2009年中考数学总复习教案42课时-2009年中考数学第一轮总复习教案26-32课时
人教新课标版2009年中考第一轮同步复习第四章统计与概率(统计)教案

人教新课标版2009年中考第一轮同步复习第四章统计与概率(统计)教案1. 数据的收集(1)普查:为了一定的目的而对考察刘象进行的全面调查,称为普查.(2)抽样调查:从总体中抽取________进行凋查,这种调查称为抽样调查。
2. 数据的整理 (1)集中趋势平均数:对于n 个数x 1,x 2,…,x n 我们把()n 21x ...x x n 1+++叫做这n 个数的________,记作________。
众数:一组数据中出现次数________的那几个数据叫做这组数据的众数。
中位数:n 个数据按从大到小或从小到大顺序排列,处于最中间位置的一个数据(或________)叫做这组数据的中位数. (2)波动大小极差:一组数据中________的差.方差:各个数据与平均数之差的平方的________叫做这组数据的方差. 标准差:方差的________。
(3)分布规律________统计图;________统计图;________统计图。
3. 统计图的选择要清楚的表示出各个项日的具体数目就选择条形统计图;要清楚地反映事物的变化情况就选择折线统计图;要清楚地表示出各部分布总体中所占的百分比就选择扇形统计图. 4. 统计图和统计表的区别统计表反映的数据准确且容易查找;统计图很直观地表示出数据变化的情况,但往往不能看出准确数据.5. 普查与抽样调查的区别(1)普查是对总体中每个个体进行调查,范围广,数据详细;而抽样调查范围有局限性,数据不全面.(2)当受客观条件限制,无法对所有个体进行普查时,往往采用抽样调查. (3)当调查具有破坏性时,就不允许普查. (4)有些数据调查,两者均可以.考点1 扇形统计图的应用例1. 2006年潍坊市学业水平考试数学学科的考试. 成绩以等级公布. 以县(市)为单位将所有考生成绩按由高到低分为A 、B 、C 、D 、E 五个等级,五个等级所占比例依次为15%、20%、30%,20%、15%. 小明所在学习小组随机抽查本学校2006年毕业学生,了解参加学业水平考试的考生数学成绩(等级)情况,统计如下表:(1)根据小明所在学习小组抽查到的学生数学成绩五个等级人数的分布情况,绘制扇形统计图;(2)根据小明所在学习小组的调查,估计2006年全校1320名参加数学考试的学生中,数学成绩(等级)为A 、B 等的考生各有多少人?(3)根据抽查结果,请你对小明所在学校参加2006年学业水平考试的数学成绩在全县(市)内的情况发表自己的看法. 解析:(1)如图1-4-1.(2)A等人数为20%⨯1320=264(人);B等人数为25%⨯1320=330(人).(3)A等、B等人数都比全市A等、B等平均人数多,C等人数与全市C等平均人数持平,D等、E等人数都比全市D等、E等平均人数少.答案:见“解析”.点评:扇形统计图的特点是用扇形的大小来表示各部分占总体的百分比,它能够清楚地表示出各部分在总体中所占的百分比;在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形的圆心角的度数与360°的比. 变式训练变式训练在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的. 如图1-4-2所示的统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.答案:31.2考点2 众数和中位数的概念例2. 某学校举行演讲比赛,选出厂10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验. 图1-4-3是这个同学的得分统计图;(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分. 解析:(1)方案1最后得分:()7.78.94.83838.70.72.3101=+⨯+⨯+++;方案2最后得分:()84.83838.70.781=⨯+⨯++;方案3最后得分:8;方案4最后得分:8或8.4。
人教版中考数学第一轮总复习教案(135课时)

其中 a、 b、 c 表示任意实数.运用运算律有时可使运算简便
3.实数的运算顺序 : 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.同
一级运算按照从左到 右的顺序依次进行 .
4. 实数大小的比较
⑴ 数轴上两个点表示的数,右边的点表示的数总比左边的点表示的数大
.
⑵ 正数> 0,负数< 0,正数>负数;两个负数比较大小,绝对值大的
(6) 开方 如果 x 2= a 且 x ≥ 0,那么
a = x; 如果 x3=a,那么 3 a x
2.实数的运算律
(1) 加法交换律 a+b = b+a ; (2) 加法结合律 (a+b)+c=a+(b+c) ; (3) 乘法交换律 ab = ba.
(4) 乘法结合律 (ab)c=a(bc) ; (5) 分配律 a(b+c)=ab+ac
⑶十字相乘法 ,⑷ 分组分解法 .
3. 提公因式法 : ma mb mc m(a+b+c).
4. 公式法 : ⑴ a 2 b 2 ( a+ b)(a - b) ;⑵ a 2 2ab b 2 (a + b) 2; ⑶ a 2 5. 十字相乘法 : x2 a b x ab ( x a)( x b) .
6. 因式分解的一般步骤 : (1) 一 “提”(取公因式) ,二“用”(公式); (2)
3. 实数的分类 有理数和无理数统称实数 . 有理数 : 有限小数或无限循环小数 . 无理数 : 无限不循环小数 . 注 : 凡是分数都是有理数 .
