循环水结垢原理及处理方
循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀!腐蚀发生原因:金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。
最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。
a.铁材质与水中氧气作用而腐蚀,其反应如下:氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。
点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。
b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。
沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。
图 : pitting 会导致设备快速破损c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。
双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。
双金属腐蚀d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。
!腐蚀控制方法:腐蚀之控制不外是改变系统金属材质,就是改变系统环境。
改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。
然改变系统环境是目前广泛被用到控制腐蚀的方法。
在水系统内,有三种方式改变水中环境来有效抑制腐蚀;用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。
利用化学或机械方法将溶存于水中之氧气去除。
加入腐蚀抑制剂 。
如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。
循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。
所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。
1.结垢和腐蚀产生的机理和原因结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。
接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。
1.1补充水由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。
如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。
此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。
1.2温度导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。
并且,在溶解的时候,假如溶解度相对较小,温度较高的话,容易导致结垢现象的产生。
此外,由于温度的不断提升,结垢也会有相应的变化,时间一长就会导致腐蚀现象的产生,影响工业循环水管道运行的稳定性,工业生产效率就会下降。
循环水结垢原因以及解决方法

轻雨环保专注物理除垢,20余年销售、研发、生产经验。
循环水结垢原因以及解决方法
以下是关于循环水结垢原因以及解决方法的百度经验:
一、循环水结垢原因
1.水质:水中的杂质、硬度和碱度等因素会影响水垢的生成。
2.循环水系统的水流速度:如果水流速度过小,污染物质容易在管道壁上沉积从而形成结垢。
3.循环水系统的温度:水温越高,产生水垢的可能性越大。
4.其他因素:如系统内水垢过多、水质不稳定、管道通风不良等因素都会导致水垢的形成。
二、循环水结垢解决方法
1.使用化学方法清除水垢:该方法通过添加特定的化学药剂来清除循环水系统中的水垢。
2.机械清洗:该方法利用机械设备对管道和设备内部进行彻底清洗,去除污垢和沉积物。
3.超声波清洗:超声波会使水中的杂质共振,撞击管道壁和设备表面,从而清除水垢。
4.电子除垢:采用电磁波技术,将管道内部和设备表面的水垢震动松动,使其脱落并流出。
以上是几种解决循环水结垢的方法,其中,电子除垢是比较先进和便捷的一种处理方式。
轻雨环保电子除垢仪作为其中的一种,采用扫频电磁除垢技术,能够快速有效地清除管道内部的水垢和沉积物,同时有效地阻止管道中水垢的形成,提高了循环水系统的运行效率和设备的使用寿命。
无论采取何种解决方法,都需要在循环水系统的管理和维护方面加强措施,定期检查和清洗系统,及时排除故障和污垢,以确保循环水系统的正常运行。
轻雨环保专注物理除垢,20余年销售、研发、生产经验。
循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施1.水中硬度高:水中含有大量以碳酸钙和碳酸镁为主的硬度成分,当水循环过程中温度升高后,硬度成分就会析出形成垢。
处理措施:使用软水,通过水处理设备如软化器或反渗透系统来减少水中的硬度成分。
2.水中含有有机物:循环冷却水中含有有机物,这些有机物在温度变化条件下会发生化学反应,生成沉淀物。
处理措施:使用适当的水处理试剂来稳定有机物,并保持水体的清洁。
3.循环冷却水中含有微生物:水中的微生物如藻类、细菌和真菌会在换热器内壁形成生物膜,进而导致结垢。
处理措施:使用杀菌剂来抑制微生物的生长,定期清洗换热器。
4.放热水性质变化:放热水循环过程中,温度升高,水中盐类溶解度增加,导致结垢。
处理措施:控制水质中的含盐量,定期检测水质。
