AE+2BF=AB;(2)当900<α<1800,〔如图2〕,那么AE、BF、AB之间的数量关系;(3)在〔1〕的条件下,过点D作DG∥AB,交AC于G,且DF=GE=3时〔如图3〕,求BF的值。

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。

中考数学专题训练第1讲有理数(知识点梳理)

中考数学专题训练第1讲有理数(知识点梳理)

有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。

正数的前面的“+”可以省略不写。

2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。

3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。

4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。

考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。

2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。

(2)正数和零统称为非负数;负数和零统称为非正数。

4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。

5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。

数轴的三要素即原点、正方向和单位长度。

6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。

考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。

0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。

3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。

4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。

中考数学专题训练(一):实数运算

中考数学专题训练(一):实数运算

实数运算1、(2013•衡阳)计算的结果为( )A .B .C . 3D . 5 考点: 二次根式的乘除法;零指数幂.专题: 计算题.分析: 原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.解答: 解:原式=2+1=3.故选C点评: 此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.2、(2013•常德)计算+的结果为( )A . ﹣1B . 1C . 4﹣3D . 7 考点: 实数的运算.专题: 计算题.分析: 先算乘法,再算加法即可.解答: 解:原式=+=4﹣3=1.故选B .点评: 本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.3、(2013年河北)下列运算中,正确的是A.9=±3 B.3-8=2 C.(-2)0=0 D .2-1=12答案:D解析:9是9的算术平方根,9=3,故A 错;3-8=-2,B 错,(-2)0=1,C 也错,选D 。

4、(2013台湾、6)若有一正整数N 为65、104、260三个公倍数,则N 可能为下列何者?( )A .1300B .1560C .1690D .1800考点:有理数的混合运算.专题:计算题.分析:找出三个数字的最小公倍数,判断即可.解答:解:根据题意得:65、104、260三个公倍数为1560.故选B点评:此题考查了有理数的混合运算,弄清题意是解本题的关键.5、(2013•攀枝花)计算:2﹣1﹣(π﹣3)0﹣=﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题分析:本题涉及0指数幂、负指数幂、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣=﹣1.故答案为﹣1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握0指数幂、负指数幂、立方根考点的运算.6、(2013•衡阳)计算=2.考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:(﹣4)×(﹣)=4×=2.故答案为:2.点评:本题考查了有理数的乘法运算,熟记运算法则是解题的关键,要注意符号的处理.7、(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0=2.考点:实数的运算;零指数幂;负整数指数幂.分析:分别进行二次根式的化简、负整数指数幂、零指数幂的运算,然后合并即可得出答案.解答:解:原式=2﹣1+1=2.故答案为:2.点评:本题考查了实数的运算,涉及了零指数幂、负整数指数幂的知识,解答本题的关键是掌握各部分的运算法则.8、(2013•黔西南州)已知,则a b=1.考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:根据非负数的性质列式求出a、b,然后代入代数式进行计算即可得解.解答:解:根据题意得,a﹣1=0,a+b+1=0,解得a=1,b=﹣2,所以,a b=1﹣2=1.故答案为:1.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9、(2013杭州)把7的平方根和立方根按从小到大的顺序排列为 . 考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<. 故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.10、(2013•娄底)计算:= 2 .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值. 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等运算,然后按照实数的运算法则计算即可.解答: 解:原式=3﹣1﹣4×+2=2.故答案为:2.点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、二次根式的化简等知识点,属于基础题.11、(2013•恩施州)25的平方根是 ±5 .考点:平方根. 分析:如果一个数x 的平方等于a ,那么x 是a 是平方根,根据此定义即可解题. 解答: 解:∵(±5)2=25∴25的平方根±5.故答案为:±5.点评:本题主要考查了平方根定义的运用,比较简单.12、(2013陕西)计算:=-+-03)13()2( .考点:本题经常实数的简单计算、特殊角的三角函数值及零(负)指数幂及绝对值的计算。