4.易错知识辨析
实数
有理数 无理数
正整数
整数 0
负整数
有限小数或无限循环小数
人教新课标版2009年中考第一轮同步复习第一章数与式(分式)教案

人教新课标版2009年中考第一轮同步复习第一章数与式(分式)教案1. 分式的定义如果A 、B 表示两个整式,并且B 中有_________,那么式子BA 叫分式。
2. 有理式 _________和_________统称有理式。
3. 分式有意义、无意义、分式值为零的条件 (1)分式有意义的条件_________; (2)分式无意义的条件_________;(3)分式的值为零的条件:分子_________而分母_________。
4. 分式的基本性质分式的分子与分母都乘(或除以)_________,分式的值不变;=BA _________,=B A _________(其中,0B≠,0M ≠)。
5. 约分、通分的依据是_________。
6. 约分后,分子、分母不含有_________,这样的分式称为最简分式。
7. 通分的关键是确定几个分式中分母的_________。
8. 最简公分母的确定 (1)取各分母系数的_________;(2)同底数幂取_________; (3)凡单独出现的字母连同它的指数_________。
9. 同分母分式相加减,_________不变,分子_________。
10. 异分母分式相加减,先_________,化为_________,再加减。
11. 分式的乘除(1)=⋅c d a b _________;(2)⋅=÷ba dc b a _________=_________。
12.分式的乘方=⎪⎭⎫⎝⎛nb a _________。
13. (1)解分式方程的基本思路是___________________________;(2)解分式方程的步骤是①“_________”,即方程两边同乘_________,②_________即把所求得的整式方程的根代入所乘的最简公分母中,结果不为0,则是分式的根,否则就是_________,应舍去。
14. 当分式的分子或分母为多项式时,在运算顺序上,相当于该分子或分母的外面有一个括号,从而把它们分别当成一个整体看待,如把分式2x 1x -+的分子乘以4时,应得()2x 1x 4-+,而浊得2x 1x 4-+。
09年中考数学一轮复习教案1

中考一轮复习 方程与不等式的综合应用课标要求1.熟悉方程和不等式的相关知识,结合函数知识,明确它们之间的联系及在一定条件下能相互转化.2.结合复习中对基本知识的梳理和练习,体会和强化数学建模的思想,注意提高对常用数学思想方法应用的自觉性.3.通过对探索、开放型问题的讨论,提高数学上分析问题和解决问题的能力,增强数学学习中的应用意识.中招考点方程和不等式之间的联系和相互转化,应用方程和不等式解决实际问题,方程与不等式的综合应用.典型例题例1 m 为何值时,关于x 的方程x m m x ---=-6151632的解大于1? 分析:这是一类关于方程和不等式知识综合应用的常见题型.立足于“方程的解”,可以从解字母系数方程入手;立足于“解大于1”,可以着眼于不等式x >1.解1 解这个关于x 的方程:()(),x m x m --=--2616351.x m x m -+=-+1226153.x m -=-+531.513-=m x 根据题意,得 .m ->3115 解这个不等式,得 .m >2解2 将原方程看作关于m 的方程,解得.x m +=513因为x >1,所以x +>⨯+=515116,所以x +>=516233,即m >2. 说明:解法1将原题分解为解字母系数方程和列不等式求解两个简单问题;解法2注意到x 的范围已知,对未知元进行变易.两者都是数学学习和解题中常用的思想方法. 例2 已知关于x 的方程x kx ---=411633.当k 取何值时,(1)方程有解?(2)方程的解是正整数?分析:本题对最后的问题,尚不能预见到应用何种方法讨论、求解,但因为涉及到方程的解,可以从解方程入手.去分母、整理,得x kx -=24,这是一个关于x 的一元一次方程.对于x 合并同类项,得()k x -=124.联系我们已有解字母系数方程的经验,问题的解决已显端倪:(1)当k ≠12时,方程有解;(2)在满足上述条件下,方程的解为x k=-412.要使它是正整数,k -12必需是4的正因数:1、2、4,由此求得k 的值是0、-12、-32.说明:综合问题的求解策略应该立足于大胆动手尝试,在探索的过程中得到启发,发现解题途径.例3 某商场计划拨款9万元,从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进两种不同型号电视机50台,共付9万元,请研究一下进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同电视机的方案中,哪种获利最大?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.分析:这一类有关经营、销售的实际问题,首先要仔细阅读、理解题意,获取信息.进而分析数量关系,建立方程或不等式,得到问题的解答.解:(1)本题显然应分三种情形讨论:①设购甲种电视机x 台,则购乙种电视机()x -50台,列方程()x x +-=150021005090000,解得x =25,即同时购进甲、乙两种电视机都为25台;②同理求得若同时购进甲、丙两种电视机,分别为35台和15台;③若同时购进乙、丙两种电视机,列方程后没有正整数解.(2)通过直接计算,上述两种方案所获利润分别为8750元和9000元,应选第②种方案.(3)设购甲种电视机x 台,购乙种电视机y 台,则购丙种电视机()x y --50台.根据题意,可列得方程()x y x y ++--=1500210025005090000.按常规,还应列出一个方程,组成方程组求解.但仔细读题后发现确仅有这一个等量关系,联系上述已接触到的问题,可以根据未知数的取值范围,求上述方程的正整数解.化简、整理这一方程,得()x y -=5352.根据题意,x 、y 、x y --50都是正整数,用枚举、验证的方法可求得符合题意的4组解如下:,;x y =⎧⎨=⎩11335 ,;x y =⎧⎨=⎩223110 ,;x y =⎧⎨=⎩332915 ,;x y =⎧⎨=⎩442720 强化训练1. 填空题(1)已知单项式n na b -13与m ab +23是同类项,则_______m =,_________.n =(2)已知方程Ax By +-=50的解是,x y =⎧⎨=⎩01和,.x y =-⎧⎨=⎩10那么这个方程是_______. (3)已知,x y x y -=+3243则x 与y 的比值等于__________.(4)不等式)x >22__________________.(5)若关于x 的方程()x m x -+-=23120的一个根是2,则m =__________,另一个根是_________.(6)三位同学中,任意两人的年龄和分别是29,31,32,那么各人的年龄分别为_____、______、______.2.解答题(1)a 是什么整数时,关于x 、y 的方程组,x y a x y +=⎧⎨+=⎩5331的解 A.是正数; B.是正整数.(2)已知方程x x ++=22730的解满足不等式x x -->-31122,求方程x y -+=3220 (3) 林老师去文具店给美术小组的30名学生买铅笔和橡皮.到商店后发现,若给每人买2枝铅笔和1块橡皮,按零售价计算,共需付30元;若给每人买3枝铅笔和2块橡皮,则可按批发价计算,共需付40.5元.已知每枝铅笔批发价比零售价低0.05元,每块橡皮批发价比零售价低0.1元.问这两种商品的零售价各是多少?(4)学校体育室准备添置20副乒乓球拍和若干个乒乓球.了解到两家体育用品商店的零售价都是每副乒乓球拍20元,每个乒乓球0.6元,且都表示对集体购买优惠;甲店每买一副乒乓球拍赠送5个乒乓球,再对总价打9折;乙店统一按定价8折计算.就购买乒乓球数,讨论去哪家商店购买较合算.(5)已知无论k 取何值,关于x 的方程kx m x nk +-=+2236的解总是x =1,求m 、n 的值. (6)某县新培育成功一种食用菌,一家经销公司一次收购46吨.经市场预测,若直接销售每吨获利1千元;经过加工、包装,每吨可获利5千元;若制成罐头出售,每吨可获利8千元.该公司每天可包装8吨或制罐头3吨,同一天两种加工方式不能同时进行,但必须在一周内全部销售或加工完毕.为此,公司研究了三种方案:A.全部进行包装;B.尽可能多制作罐头,余下的直接销售;C.部分制作罐头,其余进行加工、包装,且正好在7天完成.请你也研究一下,为公司作决策.(7)初三年级8个班级外出春游,租用了若干辆相同的客车,原计划一辆车坐48人,其余每辆车坐45人.可临出发时一辆车发生了故障,司机说只要每辆车不超过52人,可以挤一下.结果正好每辆车人数相等,同学们高高兴兴地出发了.问结果坐了几辆车?(8) 已知关于x 、y 的方程组,x y m x y m -=-⎧⎨+=⎩32243的解x 、y 互为相反数,求m 的值. (9) 某园林门票每张10元,一次性使用,若购买个人年票,有三种类型:A 类门票每张120元,持票者进入园林,无需买门票;B 类门票每张60元,持票者进入园林,需每次再买门票2元;C 类门票每张40元,持票者进入园林,需每次再买门票3元.试根据每年预计进入园林次数,讨论是否值得购买年票,以及购买何种年票较合算.(10) 爸爸有一笔钱准备存入银行,预计两年后要取用,要小红算一下存一年期到期自动转存和存二年期(年利率分别为1.98%和2.25%)这两种方案中哪种合算.小红按了几下计算器,告诉爸爸,存二年期的到期能多得到利息101.73元.你能知道这笔存款有多少吗?(11) 用平行于正方体一个面的平面去截正方体,截得两个长方体的体积之比是1:2.若已知原正方体的棱长为6厘米,求被截的棱两部分的长度.若将条件“体积之比”改为“截得两个长方体的展开图面积之比是1:2”,则结论如何?(12)某班春游,上午8时从学校出发,先沿平路到山脚下,再爬山到山顶.在山顶停留1个半小时,沿原路回到学校时已是下午3时30分.已知平路每小时行4千米,上山速度是平路速度的34,下山速度是上山速度的2倍.同学们所行的全程是多少?(13)某电子产品去年按定价的80%出售,能获20%的利润.由于今年的买入价低,按同样定价的75%出售,能获25%的利润.求今年买入价与去年买入价之比(买入价×(1+利润率)=卖出价).(14)应用不等式解下列问题:A.高速公路施工需要爆破,根据现场实际情况,操作人员点燃导火索后,要在炸药爆破前跑到400米外的安全区域.已知导火索燃烧速度是1.2厘米/秒,人跑步的速度是5米/秒,问导火索至少需要多长?B.学校因教学需要,准备刻录一批电脑光盘.若到电脑公司刻录,每张需8元;若租用刻录机后自行刻录,每张成本3.5元,但需付刻录机租金150元.试讨论用何种方式费用较节省. (15)假期中父母两人带孩子外出.甲旅行社表示父母和孩子均按原定价七折收费,乙旅行社表示父母全价,孩子只按原定价的三折收费.若两旅行社原价相同,问哪家旅行社更优惠?。