1.氧腐蚀:水中含有氧气,当水接触金属表面时,氧气可以与金属发生氧化反应,导致金属腐蚀。
处理措施:使用氧化剂来控制水中的氧含量,或者使用缓蚀剂来形成保护膜。
2.酸腐蚀:循环冷却水中可能含有酸性物质,如硫酸、盐酸等,这些酸性物质会导致金属腐蚀。
处理措施:控制水质的酸性物质含量,使用缓蚀剂来形成保护膜。
3.碱腐蚀:循环冷却水中可能含有碱性物质,如氢氧化钠、氢氧化钙等,这些碱性物质会导致金属腐蚀。
处理措施:控制水质的碱性物质含量,使用缓蚀剂来形成保护膜。
4.废气腐蚀:有些工业过程中会产生含有腐蚀性气体的废气,这些废气经过冷却后溶解在水中,导致金属腐蚀。
处理措施:使用除气设备来除去废气中的腐蚀性气体,使用缓蚀剂来形成保护膜。
对于循环冷却水换热器结垢和腐蚀问题的处理措施主要有以下几点:1.定期检测和监测换热器水质,包括PH值、硬度、溶解氧等指标,并根据结果采取相应措施。
2.定期清洗换热器内部,使用适当的清洗剂和工艺来去除结垢和沉积物。
3.定期对换热器进行维护和检修,包括清洗管道、更换损坏的部件等。
4.使用适当的水处理设备,如软化器、反渗透系统等来处理水质。
关于水垢的形成及处理

关于杀菌釜及其管道水垢的形成及其处理我们厂出现的水垢主要是在杀菌工序,杀菌锅内壁、罐体外侧、塑料垫板以及管道内壁,水垢的外观一般是白色粉末状的均匀覆盖在产品罐体外面;杀菌锅内壁也有时会出现白色或者淡黄色;塑料垫板上出现黄色的水垢多并且用稀盐酸清洗效果不好。
出现在循环冷却水系统中,水垢大部分是由碳酸盐、硫酸盐、硅酸盐以及含铁离子的盐类(呈现黄色),这些盐类的溶解度很小,并且大部分的盐类会随着温度以及pH的升高溶解度降低,也就是说当水中的离子含量高了低温时无异常,当瞬间高温时水中的离子化合物会马上析出附着在高温物体的表面,这也说明了为什么水的硬度不大的情形下(硬度小于100mg/L)还会在罐体上出现水垢,因为我们产品在降温时的温度在120℃,循环水温度在30℃,当水喷在罐子上表面的水瞬间蒸发其中的盐类析出附着在罐子上,并且经过罐子表面的循环水温度会升很高又造成了其中盐类的过饱和析出(也会以结晶的情况以罐子上的水垢为晶母继续生长),但是这些盐类的溶解速度很慢即使再冲过大量的冷水也很难再次溶解。
水垢因组成的成分的不同其外观也不相同,一般片状的结垢大多是由碳酸盐构成,粉状的结垢是由硫酸盐构成,当混入铁的氧化物时出现黄色结垢。
为了避免水垢的出现我认为可以在循环水中加入少量的阻垢剂,阻垢剂是指具有能分散水中的难溶性无机盐、阻止或干扰难溶性无机盐在金属表面的沉淀、结垢功能,并维持金属设备有良好的传热效果
的一类药剂。
一般在循环水中加阻垢剂主要作用是破坏晶格的形成,简单说即使结垢也不要形成薄膜附着在罐体表面。
一般用于循环水的阻垢剂是有机磷阻垢剂加分散剂建议配方:氨基三甲叉膦酸 ATMP、羟基乙叉二膦酸HEDP、水解聚马来酸酐 HPMA按照比例1:1:1的比例混合,添加量80---100PPM。
具体看效果。
循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法一、循环冷却水系统为什么会结垢1.一般解释冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。
如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:Ca(HCO3)2→CaCO3↓+ H2O + CO2↑当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32-难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。
方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。
2.碳酸钙的溶解沉淀平衡。
碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。
所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固)在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。
若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。
若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。
注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP二、抑制为结垢的方法(一)化学方法1.加酸:目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小,效果比较明显缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.2.软化目的:降低水中至垢阳离子的含量优点:防止结垢效果好缺点:操作复杂、软化后水腐蚀性增强.3.加阻垢剂:目的:使碳酸钙的过饱和溶液保持稳定。
采暖循环水系统除垢解决方案

地暖供暖因为有很多优势所以被现代建筑广泛采用。
然而用户家里现在的室内温度明显比以前室内温度有所下降。
一、采暖循环水系统存在的问题采暖循环水系统存在的主要问题是换热设备的结垢影响换热效率;系统管网的腐蚀以及腐蚀造成的水质二次污染,管网末端散热器铁锈沉积、堵塞,影响散热的问题。
由于采暖循环水在经过换热设备时温度上升,会析出大量水垢,这些水垢会紧贴在换热设备内表面,影响换热效率。
另外,采暖循环水在封闭的系统中运行,运行温度为95℃~75℃。
由于系统长期在高温环境下运行,系统管网、设备腐蚀情况比较严重。
造成系统中杂质不断增多,水的色度、浊度不断提高。
如果系统中配备的过滤装置不尽合理,将无法取出悬浮于水中的铁锈等杂质。