中考数学专题复习课件第13讲函数函数基础知识专题练习

中考数学专题复习课件第13讲函数函数基础知识专题练习

D、作垂直x轴的直线,在左右平移的过程中与函数图象可能有两个交点 ,故D不符合题意; 故选:A.
7.下列各图给出了变量x与y之间的对应关系,其中y是x的函数的是( A)
A.
B.
C.
D.
【解析】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它 对应,所以y是x的函数,故A符合题意; B、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所 以y不是x的函数,故B不符合题意; C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所 以y不是x的函数,故C不符合题意; D、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,
16.将长为40cm,宽为15cm的长方形白纸,按图所示的方法粘合起来,粘 合部分宽为5cm.
(1)根据图,将表格补充完整.
白纸
张数
1
2
3
4
5
……
纸条 40
长度
110
145
……
(2)设x张白纸粘合后的总长度为y cm,则y与x之间的关系式是什么?
(3)你认为多少张白纸粘合起来总长度可能为2022cm吗?为什么?
当x≥200时,B方案比A方案便宜12元,故(2)正确; 当y=60时,A:60=0.4x-18,∴x=195, B:60=0.4x-30,∴x=225,故(3)正确; 当B方案为50元,A方案是40元或者60元时,两种方案通讯费用相差10 元, 将yA=40或60代入,得x=145分或195分,故(4)错误; 故选:C.
三.函数关系式
9.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d的关系,下列关系式中能表示这种关系的是( C )
d/cm

中考数学专题训练一元二次方程的根(含解析)

中考数学专题训练一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C.D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A. 2005B. 2003C. ﹣2005 D. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C.D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F 与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。