中考数学第一轮总复习教案(33-42课时)

第七章四边形课时33.多边形与平面图形的镶嵌【课前热身】1.(07嘉兴)四边形的内角和等于__________.2.(08黑河)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.3. 内角和为1440°的多边形是.4. 一个正多边形的每一个外角都等于72°,则这个多边形的边数是_________.5.(08山东)只用下列图形不能镶嵌的是()A.三角形 B.四边形C.正五边形D.正六边形6. 若n边形每个内角都等于150°,那么这个n边形是()A.九边形 B.十边形 C.十一边形 D.十二边形7. (08青海)一个多边形内角和是1080,则这个多边形是()A.六边形 B.七边形C.八边形D.九边形【考点链接】1. 四边形有关知识⑴ n边形的内角和为.外角和为.⑵如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.⑶ n边形过每一个顶点的对角线有条,n边形的对角线有条.2. 平面图形的镶嵌⑴当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.⑵只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.3.易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.【典例精析】例1 已知多边形的内角和为其外角和的5倍,求这个多边形的边数.例2 (08杭州)在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.﹡例3请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.【中考演练】1.(08北京)若一个多边形的内角和等于720,则这个多边形的边数是()A.5 B.6 C.7 D.82.(08哈尔滨)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种 B.3种 C.2种 D.1种3. (08威海)如图,在正五边形ABCDE中,连结AC,AD,则∠CAD 的度数是°.4. 下面各角能成为某多边形的内角的和的是()A.430° B.4343° C.4320° D.4360°5.(08凉山)一个多边形的内角和与它的一个外角的和为570,那么这个多边形的边数为()A.5 B.6 C.7 D.8 6.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.7. 求下图中x的值.AB E课时34.平行四边形【课前热身】1.平行四边形ABCD 中,若∠A +∠C =130 o ,则∠D 的度数是 .2.ABCD 中,∠B =30°,AB =4 cm ,BC =8 cm ,则四边形ABCD 的面积是_____. 3.平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 . 4.如图,在平行四边形ABCD 中,DB =DC , ∠C=70°,AE ⊥BD 于E ,则∠DAE = 度. (第4题) 5.平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ) A .1:2:3:4 B. 3:4:4:3 C. 3:3:4:4 D. 3:4:3:46.(08厦门)在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( )A .60D ∠=B .120A ∠=C .180CD ∠+∠= D .180C A ∠+∠=【考点链接】1.平行四边形的性质(1)平行四边形对边______,对角______;角平分线______;邻角______. (2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)(3)平行四边形的面积公式____________________. 2.平行四边形的判定(1)定义法:________________________.(2)边:________________________或_______________________. (3)角:________________________. (4)对角线:________________________.ABCD E【典例精析】例1 (08南京)如图,在ABCD 中,E ,F 为BC 上两点,且BE =CF ,AF =DE .求证:△ABF ≌△DCE ;例2 如图,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m ,其他三条边各长多少?例3 如图,在□ABCD 中,E ,F 分别是CD ,AB 上的点,且DE =BF.求证:AE =CFAB DCE F CABDFE DC BA 【中考演练】1.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直 2.(08贵州)如图,在平行四边形ABCD 中,E 是AB 延 长线上的一点,若60A ∠=,则1∠的度数为( ) A .120 B .60C .45D .303. □ABCD 中,∠A 比∠B 大20°,则∠C 的度数为___ .4.□ABCD 中, AB:BC =1:2,周长为24cm, 则AB =_____cm, AD =_____cm . 5. 如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE=CF, 请你以F 为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可) (1) 连结_________,(2) 猜想______=________. (3) 证明:﹡6. (08西宁)如图,已知:ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠ 的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =.ABECD1 ABC DE FG课时35.矩形、菱形、正方形【课前热身】1. 矩形的两条对角线的一个交角为60 o,两条对角线的长度的和为8cm ,则这个矩形的一条较短边为 cm.2.(08肇庆)边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 .3. 若正方形的一条对角线的长为2cm ,则这个正方形的面积为 . A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 5. (08宁夏)平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB =BC B.AC =BD C.AC ⊥BD D.AB ⊥BD 【考点链接】1. 特殊的平行四边形的之间的关系2. 成为矩形,需增加的条件是_______ _____ ; 要使成为菱形,需增加的条件是_______ _____ ; 要使矩形ABCD 成为正方形,需增加的条件是______ ____ ; 要使菱形ABCD 成为正方形,需增加的条件是______ ____ .3. 【典例精析】例1 如图,菱形的对角线BD ,AC 的长分别是6和8,求菱形的周长积.平行四边形矩形菱形正方形例2 (08乌鲁木齐)如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点. (1)证明四边形EGFH 是平行四边形;(2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.【中考演练】1.(08恩施)已知菱形的两对角线长分别为6cm 和8cm ,则菱形的面积为 cm 2.2.(08白银)如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=, 则AEF ∠=( )A .110°B .115°C .120°D .130°3.(08绍兴)如图,沿虚线EF 将ABCD 剪开, 则得到的四边形是( ) A .梯形 B .平行四边形 C .矩形 D .菱形 4.如图,菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,AE=ED ,ABFE AB CDO D CFB A EBG AEFH DC求∠EBF 的度数. 5.(08湘潭)如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F .(1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.6. 已知:如图,D是⊿ABC 的边BC的中点,DE⊥AC、DF⊥AB,垂足分别是E、F,且BF=CE,求证: (1)⊿ABC 是等腰三角形(2)当∠A=90°时,判断四边形AFDE 是怎样的四边形,证明你的判断结论.﹡7. (08咸宁)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.课时36. 梯 形BDCEFA ABCEF M NO BA CD F【课前热身】1.下列结论正确的是( )A .四边形可以分成平行四边形和梯形两类B .梯形可分为直角梯形和等腰梯形两类C .平行四边形是梯形的特殊形式D .直角梯形和等腰梯形都是梯形的特殊形式 2.等腰梯形ABCD 对角线交于O 点,∠BOC =120°,∠BDC =80°,则∠DAB =__. 3.一梯形是上底为4cm ,过上底的一顶点,作-直线平行于一腰,并与下底相交组成一个三角形,若三角形的周长为12cm ,则梯形的周长是________. 