八年级数学下册分式加减法教案
八年级数学优质课《分式的加减》教案

八年级数学优质课《分式的加减》教案教学任务分析教学目标知识技能一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.数学思考在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.解决问题一、会进行同分母和异分母分式的加减运算.二、会解决与分式的加减有关的简单实际问题.三、能进行分式的加、剪、乘、除、乘方的混合运算.情感态度通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.重点分式的加减法.难点异分母分式的加减法及简单的分式混合运算.教学流程安排活动流程图活动内容和目的活动1:问题引入活动2:学习同分母分式的加减活动3:探究异分母分式的加减活动4:发现分式加减运算法则活动5:巩固练习、总结、作业向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.通过练习、作业进一步巩固分式的运算.课前准备教具学具补充材料课件教学过程设计问题与情境师生行为设计意图[活动1]1.问题一:比较电脑与手抄的录入时间.2.问题二;帮帮小明算算时间所需时间为,如何求出的值?3.这里用到了分式的加减,提出本节课的主题.教师通过课件展示问题.学生积极动脑解决问题,提出困惑:分式如何进行加减?通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.[活动2]1.提出小学数学中一道简单的分数加法题目.2.用课件引导学生用类比法,归纳总结同分母分式加法法则.3.教师使用课件展示[例1]4.教师通过课件出两个小练习.教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.学生在教师的'引导下,探索同分母分式加减的运算方法.通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.由两个学生板书自主完成练习,教师巡视指导学生练习.运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.让学生进一步体会同分母分式的加减运算.[活动3]1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.2.教师提出思考题:异分母的分式加减法要遵守什么法则呢?教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.[活动4]1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.2.教师使用课件展示[例2]3.教师通过课件出4个小练习.4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;试用含有R1的式子表示总电阻R5.教师使用课件展示[例4]教师提出要求,由学生说出分式加减法则的字母表示形式.通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.让学生体会运用的公式解决问题的过程.锻炼学生运用法则解决问题的能力,既准确又有速度.提高学生的计算能力.通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.提高学生综合应用知识的能力.[活动5]1.教师通过课件出2个分式混合运算的小练习.2.总结:a)这节课我们学习了哪些知识?你能说一说吗?b)⑴方法思路;c)⑵计算中的主意事项;d)⑶结果要化简.3.作业:a)教科书习题16.2第4、5、6题.学生练习、巩固.教师巡视指导.学生完成、交流.,师生评价.教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.教师布置作业.锻炼学生运用法则进行运算的能力,提高准确性及速度.提高学生归纳总结的能力.。
八年级数学教案示例之分式的加减法

八年级数学教案示例之分式的加减法一、教学目标:知识与技能:1. 理解分式的加减法概念及其意义。
2. 掌握分式的加减法法则及运算步骤。
3. 能够正确进行分式的加减法运算。
过程与方法:1. 通过具体例子,培养学生的观察、分析和解决问题的能力。
2. 学会利用分式的加减法解决实际问题。
情感态度价值观:1. 培养学生对数学学科的兴趣和热情。
2. 培养学生的团队合作意识和交流能力。
二、教学重点与难点:重点:1. 分式的加减法概念及意义。
2. 分式的加减法法则及运算步骤。
难点:1. 理解分式加减法中的通分和约分的操作。
2. 灵活运用分式的加减法解决实际问题。
三、教学准备:教师准备:1. 教学PPT或黑板。
2. 教学案例或习题。
学生准备:1. 笔记本和笔。
2. 已学过的分式相关知识。
四、教学过程:1. 导入:以一个实际问题引入,例如“一块土地的长是宽的2倍,长边增加10米,宽边减少5米,求新的长和宽。
”2. 新课讲解:讲解分式的加减法概念、法则及运算步骤,结合具体例子进行解释。
3. 课堂练习:让学生进行一些分式的加减法练习,巩固所学知识。
4. 应用拓展:让学生尝试解决一些实际问题,运用分式的加减法。
五、课后作业:1. 完成课后练习题,巩固分式的加减法知识。
2. 选择一道实际问题,运用分式的加减法进行解决。
六、教学评价:1. 课堂练习和课后作业的完成情况。
2. 学生对分式加减法的理解和运用能力。
3. 学生对数学学科的兴趣和热情。
七、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了分式的加减法知识。
如有需要,可以对教学方法进行调整。
八、教学延伸:1. 进一步学习分式的乘除法。
2. 探索分式在实际问题中的应用。