江苏省苏州市中考数学专题训练(一)数与式的运算与求值-人教版初中九年级全册数学试题

江苏省苏州市中考数学专题训练(一)数与式的运算与求值-人教版初中九年级全册数学试题

2017中考数学专题训练(一)数与式的运算与求值本专题主要考查实数的运算、整式与分式的化简与求值,纵观5年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.类型1 实数的运算【例1】计算:|-3|+2sin 45°+tan 60°-(-13)-1-12+(π-3)0.【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧. 【学生解答】原式=3+2×22+3-(-3)-23+1=3+1+3+3-23+1=5. 针对练习1.(2016某某中考)计算:|2-3|-16+⎝ ⎛⎭⎪⎫130. 解:原式=3-2-4+1=- 2.2.(2016某某中考)计算:4sin 60°+|3-12|-⎝ ⎛⎭⎪⎫12-1+(π-2 016)0.解:原式=4×32+ (23-3)-2+1 =23+23-3-2+1 =43-4.3.(2016某某中考)计算:(-1)2 016+8-|-2|-(π-3.14)0.解:原式=1+22-2-1 =22- 2 = 2.4.(2016某某中考)计算:⎝ ⎛⎭⎪⎫13-1-12+2tan 60°-(2-3)0.解:原式=3-23+23-1=2.类型2 整式的运算与求法【例2】先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值. 【学生解答】原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2,当x =-1,y =33时,原式=-1+1=0. 针对练习5.(2016某某中考)先化简,再求值:x (x -2)+(x +1)2,其中x =1. 解:原式=x 2-2x +x 2+2x +1=2x 2x =1时,原式=2×12+1=3.6.(2016某某中考)先化简,再求值(x +2)(x -2)+x (4-x ),其中x =14.解:原式=x 2-4+4x -x 2=4xx =14时,原式=4×14-4=-3.7.已知x 2-4x -1=0,求代数式(2x -3)2-(x +y )(x -y )-y 2的值.解:原式=4x 2-12x +9-x 2+y 2-y 2=3x 2-12x +9=3(x 2-4x +3),∵x 2-4x -1=0,即x 2-4x =1,∴原式=12.8.已知多项式A =(x +2)2+(1-x )(2+x )-3. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.解:(1)A =x 2+4x +4+2-2x +x -x 2-3=3x +3;(2)(x +1)2=6,则x +1=±6,∴A =3x +3=3(x +1)=±3 6.类型3 分式的化简求值【例3】已知x 2-4x +1=0,求2(x -1)x -4-x +6x的值.【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.【学生解答】原式=2x (x -1)-(x -4)(x +6)x (x -4)=x 2-4x +24x 2-4x,∵x 2-4x +1=0,∴x 2-4x =-1.原式=-1+24-1=-23. 针对练习9.(2016随州中考)先化简,再求值:⎝ ⎛⎭⎪⎫3x +1-x +1÷x 2+4x +4x +1,其中x =2-2.解:原式=⎣⎢⎡⎦⎥⎤3x +1-(x +1)(x -1)x +1·x +1(x +2)2=-(x +2)(x -2)x +1·x +1(x +2)2=2-x x +2,当x =2-2时,原式=2-2+22-2+2=4-22=22-1.10.先化简代数式 (3a a -2-a a +2)÷aa 2-4,再从0,1,2三个数中选择适当的数作为a 的值代入求值.解:原式=3a (a +2)-a (a -2)(a +2)(a -2)·(a +2)(a -2)a =2a 2+8a (a +2)(a -2)·(a +2)(a -2)a =2a (a +4)a=2aa =1时,2a +8=10.11.先化简,再求值:(a +1a +2)÷(a -2+3a +2),其中a 满足a -2=0.解:原式=a (a +2)+1a +2÷a 2-4+3a +2=(a +1)2a +2·a +2(a +1)(a -1)=a +1a -1,当a -2=0,即a =2时,原式=312.(2016某某中考)先化简,再求值:⎝ ⎛⎭⎪⎫x 2-y x -x -1÷x 2-y 2x 2-2xy +y 2,其中x =2,y = 6. 解:原式=⎝ ⎛⎭⎪⎫x 2-y x -x 2x -x x ×(x -y )2(x +y )(x -y )=-y -x x ×x -y x +y =-x -y x ,把x =2,y =6代入得:原式=-2-62=-1+ 3.13.(2016某某中考)先化简,后求值:⎝⎛⎭⎪⎫x x -2-4x 2-2x ÷x +2x 2-x,其中x 满足x 2-x -2=0.解:原式=x 2-4x (x -2)·x (x -1)x +2=(x +2)(x -2)x (x -2)·x (x -1)x +2=x -1,解方程x 2-x -2=0,得x 1=-1,x 2=2,当x =2时,原分式无意义,所以当x =-1时,原式=-1-1=-2.14.(2016某某中考)先化简,再求值:⎝ ⎛⎭⎪⎫x x 2+x -1÷x 2-1x 2+2x +1,其中x 的值从不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4的整数解中选取.解:原式=x -x 2-x x (x +1)·x +1x -1=-x x +1·x +1x -1=x 1-x ,解不等式组⎩⎪⎨⎪⎧-x≤1,2x -1<4得-1≤x <52,当x =2时,原式=21-2=-2.。

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习 圆的有关概念及性质 知识精练(含答案)