4.在梯形ABCD 中,AD ∥BC ,∠B =50°,∠C =80°,BC =5,AC =3,则CD =____. 5.(08大连)如图,在梯形ABCD 中,AD ∥BC ,E 为BC 上一点,DE ∥AB ,AD 的长为1,BC 的长 为2,则CE 的长为 ________. 【考点链接】1.梯形的面积公式是________________.2.等腰梯形的性质:边 __________________________________.角 __________________________________. 对角线 __________________________________.3. 等腰梯形的判别方法__________________________________. 4. 梯形的中位线长等于__________________________. 【典例精析】例1(08福州)如图,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,求证:MB MC .例2 如图,已知△ABC 中,∠B =∠C ,点D 、E 分别在边AB 、AC 上,且AD =AE ,试说明四边形BCED 是等腰梯形.例3 (08北京)如图,在梯形ABCD 中,AD BC ∥,A BE C DAB AC ⊥,45B ∠=,2AD =,42BC =,求DC 的长.例4 已知,如图,梯形ABCD 中,AD ∥BC ,∠B=60°,∠C=30°,AD=2,BC=8.求梯形两腰AB 、CD 的长.【中考演练】 1.(08盐城)梯形的中位线长为3,高为2,则该梯形的面积为 . 2.四边形ABCD 中,若∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,那么这个四边形 是( )A .梯形B .等腰梯形C .直角梯形D .任意四边形 3.(08黄冈)如图,已知梯形ABCD 中,AD ∥BC ,AB=CD=AD ,AC ,BD 相交 于O 点,∠BCD=60°,则下列说法正确的是( ) A .梯形ABCD 是轴对称图形 B .BC=2AD C .梯形ABCD 是中心对称图形 D .AC 平分∠DCB4.梯形ABCD 中,AB ∥CD ,AB>CD ,CE ∥DA ,交AB 于E ,且△BCE 的周长为7cm ,CD 为3cm ,求梯形ABCD 的周长.5. 如图所示,在梯形ABCD 中,上底AD =1 cm ,下底BC =4cm ,对角线BD ⊥AC , 且BD =3cm ,AC =4cm .求梯形ABCD 的面积.A B C D﹡6.(08山东)在梯形ABCD 中,AB ∥CD ,∠A =90°, AB =2,BC =3,CD =1,E 是AD中点.求证:CE ⊥BE .﹡7.(08重庆)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E . 求证:(1)△BFC ≌△DFC ; (2)AD=DE .第八章 圆A CB DEF E D C B A课时37.圆的有关概念与性质【课前热身】1.(08重庆)如图,AB 是⊙O 的直径,点C 在⊙O 上,则ACB ∠的度数为( )A .30B .45C .60D .902.(08湖州)如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( )A .156B .78C .39D .123.(08梅州)如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( ) A .正方形 B.长方形C .菱形D .以上答案都不对4.(08福州)如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =,3cm OC =,则⊙O 的半径为 cm . 5. (08荆门)如图,半圆的直径AB =___ .【考点链接】1. 圆上各点到圆心的距离都等于 .2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 .4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 .5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 .6. 直径所对的圆周角是 ,90°所对的弦是 .【典例精析】A CB O 第4题 第5题 0 1 2-1-21 A B 第2题 第3题 第1题例1 (08呼伦贝尔)如图:AC ⌒ =CB ⌒ ,D E ,分别是半径OA 和OB 的中点,CD 与CE 的大小有什么关系?为什么?例2 (08济南)已知:如图,30PAC ∠=︒,在射线AC 上顺次截取AD =3cm ,DB =10cm , 以DB 为直径作⊙O 交射线AP 于E 、F 两点,求圆心O 到AP 的距离及EF 的长.【中考演练】① 顶点在圆周上的角是圆周角; ② 圆周角的度数等于圆心角度数的一半; ③ 90的圆周角所对的弦是直径; ④ 不在同一条直线上的三个点确定一个圆; ⑤ 同弧所对的圆周角相等A .①②③B .③④⑤C .①②⑤D .②④⑤2.(08湘潭)兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径 OA =10 m ,高度CD 为_ ____m .3.(08襄樊)如图,⊙O 中OA BC ⊥,25CDA ∠=,则AOB ∠的度数为 .CB OE D A O ADEFPCEAODB4.(08广州)如图,射线AM 交一圆于点B 、C ,射线AN 交该圆于点D 、E ,且BC ⌒ =DE⌒ . (1)求证:AC = AE ;(2)利用尺规作图,分别作线段CE 的垂直平分线与∠MCE 的平分线,两线交于点F (保留作图痕迹,不写作法),求证:EF 平分∠CEN .﹡5. (07德州) 如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 的AB⌒ 上一点,延长DA 至点E ,使CE CD =.(1)求证:AE BD =;(2)若AC BC ⊥,求证:2AD BD CD +=.ABC DEMNBACD第2题第3题课时38.与圆有关的位置关系【课前热身】1.(08湛江)⊙O 的半径为,圆心O 到直线l 的距离为,则直线l 与⊙O 的位置关系是( )A . 相交B . 相切C . 相离D . 无法确定2.(08宁德)如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映 出的两圆位置关系有( ) A .内切、相交 B .外离、相交C .外切、外离D .外离、内切3. (08庆阳)两圆半径分别为3和4,圆心距为7,则这两个圆( )A .外切B .相交C .相离D .内切 4.(08上海)如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=, 8PA =,那么弦AB 的长是( )A .4B .8C .43D .835.(08郴州)已知⊙O 的半径是3,圆心O 到直线AB 的距离是3,则直线AB 与⊙O 的位置 关系是 .【考点链接】1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d r ,②d r ,③d r .2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d r ,②d r ,③d r .3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d 和两圆的半径R 、r (R≥r )之间的数量关系分别为:①d R -r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r.4. 圆的切线 过切点的半径;经过 的一端,并且 这条 的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆53PBAO的圆心叫心,是三角形的交点.7. 与三角形各边都相切的圆叫做三角形的,内切圆的圆心是三角形的交点,叫做三角形的 .【典例精析】例1 (08南平)如图,线段AB经过圆心O,交⊙O于点A C,,点D在⊙O上,连接AD BD,,30A B∠=∠=.BD是⊙O的切线吗?请说明理由.例2 (08湘潭)如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连结AC.(1)若∠CP A=30°,求PC的长;(2)若点P在AB的延长线上运动,∠CP A的平分线交AC于点M. 你认为∠CMP 的大小是否发生变化?若变化,请说明理由;若不变化,求∠CMP的大小.例3 (08恩施)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC BD=,连结AC,过点D作DE AC⊥,垂足为E.(1)求证:AB AC=;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,60BAC∠=,求DE的长.OAECD BMPOCBA【中考演练】1.(08长沙)如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO等于( )A .54B .53 C .34 D .432.(08赤峰) 如图,⊙O 1,⊙O 2,⊙O 3两两相外切,⊙O 1的半径11r =,⊙O 2的半径22r =,⊙O 3的半径33r =,则123O O O △是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形3.(08自贡)如图,⊙O 是△ABC 的外接圆,⊙O 的半径R =2,sin B =43,则弦AC 的长为 .4.(08云南)已知,⊙的半径为5,⊙的半径为9,且⊙与⊙相切,则这两圆的圆心距为___________.5. (08泰安)如图所示,ABC △是直角三角形,90ABC ∠=,以AB 为直径的⊙O 交AC 于点E ,点D 是BC 边的中点,连结DE . (1)求证:DE 与⊙O 相切;(2)若⊙O 的半径为3,3DE =,求AE .