八年级下册数学《分式》分式方程知识点整理

合集下载

八年级数学下册书本知识点归纳整理

八年级数学下册书本知识点归纳整理

八年级数学下册书本知识点归纳整理人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五个章节的内容。

第十六章分式一、知识框架二、知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A 叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于0。

3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)。

5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。

约分时,一般将一个分式化为最简分式。

6.分式的四则运算:(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减,用字母表示为:a/c±b/c=a ±b/c。

(2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd。

(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

用字母表示为:a b×c d=ac bd。

(4)分式的除法法则:①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc。

②除以一个分式,等于乘以这个分式的倒数:a b÷c d=a b×d c。

7.分式方程的意义:分母中含有未知数的方程叫做分式方程。

8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点

分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。

因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。

二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。

2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。

3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。

三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。

由此可见,掌握分式方程的方法对解决实际问题有着重要意义。

四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。

2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。

4.分式方程的解可以使用数学软件得出。

八年级分式方程数学知识点

八年级分式方程数学知识点

八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。

如:\frac{x+1}{2}=3,其中x为未知量。

二、分式方程的解法1. 化简分式,使其成为整式方程。

如:\frac{x+1}{2}=3化简为x+1=6。

2. 通分,消去分母。

如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。

3. 变形化简后求解。

如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。

三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。

如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。

2. 通分时应注意分母因式分解。

如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。

3. 将解代回原分式方程检验。

如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。

四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。

已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。

设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。

由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。

2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。

分式与分式方程知识点总结

分式与分式方程知识点总结

分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。

分式可以表示为a/b的形式,其中a为分子,b为分母。

分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。

即(a/b)*(c/d)=(a*c)/(b*d)。

2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。

即(a/b)/(c/d)=(a*d)/(b*c)。

分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行加法运算。

即a/b+c/d=(a*d+b*c)/(b*d)。

2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。

然后将分式的分子按照共同分母的比例进行减法运算。

即a/b-c/d=(a*d-b*c)/(b*d)。

分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。

即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。

2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。

即a/b=a/b,其中a能整除b。

3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。

分式方程是包含一个或多个分式的方程。

求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。

2.对于有理式的方程,可以通过解方程的方法求出x的值。

3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。

在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。

2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。

3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。

八年级下册数学《分式》分式方程 知识点整理

八年级下册数学《分式》分式方程 知识点整理

分式方程一、本节学习指导解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。

做适当练习即能掌握。

二、知识要点1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。

(1)、分式方程的解法:解分式方程的基本思想方法是:分式方程转化去分母整式方程.解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。

注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!(2)、解分式方程的步骤:能化简的先化简;方程两边同乘以最简公分母,化为整式方程;解整式方程;验根.(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

(4)、含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。

计算结果是用已知数表示未知数,不要混淆。

2、列分式方程解应用题(1)列分式方程解应用题的步骤:①审:审清题意;②找: 找出相等关系;③设:设未知数;④ 列:列出分式方程;⑤ 解:解这个分式方程;⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;⑦ 答:写出答案。

(2)应用题有几种类型;基本公式是什么常见的有以下五种:①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.③工程问题 基本公式:工作量=工时×工效.④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.三、经验之谈:这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。

八年级数学分式与分式方程

八年级数学分式与分式方程

八年级数学分式与分式方程分式与分式方程学习资料。

一、分式的概念。

1. 定义。

- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。

例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。

2. 分式有意义的条件。

- 分式(A)/(B)有意义的条件是B≠0。

例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。

3. 分式值为零的条件。

- 分式(A)/(B)的值为零的条件是A = 0且B≠0。

例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。

二、分式的基本性质。

1. 性质内容。

- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。

2. 约分。

- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。

3. 通分。

- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。

三、分式的运算。

1. 分式的乘除法。

- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。

例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。

最新八年级下册数学知识点总结归纳

最新八年级下册数学知识点总结归纳

最新八年级下册数学知识点总结归纳第1章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。

其中A叫做分式的分子,B叫做分式的分母。

2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。

4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。

分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。

用式子表示为:A/B=A_/B_ A/B=A÷C/B÷C(A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b _c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。

北师大版八年级下册数学 第五章 分式与分式方程(知识点)

北师大版八年级下册数学  第五章 分式与分式方程(知识点)

第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。

如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。

分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。

分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。

字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。

3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。

字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。

最简分式:分子与分母没有公因式的分式,叫做最简分式。

5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。

通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学《分式》分式方程知识点
整理
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
15.3分式方程
一、本节学习指导
解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。

做适当练习即能掌握。

二、知识要点
1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。

(1)、分式方程的解法:
解分式方程的基本思想方法是:分式方程
转化
去分母
整式方程.
解分式方程的一般方法和步骤:
①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;
②解这个整式方程;
③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。

注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;
②解分式方程必须要验根,千万不要忘了!
(2)、解分式方程的步骤:
(1)能化简的先化简;
(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;
(4) 验根.
(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为
0,
则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

(4)、含有字母的分式方程的解法:
在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。

计算结果是用已知数表示未知数,不要混淆。

2、列分式方程解应用题
(1)列分式方程解应用题的步骤:
① 审:审清题意;
② 找: 找出相等关系;
③ 设:设未知数;
④ 列:列出分式方程;
⑤ 解:解这个分式方程;
⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;
⑦ 答:写出答案。

(2)应用题有几种类型;基本公式是什么?
常见的有以下五种:
①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.
③工程问题 基本公式:工作量=工时×工效.
④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水
3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.
(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;
(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.
三、经验之谈:
这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。

科学计数法有两种情况,不要混淆了,填空题中还是比较容易被考到的,并且这一点在物理中用得也比较多,希望同学们掌握好。

相关文档
最新文档