九、教学案例:【案例1】计算分式加法:$$\frac{3x}{4} + \frac{2x}{3}$$【案例2】计算分式减法:$$\frac{5y}{6} \frac{2y}{3}$$十、教学反馈:在课后收集学生的反馈意见,了解他们在学习分式加减法过程中的困难和问题,以便在今后的教学中进行改进。
《分式的加减法》教案

《分式的加减法》教案1教学目标教学知识点:同分母的分式的加减法的运算法则及其应用.能力训练要求:1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.情感与价值观要求:1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重、难点教学重点:同分母的分式加减法.教学难点:将分式化为同分母进行加减.教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:问题一:从甲地到乙地有两条路,每条路都是3km,其中第一条是平路,第二条有1km 的上坡路、2km的下坡路.小丽在上坡路上的骑车速度为v km/h,在平路上的骑车速度为2v k m/h,在下坡路上的骑车速度为3v km/h,那么:(1)当走第二条路时,她从甲地到乙地需多长时间?(2)她走哪条路花费的时间少?少用多长时间?问题二:某人用电脑录入汉字文稿的效率相当于手抄的3倍,设他手抄的速度为a字/时,那么他录入3000字文稿比手抄少用多少时间?[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v32)h . (2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.[生]如果要比较(v 1+v 32)与v23的大小,就比较难了,因为它们的分母中都含有字母. [生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v23,如何判断它大于零,等于零,小于零呢?[师]我们不妨观察(v 1+v 32)-v23中的每一项都是分式,这是什么样的运算呢? [生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时. [生]a 3000,a 1000是分式,a 3000-a1000是分式的加减法. [师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课1.同分母的加减法[师]我们接着看下面的问题 想一想(1)同分母的分数如何加减?你能举例说明吗? (2)你认为分母相同的分式应该如何加减? 例1计算:1;+--()a b a b ab ab 24222;---()x x x 243;-+-++()m n m n m n m n 3214111-+-+-+++().x x x x x x 解:()22(1) ===;+-+---a b a b a b a b b ab ab ab ab a2244(2)(2)(2)22222===;--+-+----x x x x x x x x x 24243333===-3;-+--+-+++--+-+=+()()()m n m n m n m n m n m n m n m n m n m n m n 321321411111-+--++--+-==+++++()().x x x x x x x x x x x x 例2计算:1;+--()x yx y y x212211;----()a a a a 解:(1)===1;-+------x y x y x y x y y x x y x y x y2222121221211111111---+-=+=------==--()().a a a a a a a a a a a a a a做一做 (1)a 1+a2=____________. (2)22-x x -24-x =____________.(3)12++x x -11+-x x +13+-x x =____________. [生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310. 我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2.[师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为: (3)12++x x -11+-x x +13+-x x=1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x. [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步. 通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cba ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 前面问题二现在可以完成了吧!大胆地试一试. [生]a 3000-a1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法,这是我们下节课的知识.Ⅲ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.分式的加减》教案2教学目标:教学知识点:1.同分母的分式的加减法的运算法则及其应用. 2.简单的异分母的分式相加减的运算. 能力训练要求:1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.情感与价值观要求:1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.教学重、难点:教学重点:1.同分母的分式加减法. 2.简单的异分母的分式加减法. 教学难点:当分式的分子是多项式时的分式的减法.教学过程:一.讲授新课1.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.