﹡6. (08威海)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0). (1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?1O 2O 1O 2O P O A· O 2O 3O 1B DC EA OA B NM课时39.与圆有关的计算【课前热身】1. (08安徽)如图,在⊙O 中,60AOB ∠=,3cm AB =, 则劣弧AB⌒ 的长 为 cm .2. (08宜昌)翔宇学中的铅球场如图所示,已知扇形AOB 的面积是36米2,AB⌒ 的 长度为9米,那么半径OA = 米.3.(07苏州)如图,已知扇形的半径为3cm ,圆心角为120°,则扇形的面积为__________ 2cm .(结果保留)4.(07常州)已知扇形的半径为2cm ,面积是243cm π,则扇形的弧长是 cm , 扇形的圆心角为 °.5. (08潍坊)如图,正六边形内接于圆O ,圆O 的半径为10,则圆中阴影部分的面积为 .【考点链接】1. 圆的周长为 ,1°的圆心角所对的弧长为 ,n °的圆心角所对 的弧长为 ,弧长公式为 .2. 圆的面积为 ,1°的圆心角所在的扇形面积为 ,n °的圆心角所在的扇形面积为S= = = .3. 圆柱的侧面积公式:S=2rl π.(其中为 的半径,为 的高)4. 圆锥的侧面积公式:S=rl π.(其中为 的半径,为 的长)π2R π⨯r l r l 第1题 A BO 第3题 O第5题 第2题【典例精析】例1 (08金华)如图,CD 切⊙O 于点D ,连结OC ,交⊙O 于点B ,过点B 作弦AB ⊥OD ,点E 为垂足,已知⊙O 的半径为10,si n ∠COD=54.(1)求弦AB 的长;(2)CD 的长;(3)劣弧AB 的长.(结果保留三个有效数字,sin53.130.8≈,π≈3.142)例2 (08南昌)如图,AB 为⊙O 的直径,CD AB ⊥于点E ,交⊙O 于点D ,OF AC ⊥于点F .(1)请写出三条与BC 有关的正确结论;(2)当30D ∠=,1BC =时,求圆中阴影部分的面积.例3 (08庆阳)如图,线段AB 与⊙O 相切于点C ,连结OA 、OB ,OB 交⊙O 于点D ,已知6cm OA OB ==,63cm AB =. 求(1)⊙O 的半径; (2)图中阴影部分的面积.CBAO F DE【中考演练】1. (08孝感)Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆⊙A ,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( )A .254π B .258πC .2516π D .2532π 2. (08厦门)如图,在矩形空地上铺4块扇形草地.若扇形的半径均为r 米,圆心角均为90,则铺上的草地共有 平方米.3.(08贵阳)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =,5BC =.(1)求sin BAC ∠的值;(2)如果OD AC ⊥,垂足为D ,求AD 的长;(3)求图中阴影部分的面积(精确到0.1).﹡﹡4.(07贵阳)如图,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形. (1)求这个扇形的面积(结果保留π); (2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由. (3)当⊙O 的半径(0)R R >为任意值时,(2)中的结论是否仍然成立?请说明理由.A B C D OA B C① ②第九章 图形与变换课时40.视图与投影【课前热身】1.(08福州)如图所示的物体是一个几何体,其主视图是( )2. (08深圳) 如图,圆柱的左视图是( )3.(08贵阳)在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能...是( )4.(08长沙)如图是每个面上都有一个汉字的正方体 的一种展开图,那么在正方体的表面,与“迎”相 对的面上的汉字是( )A.文B.明C.奥D.运5. (08哈尔滨)右图是某一几何体的三视图,则这个几何体是( )A .圆柱体B .圆锥体C .正方体D .球体【考点链接】1. 从 观察物体时,看到的图叫做主视图 ;从 观 察物体时,看到的图叫做左视图 ;从 观察物体时,看到的图叫做俯视图.讲 文 明 迎 奥运A .B .C .D . A. B. C. D.A.B.C.D.2.主视图与俯视图的 一致;主视图与左视图的 一致;俯视图与左视图的 一致.3. 叫盲区.4. 投影可分为平行投影与中心投影.其中 所形成的投影叫平行投影; 所形成的投影叫中心投影.5. 利用光线是否平行或是否交于一点来判断是 投影或 投影,以及光源的位置和物体阴影的位置.【典例精析】例1 (08襄樊)如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个例2 (08兰州)(1)一木杆按如图1所示的方式直立在地面上,请在图中画出它在阳光下的影子(用线段CD 表示); (2)图2是两根标杆及它们在灯光下的影子.请在图中画出光源的位置(用点P 表示),并在图中画出人在此光源下的影子.(用线段EF 表示).【中考演练】1. (08庆阳)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小 .(填 “相同”、“不一定相同”、“不相同”之一).2.(08苏州)如图,水平放置的长方体 的底面是边长 为2和4的矩形,它的左视图的面积为6,则长方体的 体积等于 .3.(08威海)下图的几何体是由三个同样大小的立方体搭成的,其左视图为 ( )太阳光线木杆 图1 图2 A B424. (08巴中)在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的铅笔盒送给灾区儿童.这个铅笔盒(右图)的左视图是( )A .B .C .D . 5. (08西宁)将图所示的Rt ABC △绕直角边AB 旋转一周,所得几何体的主视图为( )6. (08青海)若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )A .6桶B .7桶C .8桶D .9桶7. (08乌兰察布)六个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A .正视图的面积最大 B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大 8. (08连云港)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( )A .球B .圆柱C .圆锥D .棱锥 9.(08盐城)下列四个几何体中,主视图、左视图、俯视图完全相同的是( )主视图左视图俯视图A .B .C .D .A .B .C .D . AB CA .圆锥B .球C .圆柱D .三棱柱课时41.轴对称与中心对称【课前热身】1. (08芜湖)下列几何图形中,一定是轴对称图形的有 ( ).A. 2个B. 3个C. 4个D. 5个 2. (08庆阳)下面四张扑克牌中,图案属于中心对称的是图中的( )3.(08南平)下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰梯形 B .平行四边形 C .正三角形 D .矩形4.(08白银)如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④【考点链接】1. 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是,这条直线就是它的 .2. 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就A.. B.. C.. D.. ② ③ ④是 .3. 如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .4. 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .5. 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .6. 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.7. 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 .【典例精析】例1 (08温州)如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上. (1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.例2 (07苏州)如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .A B C A B CA B C例3 (08徐州)下列图形中,是轴对称图形但不是中心对称图形的是( ) A .正三角形 B .菱形 C .直角梯形 D .正六边形【中考演练】1. (08绍兴)下列各图中,为轴对称图形的是( )2. (08自贡)如图是一个中心对称图形,A 为对称中心,若∠C = 90°, ∠B = 30°,BC =1,则BB 的长为( ) A .4 B .33 C .332 D .334 3. (08包头)如图是奥运会会旗杆标志图案,它由五个半径相同的圆组成,象 征着五大洲体育健儿团结拼搏,那么 这个图案( )A .是轴对称图形B .是中心对称图形C .不是对称图形D .既是轴对称图形又是中心对称图形 4. (08怀化)小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是 ( )A. B. C. D.5. (08广州)若将图2中的每个字母都看成独立的图案,则这七个图案中是中心对称图形的有( )A.1个B.2个C.3个D.4个6. (08乌兰察布)下列图形中既是轴对称图形又是中心对称图形的是( )30°ACB A . B .C .D .A .B .C .D .课时42.