随着系统的运行,水质中的杂质就会在水流速度较慢的散热器等末端装置内沉积下来,导致管网堵塞。
使系统运行工况恶化。
这就是采暖系统存在的主要问题。
二、采暖循环水系统除垢解决方案1、通常的水处理方案A、采用软化的方式。
目前在采暖循环水系统的水处理中,通常采用软化水方式,即在补水系统安装钠离子交换器,将水质软化后注入循环系统。
但软化水只能解决采暖循环系统中换热设备结垢的问题,而无法解决系统的主要问题——腐蚀问题和管网的堵塞问题。
相反,软化水还会加剧管网的腐蚀,加速采暖循环水运行工况的进一步恶化。
采暖循环系统存在的问题是综合性的,需要进行综合处理。
B、电子水处理器和过滤器来解决问题。
目前,在国内水处理市场上,各种物理法水处理设备主要以解决防垢、缓蚀、杀菌为主。
但在封闭式采暖存在的问题是腐蚀和悬浮物的去除问题。
使水中的悬浮态杂质稳定在20mg/L以下。
而以往在系统中安装的各种电子类水处理设备配套Y式过滤器、除污器等方式,由于普通过滤器过滤精度低,因此无法满足系统对水质的要求及对水质的控制。
2、Aqusoften设备解决方案(1)、解决方法:①、在换热设备进水口前安装防垢专用设备,防止换热设备结构;②、在系统总管安装防腐专用设备。
循环水结垢原因与防止

循环水结垢原因与防止循环水结垢是指循环水系统中,由于水中存在的溶解性固体物质(如钙、镁等)与水中的碳酸盐反应产生的沉淀物,而形成的一层或多层覆盖在管道壁上的硬垢,会严重影响循环水系统的运行效率与设备的正常运行。
下面将从结垢的原因、结垢对系统的影响以及防止结垢的措施进行阐述。
一、结垢的原因:1.水源因素:循环水系统的水源中常常含有溶解的硬度物质,特别是钙、镁等离子,这些硬度物质容易形成结垢。
2.温度因素:在高温条件下,溶解在水中的碳酸盐溶解度减小,容易形成沉淀物质,所以高温环境下结垢更严重。
3.酸碱度因素:水的酸碱度也会影响结垢的程度,当水的酸度过高时,会加速结垢的形成。
4.水的流速:水的流速与结垢也有一定的关系,当水在管道内的流速过低时,水中的沉淀物质更容易脱离水流而附着在管道壁上。
二、结垢对系统的影响:1.阻塞管道:结垢会附着在管道壁上,形成堆积的硬垢,导致管道内径减小,从而阻塞了管道,降低了水的流速。
2.减低传热效率:结垢会作为一层隔热层,降低了传热效率,导致设备间接散热效果下降,对于循环水冷却系统来说,影响了冷却效果。
3.增加能耗:由于结垢导致了管道的阻塞和传热效率的降低,系统需要消耗更多的能量来保持设计要求的循环水流速和温度,增加了能耗成本。
4.缩短设备寿命:结垢会使得设备内的水流量不均匀,造成一些设备的局部高温或高压区域,加速了设备的磨损和老化。
三、防止结垢的措施:1.水质处理:可以通过酸洗、软化等方法降低水源中的硬度物质含量,减少结垢的生成。
2.温度控制:降低水温可以减少碳酸盐的溶解度,从根源上避免了结垢的产生。
3.水质控制:通过调节循环水的酸碱度,保持在适当的范围内,避免过酸或过碱引起结垢。
4.增加水流速度:增加水流速度可以减少结垢的几率,可以通过增加泵的功率或增加管道的直径实现。
5.进行周期性清洗:定期对循环水系统进行清洗,可以有效去除已生成的结垢。
6.安装防垢装置:在循环水系统中添加防垢剂或防膜剂,可以抑制和阻止结垢的形成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
循环水结垢原理及处理
方
Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】
循环水结垢原理及处理方法
一. 结垢原理
1.一般解释
冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。
如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:
Ca(HCO 3)2 ? CaCO 3 ˉ + H 2O + CO 2-
当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:
Ca(HCO3)2 + 2OH- ? CaCO 3 ˉ + 2H 2O + CO 32-
难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。
方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。
2.碳酸钙的溶解沉淀平衡。
碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。
所以在溶液里也出现这样的平衡: Ca2++CO3 2- CACO 3(固)
在一定条件下达到平衡状态时〔Ca2+〕与〔CO
3
2-〕的乘积为碳酸
钙在此条件下的溶度积K
SP
,为一定值。
若此条件下〔Ca2+〕×〔CO
32-〕> K
SP
时,平衡向右移,有晶体
析出。
若此条件下〔Ca2+〕×〔CO
32-〕< K
SP
时,平衡向左移,晶体溶
解。
注:实际情况下〔Ca2+〕×〔CO
32-〕值称为K
CP
二. 抑制为结垢的方法
(一)化学方法
1.加酸:
目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小
缺点:不易控制、过量会产生腐蚀的危险、有产生硫酸钙垢的危险.
2.软化
目的:降低水中至垢阳离子的含量
优点:防止结垢效果好
缺点:操作复杂、软化后水腐蚀性增强.
3.加阻垢剂:
目的:使碳酸钙的过饱和溶液保持稳定。
优点:防垢效果好、具有缓蚀作用、针对性强.
缺点:药剂一般含磷,对环境保护造成压力.
(二)物理方法
净元电子感应水处理器
优点:环保、投资少,维护简单
三. 怎样选择适合的阻垢处理方式
1.经济效益分析
2.水质情况
3.系统有工艺状况
4.是否符合环保要求.。