通过上节课想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =cb a (其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式). 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.想一想(1)异分母的分数如何加减?(2)你认为异分母的分式应该如何加减?比如a 3+a41应如何计算. [生]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法.[生]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.小明认为,只要把异分母的分式化成同分母的分式,异分母分式的加减问题就变成了同分母分式的加减问题.小亮同意小明的这种看法,但他俩的具体做法不同:小明:a 3+a 41=a a a 443⋅⋅+aa a⋅4 =2412a a +24a a =2413a a =a413. 小亮:a 3+a 41=443⋅⨯a +a41 =a 412+a 41=a413. 你对这两种做法有何评论?与同伴交流.[生]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125. [生]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[1]计算:(1)a 3+a a 515-;(2)12-x +xx --11 [生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算. [1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a 515即可.解:(1)a 3+a a 515-=a 515+aa 515- =a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下: (2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起. [生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h .(2)小丽走第一条路所用的时间为v23h . 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h . 例3 计算:315(1)5;-+a a a 11233;--+()x x 221342---().a a a 解:3151515151511555555===;--+-++=()a a a a a a a a a a221133233333333969=-==;+---++-+-+----()()()()()()()x x x x x x x x x x x x 221223422222222222212=-;=+----+-+-+-+-=-+=+()()()()()()()()()().a a a a a a a a a a a a a a a a a例4 小刚家和小丽家到学校的路程都是3km ,其中小丽走的是平路,骑车速度是2v km/h .小刚需要走1km 的上坡路、2km 的下坡路,在上坡路上的速度是v km/h ,在下坡路上的车速是3v km/h .那么(1)小刚从家到学校需要多长时间?(2)小刚和小丽谁在路上花费的时间少?少用多长时间? 解:(1)小刚从家到学校需要125(h).33+=v v v(2)小丽从家到学校需要3h.2v因为5332,>v v所以小丽在路上花费的时间少. 小丽在路上花费的时间比小刚少531-=(h).326v v vⅢ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大. [生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.分式的加减法》教案3教学目标:知识目标:1.熟悉分式四则运算的运算顺序. 2.熟练地进行分式的四则运算. 能力目标:通过分式四则运算的学习,进一步提高学生的分析能力和运算能力.教学重、难点:重点:熟练地进行分式四则运算. 难点:分式四则运算的顺序. 关键:分式四则运算的顺序.教学过程:一.复习1.类似分数,分式有:乘法法则——分式乘分式,用分子的积作为积的分母,分母的积作为积的分母.除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,用式子表示为:a c acb d bd =;ac ad adb d bc bc÷==. 2.类似分数的加减法,分式的加减法则是:同分母分式相加减,分母不变,把分子相加减,异分母分式相加减,选通分,变为同分母的分式,再加减,用式子表示为:,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±=. 3.整数指数幂有以下运算性质:(1)a m a n =a m+n (m ,n 是整数);(2)(am)n =a mn (m ,n 是整数) (3)(ab)n =a n b n (n 是整数);(4)a m ÷a n =a m-n (m ,n 是整数)(5)(a b )n =n n a b(n 是整数);(6)a -n =1n a (a≠0);特别地,当a≠0时,a 0=1.计算:1.xxx x x x ----+-+3433522.168841412-+--+-+-x x x x x x 3.xyx xy y x xy x +--⋅-222222)( 通过计算帮助学生复习分式的有关知识.提问:分数的四则运算是如何进行的?(先乘除,再加减,有括号先算括号里的)新课讲解二.例题讲解例5.计算2111()-;++x x x 112()().