平移与旋转【课前热身】1. (08长春)下列四个图案中,可能通过右图平移得到的是( )2. (08广州)将左图所示的图案按顺时针方向旋转90°后可以得到的图案是( )3. (08无锡)如图,OAB △绕点O 逆时针旋转80到OCD △的位置,已知45AOB ∠=,则AOD ∠等于( )A.55 B.45 C.40 D.354. (08广州) 将线段AB 平移1cm ,得到线段A B '',则对应点A 与A '的距离为 cm .【考点链接】1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为______,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应 ,图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角.4. 图形的旋转由 、 和 所决定.其中①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针. ③旋转A .B .C .D . A. B. C. D.一般小于360º.5.旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .【典例精析】例1 (08长沙)在下面的格点图中,每个小正方形的边长均为1个单位,请按下列要求画出图形:(1)画出图①中阴影部分关于O 点的中心对称图形; (2)画出图②中阴影部分向右平移9个单位后的图形; (3)画出图③中阴影部分关于直线AB 的轴对称图形.(图①)(图②)(图③)例2 (08绵阳)如图是由若干个边长为1的小正方形组成的网格,在图中作出 将五角星ABCDE 向其东北方向平移32个单位的图形.【中考演练】1. (08宜昌)如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时 针方向转动一个角度到A 1BC 1的位置, 使得点A ,B ,C 1在同一条直线上,那么 这个角度等于( ) A .120° B .90° C .60° D .30° 2. (07遵义)如图所示是重叠的两个直角 三角形.将其中一个直角三角形沿BC 方B ACDE(第9题)C 1A 1A C向平移得到DEF △.如果8cm AB =,4cm BE =,3cm DH =,则图中阴影部分面积为2cm .3. (08哈尔滨)△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向右平移6个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;并写出点C 1的坐标;(2)将△ABC 绕原点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.4. (08 金华)在平面直角坐标系中,ΔABC 的三个顶点的位置如图所示, 点A ′的坐标是(一2,2) ,现将△ABC 平移.使点A 变换为点A ′, 点B ′、C ′分别是B 、C的对应点. (1) 请画出平移后的像///A B C ∆ (不写画法) ,并直接写出点/B 、/C 的坐标: /B ( )、/C ( ) .(2) 若ΔABC 内部一点P 的坐标为(a ,b ),则点P 的对应点/P 的坐标是 .﹡5.(08枣庄)把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1 E 1 相交于点F .(甲) ACE DB B(乙) AE 1C D 1OF第31页 共31页 (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1 C E 1 绕着点C 顺时针再旋转30°得△D 2 C E 2 ,这时点B 在△D 2 C E 2的内部、外部、还是边上?说明理由.。
2009年中考数学第一轮复习资料1

2009中考数学第一轮复习资料第一章实数课时1.实数的有关概念课时2.实数的运算与大小比较第二章代数式课时3.整式及运算课时4.因式分解课时5.分式课时6.二次根式方程(组)与不等式课时7.一元一次方程及其应用课时8.二元一次方程及其应用课时9.一元二次方程及其应用课时10.一元二次方程根的判别式及根与系数的关系课时11.分式方程及其应用课时12.一元一次不等式(组)课时13.一元一次不等式(组)及其应用第四章函数课时14.平面直角坐标系与函数的概念课时15.一次函数课时16.一次函数的应用课时17.反比例函数课时18.二次函数及其图像课时19.二次函数的应用课时20.函数的综合应用(1)课时21.函数的综合应用(2)第五章统计与概率课时22.数据的收集与整理(统计1)课时23.数据的分析(统计2)课时24.概率的简要计算(概率1)课时25.频率与概率(概率2)第六章三角形课时26.几何初步及平行线、相交线课时27.三角形的有关概念课时28.等腰三角形与直角三角形课时29.全等三角形课时30.相似三角形课时31.锐角三角函数课时32.解直角三角形及其应用第七章四边形课时33.多边形与平面图形的镶嵌课时34.平行四边形课时35.矩形、菱形、正方形课时36.梯形第八章圆课时37.圆的有关概念与性质课时38.与圆有关的位置关系课时39.与圆有关的计算第九章图形与变换课时40.视图与投影课时41.轴对称与中心对称课时42.平移与旋转第一章 实数课时1.实数的有关概念【课前热身】1.(08重庆)2的倒数是 .2.(08白银)若向南走2m 记作2m -,则向北走3m 记作 m .3.(08的相反数是 . 4.(08南京)3-的绝对值是( )A .3-B .3C .13-D .135.(08宜昌)随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-8【考点链接】 1.有理数的意义⑴ 数轴的三要素为 、 和 . 数轴上的点与 构成一一对应. ⑵ 实数a 的相反数为________. 若a ,b 互为相反数,则b a += . ⑶ 非零实数a 的倒数为______. 若a ,b 互为倒数,则ab = .⑷ 绝对值⎪⎩⎪⎨⎧<=>=)0( )0( )0( a a a a . ⑸ 科学记数法:把一个数表示成 的形式,其中1≤a <10的数,n 是整数.⑹ 一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字. 2.数的开方⑴ 任何正数a 都有______个平方根,它们互为________.其中正的平方根a 叫 _______________. 没有平方根,0的算术平方根为______. ⑵ 任何一个实数a 都有立方根,记为 . ⑶=2a ⎩⎨⎧<≥=)0( )0( a a a .3. 实数的分类 和 统称实数. 4.易错知识辨析(1)近似数、有效数字 如0.030是2个有效数字(3,0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(2)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-. (3)在已知中,以非负数a 2、|a|、 a (a≥0)之和为零作为条件,解决有关问题. 【典例精析】 例1 在“()05,3.14 ,()33,()23-,cos 600 sin 450 ”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个例2 ⑴(06成都)2--的倒数是( )A .2 B.12C.12-D.-2 ⑵(08芜湖)若23(2)0m n -++=,则2m n +的值为( ) A .4- B .1- C .0 D .4 ⑶(07扬州)如图,数轴上点P 表示的数可能是( )B. C. 3.2-D.例3 下列说法正确的是( )A .近似数3.9×103精确到十分位B .按科学计数法表示的数8.04×105其原数是80400C .把数50430保留2个有效数字得5.0×104.D .用四舍五入得到的近似数8.1780精确到0.001【中考演练】1.(08常州)-3的相反数是______,-12的绝对值是_____,2-1=______,2008(1)-= . 2. 某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件 .(填“合格” 或“不合格”) 3. 下列各数中:-3,0,0.31,227,2π,2.161 161 161…, (-2 005)0是无理数的是___________________________.4.(08湘潭)全世界人民踊跃为四川汶川灾区人民捐款,到6月3日止各地共捐款约423.64亿元,用科学记数法表示捐款数约为__________元.(保留两个有效数字) 5.(06北京)若0)1(32=++-n m ,则m n +的值为 . 6. 2.40万精确到__________位,有效数字有__________个. 7.(06泸州)51-的倒数是 ( ) A .51- B .51 C .5- D .58.(06荆门)点A 在数轴上表示+2,从A 点沿数轴向左平移3个单位到点B ,则点B 所表示的实数是( ) A .3 B .-1 C .5 D .-1或3 9.(08扬州)如果□+2=0,那么“□”内应填的实数是( )A .21 B .21- C .21± D .2 10.(08梅州)下列各组数中,互为相反数的是( )A .2和21 B .-2和-21C .-2和|-2|D .2和21 11.(08无锡)16的算术平方根是( )A.4B.-4C.±4D.1612.(08郴州)实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD .不能判断13.若x 的相反数是3,│y│=5,则x +y 的值为( )A .-8B .2C .8或-2D .-8或2 14.(08湘潭) 如图,数轴上A 、B 两点所表示的两数的( ) A. 和为正数 B. 和为负数 C. 积为正数 D. 积为负数课时2. 实数的运算与大小比较【课前热身】1.(08大连)某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温高__________°C .2.(07晋江)计算:=-13_______.3.(07贵阳)比较大小:2- 3.(填“>,<或=”符号)4. 计算23-的结果是( )A. -9B. 9C.-6D.6 5.(08巴中)下列各式正确的是( )A .33--=B .326-=- C .(3)3--=D .0(π2)0-=6.