2024成都中考数学第一轮专题复习圆的有关概念及性质知识精练基础题1. (2023江西)如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为()A. 3B. 4C. 5D. 6第1题图2. (2023广东省卷)如图,AB是⊙O的直径,∠BAC=50°,则∠D=()第2题图A. 20°B. 40°C. 50°D. 80°3. (2023广元)如图,AB是⊙O的直径,点C,D在⊙O上,连接CD,OD,A C.若∠BOD=124°,则∠ACD的度数是()A. 56°B. 33°C. 28°D. 23°第3题图4. (2023山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC =40°,则∠DBC的度数为()第4题图A. 40°B. 50°C. 60°D. 70°5. (2023安徽)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A. 60°B. 54°C. 48°D. 36°第5题图6. (2023赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC =2∠COD,则∠CBD的度数是()第6题图A. 25°B. 30°C. 35°D. 40°7. [新考法—数学文化](2023岳阳)我国古代数学名著《九章算术》中有这样一道题:“今有圆材,径二尺五寸.欲为方版,令厚七寸,问广几何?”结合下图,其大意是:今有圆形材质,直径BD为25寸,要做成方形板材,使其厚度CD达到7寸,则BC的长是() A. 674寸 B. 25寸C. 24寸D. 7寸第7题图8. (2023杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC=()第8题图A. 23°B. 24°C. 25°D. 26°9. (2023广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37 m,拱高约为7 m,则赵州桥主桥拱半径R约为()第9题图A. 20 mB. 28 mC. 35 mD. 40 m10. (2023凉山州)如图,在⊙O中,OA⊥BC,∠ADB=30°,BC=23,则OC=()A. 1B. 2C. 2 3D. 4第10题图11. 如图,点A,B,D在⊙O上,CD垂直平分AB于点C.现测得AB=CD=16,则圆形宣传图标的半径为()第11题图A. 12B. 10C. 8D. 612. 如图,在平面直角坐标系中,⊙O的半径为4,弦AB的长为3,过O作OC⊥AB于点C,则OC的长度是________;⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是________.第12题图13. (2023武汉)如图,OA,OB,OC都是⊙O的半径,∠ACB=2∠BA C.(1)求证:∠AOB=2∠BOC;(2)若AB=4,BC=5,求⊙O的半径.第13题图拔高题14. (2023吉林省卷)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A. 70°B. 105°C. 125°D. 155°第14题图15. 如图,正方形ABCD 内接于⊙O ,点E 为弧AB 的中点,连接DE 与AB 交于点F .若AB=1,记△ADF 的面积为S 1,△AEF 的面积为S 2,则S 1S 2的值为________.第15题图16. 如图,以原点O 为圆心的圆交x 轴于A ,B 两点,交y 轴的正半轴于点C ,且点A 的坐标为(-2,0),D 为第一象限内⊙O 上的一点,若∠OCD =75°,则AD 的长为________.第16题图参考答案与解析1. D 【解析】本题考查了确定圆的条件及圆的有关定义及性质.∵过不在同一直线上的三个点一定能作一个圆,∴要经过题中所给的3个点画圆,除选定直线l 外的点P 外,再在直线l 上的A ,B ,C ,D 四个点中任选其中2个即可画圆.∵从A ,B ,C ,D 四个点中任选其中2个点的方法可以是AB ,AC ,AD ,BC ,BD ,CD ,共6种,∴最多可以画出圆的个数为6.2. B 【解析】∵AB 是⊙O 的直径,∠BAC =50°,∴∠ACB =90°,∠B =180°-50°-90°=40°.∵AC =AC ,∴∠D =∠B =40°.3. C 【解析】∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°. 4. B 【解析】∵BD 经过圆心O ,∴∠BCD =90°.∵∠BDC =∠BAC =40°,∴∠DBC =90°-∠BDC =50°.5. D 【解析】∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°5=108°,∠COD =360°5=72°,∴∠BAE -∠COD =108°-72°=36°. 6. A 【解析】∵∠BCD =105°,∴∠BAD =180°-105°=75°,∴∠BOD =150°.∵∠BOC=2∠COD ,∴∠COD =13 ∠BOD =50°,∴∠CBD =12∠COD =25°. 7. C 【解析】∵BD 是圆的直径,∴∠BCD =90°.∵BD =25,CD =7,∴在Rt △BCD 中,由勾股定理得,BC =252-72 =24(寸).8. D 【解析】如解图,连接OC ,∵∠ABC =19°,∴∠AOC =2∠ABC =38°.∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴∠BOC =90°-38°=52°,∴∠BAC =12∠BOC =26°.第8题解图9. B 【解析】如解图,在Rt △OAB 中,由勾股定理,得AO 2+AB 2=OB 2,即(R -7)2+(372)2=R 2,解得R ≈28(m).第9题解图10. B 【解析】如解图,连接OB ,设OA 交BC 于点E ,∵∠ADB =30°,∴∠AOB =60°.∵OA ⊥BC ,BC =23 ,∴BE =12 BC =3 .在Rt △BOE 中,sin ∠AOB =BE OB,∴sin 60°=3OB =32,∴OB =2,∴OC =2.第10题解图11. B 【解析】如解图,连接OA ,设圆形宣传图标的半径为R ,∵CD 垂直平分AB ,AB=CD =16,∴CD 过点O ,AC =BC =12 AB =12×16=8,∠DCA =90°.∵AO =OD =R ,∴在Rt △AOC 中,由勾股定理,得OC 2+AC 2=OA 2,即(16-R )2+82=R 2,解得R =10,即圆形宣传图标的半径为10.第11题解图 12. 552 ;552 -5 【解析】如解图,连接OB ,∵OC ⊥AB ,∴BC =12 AB =32.由勾股定理,得OC =OB 2-BC 2 =552.当OD ⊥AB 时,点D 到AB 的距离最小,由勾股定理,得OD =22+12 =5 ,∴点D 到AB 的距离的最小值为552 -5 .第12题解图13. (1)证明:由圆周角定理,得∠ACB =12 ∠AOB ,∠BAC =12∠BOC . ∵∠ACB =2∠BAC ,∴∠AOB =2∠BOC ;(2)解:如解图,过点O 作半径OD ⊥AB 于点E ,连接BD .则∠DOB =12∠AOB ,AE =BE . ∵∠AOB =2∠BOC ,∴∠DOB =∠BOC .∴BD =BC .∵AB =4,BC =5 ,∴BE =2,DB =5 .在Rt △BDE 中,∵∠DEB =90°,∴DE =BD 2-BE 2 =1.在Rt △BOE 中,∵∠OEB =90°,∴OB 2=(OB -1)2+22,∴OB =52, 即⊙O 的半径是 52.第13题解图14. D 【解析】如解图,连接BC ,∵∠BAC =70°,∴∠BOC =2∠BAC =140°.∵OB =OC ,∴∠OBC =∠OCB =180°-140°2=20°.∵点P 为OB 上任意一点(点P 不与点B 重合),∴0°<∠OCP <20°.∵∠BPC =∠BOC +∠OCP =140°+∠OCP ,∴140°<∠BPC <160°,故选D.第14题解图15. 2(2 +1) 【解析】如解图,连接OE 交AB 于点G ,连接AC .根据垂径定理的推论,得OE ⊥AB ,AG =BG .由题意可得,AC 为⊙O 的直径,AC =2 ,则圆的半径是22.根据正方形的性质,得∠OAF =45°,∴OG =12 ,EG =2-12.∵OE ∥AD ,∴△ADF ∽△GEF ,∴FE FD =EG DA =2-12 .∵△ADF 与△AEF 等高,∴S 1S 2 =S △ADF S △AEF=DF EF =2(2 +1).第15题解图16. 23 【解析】如解图,连接OD ,BD .∵A (-2,0),∴OA =OB =2,∴AB =4.∵OC =OD ,∴∠OCD =∠ODC =75°,∴∠DOC =180°-2×75°=30°,∴∠DOB =90°-30°=60°,∴∠DAB =12∠DOB =30°.∵AB 是⊙O 的直径,∴∠ADB =90°,∴AD =AB ·cos 30°=23 .第16题解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年中考数学基础知识专题训练一
————————————————————————————————作者:————————————————————————————————日期:
2019年中考数学基础知识专题训练一
一.选择题(共28小题)
1.(2018•青岛)观察下列四个图形,中心对称图形是()
A.B.C.D.
2.(2018•青岛)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()
A.5×107B.5×10﹣7C.0.5×10﹣6 D.5×10﹣6
3.(2018•青岛)如图,点A所表示的数的绝对值是()
A.3 B.﹣3 C.D.
4.(2018•青岛)计算(a2)3﹣5a3•a3的结果是()
A.a5﹣5a6B.a6﹣5a9C.﹣4a6 D.4a6
5.(2018•青岛)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E 的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()
A.B. C.3 D.
6.(2018•青岛)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()
A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)
7.(2018•淄博)计算的结果是()
A.0 B.1 C.﹣1 D.
8.(2018•淄博)下列语句描述的事件中,是随机事件的为()
A.水能载舟,亦能覆舟B.只手遮天,偷天换日
C.瓜熟蒂落,水到渠成D.心想事成,万事如意
9.(2018•淄博)下列图形中,不是轴对称图形的是()
A.B.C.D.
10.(2018•淄博)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9