--+÷+a a b a b a b 解:22222222111111111111111111 ( )--()()()--()()=-()-===;+=-++-+=++-++-++++x x x x x x x x x x x x x x x x x x x x x x 1122()()--()().+÷+-++-=⋅+-=+a a b a b a ba b a b a b a b a b aa b例6.已知2,=x y 求222---+-x y y x y x y x y 的值. 2222222222 ()()()().()()---+-+---=-++-+-==-+-x y y x y x y x y x x y y x y y x y x y x xy xy y y x x y x y x y 因为2,=x y即x =2y , 所以,原式22222244323().()===-y y y y y 做一做根据规划设计,某市工程队准备在开发区修建一条长1120m 的盲道.由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10m ,从而缩短了工期.假设原计划每天修建盲道x m ,那么(1)原计划修建这条盲道需要多少天?(2)实际修建这条盲道的工期比原计划缩短了几天?解:(1)原计划修建这条盲道需要1120x天; (2)∵实际每天修建盲道的长度=(x+10)m , ∴实际修建这条盲道用了112010+x 天. 因此 , 实际修建这条盲道的工期比原计划缩短了11201120112001010-=++()x x x x 天. 小结(引导学生自己小结)1.分式混合运算要注意顺序.(先乘除,再加减,有括号先算括号里的)2.计算时要求步骤详细,每步能说出变形依据.3.运算时要注意符号.4.注意在实际问题中的应用.。
八下5.3分式的加减法(3)教学设计

课题:5.3.分式的加减法(三)一.备课标:(一)内容标准: 能利用分式的基本性质进行通分,能进行简单的分式加减运算。
(二)核心概念:掌握异分母分式加减运算的技能,培养运算能力;经历从不同角度寻求解决分式加减问题的方法过程,体验解决问题方法的多样性,掌握分析问题和解决问题的一些基本方法;运用分式加减运算解决简单的实际问题,发展学生的应用意识。
十大核心概念在本节课中突出培养的是运算能力、符号意识和推理能力二、备重点、难点:(一)教材分析:本节课是八年级下册第五章《分式与分式方程》第三节“分式的加减法”的第3课时,属于“数与代数”领域中的“整式与分式”。
教科书在原有两节课时的基础上,改编成三节课时,本节课仍进行分式的加减运算,是对前两节内容的巩固提升。
分式的加减法是代数变形的基础之一,分式的化简求值又是代数运算的主要内容,运用所学知识解决实际问题是学习的最终目的。
(二)重点、难点分析:重点:会进行分母是多项式的异分母分式的加减法运算及分式与整式的加减法运算;能进行分式的混合运算及较复杂的分式化简求值;难点:分式的混合运算及较复杂的分式化简求值。
三.备学情:(一) 学习条件和起点能力分析:1.学习条件分析:(1)必要条件:生在前两节课已经学习同分母分式、异分母分式的加减运算及法则。
在第四章学习了因式分解,会进行整式的加减法以及用代数式去解决实际问题的经验,对这节课异分母分式相加减和分式求值及应用内容的学习都有了充分的铺垫(2)支持性条件:在相关知识的学习过程中,学生经历过一些从实际问题建模的思想。
同时在以前的学习中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力2.起点能力分析:如何灵活进行分式的混合运算及较复杂的分式化简求值(二)学生可能达到的程度和存在的普遍性问题:分式的混合运算及较复杂的分式化简求值. 针对这一问题,采取的策略:进行题组训练,由简单到复杂,进行梯度训练不会找最简公分母,去括号合并同类项容易出错,充分发挥小组长的作用,让组长帮组学困生 。
八年级数学下册分式加减法教案

授课内容:分式的加减法教学目标:1、掌握同分母分式的加减运算法则,会进行同分母分式的加减运算.2、理解通分的概念,能对异分母的分式进行通分.3、掌握异分母分式的加减运算法则,会进行异分母分式的加减运算.4、会进行分式的混合运算.教学重难点:通分授课内容:1、同分母分式的加减(这是重点)法则:同分母的分式相加减,分母不变,分子相加减.用式子可以表示为:cb ac b c a ±=± 注意:同分母分式的加减运算法则和分数的加减运算法则在实质上是相同的,但分式的分子常常是一个多项式,“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,尤其是相减时,要注意避免符号错误,分子相加减的实质就是整式的加减.最后结果要求是最简分式.2、通分(这是重点、难点)根据分式的基本性质,异分母的分式可化为同分母的分式,这一过程称为分式的通分.为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母.确定最简公分母的方法:先对分式的分母进行分解因式,如果分母中含有相同字母,则取相同字母的最高次幂作为最简公分母的一个因式,如果只在一个分母中出现的字母,则连同它的指数作为最简公分母的一个因式.举例说明:aba 3,22 最简公分母:b a 2. 1624,432--x x 最简公分母: (x+4)(x -4) 3、异分母分式的加减(这是重点、难点)法则:异分母分式相加减,先通分化为同分母的分式,然后再加减.注意:异分母分式的加减必须转化为同分母分式的加减,然后按照同分母分式加减法的法则进行计算,转化的关键是通分.异分母分式的加减运算综合性较强,运算时要用到前面的一系列知识,如整式的四则运算、因式分解、约分、通分等. 其一般步骤为:①通分:将异分母的分式化成同分母的分式;②写成“分母不变,分子相加减”的形式;③分子去括号,合并同类项;④分子、分母约分,将结果化成最简分式的形式.