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!【考点链接】1. 数的乘方 =na ,其中a 叫做 ,n 叫做 . 2. =0a (其中a 0 且a 是 )=-pa(其中a 0)3. 实数运算 先算 ,再算 ,最后算 ;如果有括号,先算 里面的,同一级运算按照从 到 的顺序依次进行.4. 实数大小的比较⑴ 数轴上两个点表示的数, 的点表示的数总比 的点表示的数大. ⑵ 正数 0,负数 0,正数 负数;两个负数比较大小,绝对值大的 绝对值小的. 5.易错知识辨析在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误. 如5÷51×5. 【典例精析】 例1 计算:⑴(08龙岩)20080+|-1|-3cos30°+ (21)3;⑵ 22(2)2sin 60--+ .例2 计算:1301()20.1252009|1|2--⨯++-.﹡例3 已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求2||4321a b m cd m ++-+的值.【中考演练】1. (07盐城)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 . 2. 比较大小:73_____1010--. 3.(08江西)计算(-2)2-(-2) 3的结果是( A. -4 B. 2 C. 4 4. (08宁夏)下列各式运算正确的是( )A .2-1=-21B .23=6C .22·23=26D .(23)2=26 5. -2,3,-4,-5,6这五个数中,任取两个数相乘,得的积最大的是( ) A. 10 B .20 C .-30 D .18 6. 计算:⑴(08南宁)4245tan 21)1(10+-︒+--;⑵(08年郴州)201(2sin 3032--+︒+-;⑶ (08东莞) 01)2008(260cos π-++-.﹡7. 有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n (n 是正整数)来表示.有规律排列的一列数:12345678----,,,,,,,,… (1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2006是不是这列数中的数?如果是,是第几个数?﹡8.有一种“二十四点”的游戏,其游戏规则是:任取1至13之间的自然数四个,将这个四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于2 4.例如:对1,2,3,4,可作运算:(1+2+3)×4=24.(注意上述运算与4 ×(2+3+1)应视作相同方法的运算.现“超级英雄”栏目中有下列问题:四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24, (1)_______________________,(2)_______________________, (3)_______________________.另有四个数3,-5,7,-13,可通过运算式(4)_____________________ ,使其结果等于24.第二章 代数式课时3.整式及其运算【课前热身】 1. 31-x 2y 的系数是 ,次数是 . 2.(08遵义)计算:2(2)a a -÷= . 3.(08双柏)下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 4. (08湖州)计算23()x x - 所得的结果是( )A .5xB .5x -C .6xD .6x -5. a ,b 两数的平方和用代数式表示为( )A.22a b + B.2()a b + C.2a b + D.2a b +6.某工厂一月份产值为a 万元,二月份比一月份增长5%,则二月份产值为( )A.)1(+a ·5%万元B. 5%a 万元C.(1+5%) a 万元D.(1+5%)2a【考点链接】1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把 或表示 连接而成的式子叫做代数式.2. 代数式的值:用 代替代数式里的字母,按照代数式里的运算关系,计算后所得的 叫做代数式的值. 3. 整式(1)单项式:由数与字母的 组成的代数式叫做单项式(单独一个数或 也是单项式).单项式中的 叫做这个单项式的系数;单项式中的所有字母的 叫做这个单项式的次数.(2) 多项式:几个单项式的 叫做多项式.在多项式中,每个单项式叫 做多项式的 ,其中次数最高的项的 叫做这个多项式的次数.不含字母的项叫做 . (3) 整式: 与 统称整式.4. 同类项:在一个多项式中,所含 相同并且相同字母的 也分别相等的项叫做同类项. 合并同类项的法则是 ___. 5. 幂的运算性质: a m ·a n = ; (a m )n = ; a m ÷a n =_____; (ab)n = . 6. 乘法公式:(1) =++))((d c b a ; (2)(a +b )(a -b)= ;(3) (a +b)2= ;(4)(a -b)2= . 7. 整式的除法⑴ 单项式除以单项式的法则:把 、 分别相除后,作为商的因式;对于只在被除武里含有的字母,则连同它的指数一起作为商的一个因式.⑵ 多项式除以单项式的法则:先把这个多项式的每一项分别除以 ,再把所得的商 . 【典例精析】例1 (08乌鲁木齐)若0a >且2xa =,3ya =,则x ya-的值为( )A .1-B .1C .23D .32例2 (06 广东)按下列程序计算,把答案写在表格内:⑴ 填写表格:⑵ 请将题中计算程序用代数式表达出来,并给予化简.例3 先化简,再求值:(1) (08江西)x (x +2)-(x +1)(x -1),其中x =-21; (2) 22(3)(2)(2)2x x x x +++--,其中13x =-.【中考演练】 1. 计算(-3a 3)2÷a 2的结果是( )A. -9a 4B. 6a 4C. 9a 2D. 9a 42.(06泉州)下列运算中,结果正确的是( )A.633·x x x =B.422523x x x =+C.532)(x x = D .222()x y x y +=+ ﹡3.(08枣庄)已知代数式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D .7 4. 若3223mnx y x y -与 是同类项,则m + n =____________.5.观察下面的单项式:x ,-2x ,4x 3,-8x 4,…….根据你发现的规律,写出第7个式子是 . 6. 先化简,再求值:⑴ 3(2)(2)()a b ab ab ab -++÷-,其中a =,1b =-;⑵ )(2)(2y x y y x -+- ,其中2,1==y x .﹡7.(08巴中)大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则5()a b += .课时4.因式分解【课前热身】1.(06 温州)若x -y =3,则2x -2y = .2.(08茂名)分解因式:3x 2-27= .3.若 , ),4)(3(2==-+=++b a x x b ax x 则. 4. 简便计算:2200820092008-⨯ = . 5. (08东莞) 下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a【考点链接】1. 因式分解:就是把一个多项式化为几个整式的 的形式.分解因式要进行到每一个因式都不能再分解为止.2. 因式分解的方法:⑴ ,⑵ ,⑶ ,⑷ .3. 提公因式法:=++mc mb ma __________ _________.4. 公式法: ⑴ =-22b a ⑵ =++222b ab a , ⑶=+-222b ab a .5. 十字相乘法:()=+++pq x q p x 2 .6.因式分解的一般步骤:一“提”(取公因式),二“用”(公式). 7.易错知识辨析(1)注意因式分解与整式乘法的区别;(2)完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式. 【典例精析】 例1 分解因式:⑴(08聊城)33222ax y axy ax y +-=__________________.1 1 1 12 1 13 3 1 14 6 4 1 ....................................... ⅠⅡ 1222332234432234()()2()33()464a b a ba b a ab b a b a a b ab b a b a a b a b ab b +=++=+++=++++=++++⑵(08宜宾)3y 2-27=___________________. ⑶(08福州)244x x ++=_________________. ⑷ (08宁波) 221218x x -+= . 例2 已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【中考演练】1.简便计算:=2271.229.7-.2.分解因式:=-x x 422____________________. 3.分解因式:=-942x ____________________. 4.分解因式:=+-442x x ____________________. 5.(08凉山)分解因式2232ab a b a -+= . 6.(08泰安)将3214x x x +-分解因式的结果是 . 7.(08中山)分解因式am an bm bn +++=_____ _____; 8.(08安徽) 下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 2 9.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x x D .c b a x c bx ax ++=++)(﹡10. 如图所示,边长为,a b 的矩形,它的周长为14,面积为10,求22a b ab +的值.11.计算: (1)299;(2)2222211111(1)(1)(1)(1)(1)234910----- . ﹡12.已知a 、b 、c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状.阅读下面解题过程:解:由224224c a b c b a +=+得: 222244c b c a b a -=- ① ()()()2222222b a c b aba -=-+ ②即222c b a =+ ③∴△ABC 为Rt △。