11.(2018•淄博)与最接近的整数是()
A.5 B.6 C.7 D.8
12.(2018•淄博)化简的结果为()
A. B.a﹣1 C.a D.1
13.(2018•淄博)甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()
A.3 B.2 C.1 D.0
14.(2018•淄博)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()
A.2πB. C. D.
15.(2018•枣庄)的倒数是()
A.﹣2 B.﹣C.2 D.
16.(2018•枣庄)下列计算,正确的是()
A.a5+a5=a10B.a3÷a﹣1=a2C.a•2a2=2a4 D.(﹣a2)3=﹣a6
17.(2018•枣庄)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()
A.20°B.30°C.45°D.50°
18.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()
A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0
19.(2018•枣庄)如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()
A.﹣5 B.C.D.7
20.(2018•枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()
A.3a+2b B.3a+4b C.6a+2b D.6a+4b
21.(2018•枣庄)在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()
A.(﹣3,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)
22.(2018•东营)﹣的倒数是()
A.﹣5 B.5 C.﹣D.
23.(2018•东营)下列运算正确的是()
A.﹣(x﹣y)2=﹣x2﹣2xy﹣y2B.a2+a2=a4
C.a2•a3=a6D.(xy2)2=x2y4
24.(2018•东营)下列图形中,根据AB∥CD,能得到∠1=∠2的是()
A.B.C.D.
25.(2018•东营)在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()
A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣1
26.(2018•东营)为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()
捐款数额10 20 30 50 100
人数 2 4 5 3 1
A.众数是100 B.中位数是30 C.极差是20 D.平均数是30
27.(2018•东营)小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()
A.19 B.18 C.16 D.15
28.(2018•东营)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是()
A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDF
二.填空题(共9小题)
29.(2018•青岛)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2S乙2(填“>”、“=”、“<”)
30.(2018•青岛)计算:2﹣1×+2cos30°=.
31.(2018•淄博)如图,直线a∥b,若∠1=140°,则∠2=度.
32.(2018•淄博)分解因式:2x3﹣6x2+4x=.
33.(2018•枣庄)若二元一次方程组的解为,则a﹣b=.
34.(2018•枣庄)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】
35.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为元.
36.(2018•东营)分解因式:x3﹣4xy2=.
37.(2018•东营)有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是.
三.解答题(共3小题)
38.(2018•青岛)已知:如图,∠ABC,射线BC上一点D.
求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC 两边的距离相等.
39.(2018•青岛)(1)解不等式组:
(2)化简:(﹣2)•.
40.(2018•枣庄)计算:|﹣2|+sin60°﹣﹣(﹣1)2+2﹣2
2019年中考数学基础知识专题训练一
参考答案
一.选择题(共28小题)
1.C;2.B;3.A;4.C;5.B;6.D;7.A;8.D;9.C;10.C;11.B;12.B;13.D;14.D;15.A;16.D;17.D;18.B;19.C;20.A;21.B;22.A;23.D;24.B;25.C;26.B;27.B;28.D;
二.填空题(共9小题)
29.>;30.2;31.40;32.2x(x﹣1)(x﹣2);33.;34.6.2;35.4.147×1011;36.x(x+2y)(x﹣2y);37.;
11。

相关文档
最新文档