中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
2009中考数学复习计划

2009中考数学复习计划初三毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面就结合我校初三数学总复习教学,谈谈我对本届初三毕业班的复习意见,请各位同行批评指正。
按计划,我们将中考数学总复习分为三个阶段进行:第一阶段进行基础知识复习,复习时面向全体学生,注重大面积的提高,时间安排在二月至四月中旬;第二阶段进行专题复习,重数学能力的提高,面向中等及以上学生,时间安排在四月下旬至五月中旬;第三阶段进行中考模拟训练,重考试技巧、查漏补缺、提升学生自信心等,时间安排在五月下旬至六月初。
一、第一阶段复习:基础知识复习、重大面积提高1、第一阶段复习的形式第一阶段复习的重点是基础知识复习,跑一遍教材,把知识形成体系,这一阶段复习要过“三关”:(1)过记忆、理解关。
一些概念、公式、定理等必须准确记忆并理解。
学生对这些知识是“信则有,不信则无”,如在判断一些式子或图形哪些表示函数时,有的学生头脑中本没有函数的概念,那么他们就不可能作出准确的判断。
但是不要死记硬背,要善于理解记忆,并注意数形结合思想的运用。
如:二次函数的图形及性质(2)过基本方法关。
要求学生掌握解决问题的基本方法或步骤。
如,待定系数法求一次函数解析式时,我用“设、代、解、回”四个字教给学生基本方法,相应的,求反比例函数和二次函数的解析式也可这样进行。
(3)过基本技能关。
要解决一个题,只有找到了它的解题方法,也就是知道了用什么办法,才能说具备了解这个题的技能。
当然,还有一些是需要动手操作的技能。
如:基本的尺规作图等。
在这一阶段的复习中要注意使知识系统化,练习专题化,专题规律化。
教学中要把书中的内容进行归纳整理、组块,使之形成系统。
复习时按“数与代数”、“空间与图形”、“统计与概率”三大块形成知识网络进行。
2、第一阶段复习应该注意的几个问题(1)必须扎扎实实地夯实基础。
今年中考试题结构与去年基本接近,“数与式”约占50%,“空间与图形”约占30%,“概率与统计”约占20%,基础分约占100分,整体难度略高于去年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC 的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)A BCBADB CE(第3题)abc1 2 (第2题)(第4题)图ABD ab70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .3.(08河南) 如图, 已知直线 25,115,//=∠=∠A C CD AB , 则=∠E ( ) A. 70B. 80C. 90D.10021DCBAl 2l1( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.BCABCD EA BC5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC △中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题)3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060AE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.4321D CB A例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.ADCBEAB CD E例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C =13∠B ,则∠A = ,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°, 求∠DAC ,∠BOA 的度数.EDCBA课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD.•则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.P D C BA2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)课时29.全等三角形【课前热身】1.如图1所示,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=____. A O B东北A(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:(1)△AEF≌△BCD;(2)EF∥CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45 D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)A B P OCB ACAO E ABD C D﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A .AD AE AB AC = B .AE ADBC BD = C .DE AE BC AB = D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】C B ODA E一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形.二、相似三角形的判定方法1. 若DE∥BC(A型和X型)则______________.2. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=________,CD2=_______,BC2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________.三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC和△DEF中,已知∠A=∠D,AB=4,AC=3,DE=1,当DF等于多少时,这两个三角形相似.例2 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,•要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,•这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在Rt ABC ∆中, C ∠为直角, AB CD ⊥于点D ,5,3==AB BC , 写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,AD DB =12,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cm4. (08无锡) 如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试证明ABF EAD △∽△.C课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A.3 C .45D 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21 B .22 C .23 D .1 3.如图,在平面直角坐标系中,已知点A (3,0)点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .α abc例2 计算:4sin3060︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( )A B .23 C .34 D2.若3cos 4A =,则下列结论正确的为( ) A . 0°< ∠A < 30° B .30°< ∠A < 45° C . 45°< ∠A < 60° D .60°< ∠A < 90°3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则t a n A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 .5. 已知3tan 0 A =∠A =则 .6.△ABC 中,若(sinA -12)2+-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC •是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D正好落在AB 边上,求 tan ∠AFE .课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题)_E _A _F _D _ C _B _ O _H _ G FA BCDE2. 某坡面的坡度为1_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________.3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______. cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.O A B C例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m ,则旗杆高度约为_______.(取1.73=,结果精确到0.1m ) 3.(07云南)已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6.求BC 的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。