【典型例题】考点一:同分母分式的加减例1、化简:212++-+x x x x例2、化简22422b a a b b a+--的结果是( ) A. 2a b -- B. 2b a - C. 2a b -D. 2b a +考点二:异分母分式的加减 例3、计算:aa a +--22214 例4、计算:12-a a -a -1 考点三:分式的混合运算例5、计算:3x 1x 2x 1x 3x 1x x 22+++⋅-+-- 例6、先化简,再求值.先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =. 【模拟试题】(答题时间:90分钟)一、认认真真选1. 计算)132(1337aa -+等于( ) A.a 1335 B. 3a - C.-3a D. 3a2. 计算107612332x x x x--+--等于( ) A. 16823x x -- B. 4823x x -- C. -2 D. 2 3. 计算:a b a b b a a -⎛⎫-÷= ⎪⎝⎭( ) A. a b b + B. a b b - C. a b a - D. a b a+ ﹡4. 学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A. 小明B. 小亮C. 小芳D. 没有正确的 ﹡5. 分式111(1)a a a +++的计算结果是( ) A. 11a + B. 1a a + C. 1a D. 1a a+ ﹡6. 计算1335x x +-+等于( ) A.21x + B. 42(3)(5)x x x +-+ C.4(3)(5)x x -+ D.44(3)(5)x x x --+﹡7. 化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A. y x - B. x y - C. x yD. y x 8. 化简b a a a b a -⋅-)(2的结果是 ( )A. b a -B. b a +C. b a -1D. b a +1二、仔仔细细填9. 计算(1)374x x x-+= ; (2)34x x y y x y x y x y --++++= . 10. 计算(1)2433x x x+---= ; (2)4322x y y x y y x ++--= . 11. 化简:224442x x x x x ++-=-- . 12. a 、b 为实数,且ab=1,设P=11a b a b +++,Q=1111a b +++,则P Q (填“>”、“<”或“=”). 13. 计算21111a a a ⎛⎫+÷ ⎪--⎝⎭= .三、解答题﹡14. 计算:a+b+ba b -22 ﹡15. 计算:xy y x y x y x y y x ----+-+2 ﹡16. 先化简,再求值:11212222--÷+++-+x x x x x x x ,其中23-=x . ﹡17. 求代数式的值:22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+. ﹡﹡18. 观察:612132+=, 1513152+=,2814172+=,4515192+=,…请你猜想一般结论,并证明.。
分式加减法教案

分式加减法教案教案标题:分式加减法教案教案目标:1. 学生能够理解分式加减法的概念和基本原则。
2. 学生能够运用分式加减法解决实际问题。
3. 学生能够运用所学知识,灵活地进行分式加减法的计算。
教学重点:1. 分式加减法的基本原则和运算规则。
2. 分式加减法的实际应用。
教学难点:1. 学生理解分式加减法的概念和运算规则。
2. 学生能够将实际问题转化为分式加减法的计算。
教学准备:1. 教师准备教学课件、黑板、彩色粉笔等。
2. 学生准备纸和铅笔。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的分式的概念和运算规则。
2. 引入今天的主题:分式加减法。
二、讲解与示范(15分钟)1. 教师通过PPT或黑板,详细讲解分式加减法的基本原则和运算规则,包括相同分母的分式加减法和不同分母的分式加减法。
2. 教师通过具体的例子演示如何进行分式加减法运算,并解释每一步的操作原因。
三、练习与巩固(20分钟)1. 学生进行基础练习,计算给定的分式加减法题目。
2. 学生完成一些应用题,将实际问题转化为分式加减法的计算,并给出答案和解答过程。
3. 学生互相交流,讨论解题思路和方法。
四、拓展与应用(15分钟)1. 学生分组进行小组讨论,设计一些实际问题,通过分式加减法进行计算,并给出解答和解题过程。
2. 每个小组派代表上台展示他们的问题和解答过程。
五、总结与反思(5分钟)1. 教师总结今天的教学内容,强调分式加减法的重要性和实际应用。
2. 学生对今天的学习进行反思,提出问题和困惑。
教学延伸:1. 学生可以通过做更多的分式加减法题目来加深对知识点的理解和掌握。
2. 学生可以通过查阅资料,了解更多分式加减法的实际应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、理解程度和解题能力。
2. 教师布置作业,检查学生对分式加减法的掌握情况。
3. 学生之间相互评价和反馈。
教学反馈:1. 教师根据学生的表现和作业情况,及时给予反馈和指导。
八年级数学下册分式加减法教案

八年级数学下册分式加减法教案一、教学目标1. 让学生理解分式加减法的概念,掌握分式加减法的运算方法。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
3. 培养学生合作学习、积极思考的良好学习习惯。
二、教学内容1. 分式加减法的定义及运算规则。
2. 分式加减法的实际应用问题。
三、教学重点与难点1. 重点:分式加减法的运算方法。
2. 难点:分式加减法在实际问题中的应用。
四、教学方法1. 采用讲解法、例题演示法、练习法、小组讨论法等多种教学方法。
2. 以学生为主体,教师为主导,充分调动学生的积极性。
五、教学过程1. 导入新课:通过复习分数加减法,引导学生过渡到分式加减法。
2. 讲解分式加减法的定义及运算规则,让学生理解并掌握。
3. 举例演示分式加减法的运算过程,让学生跟随老师一起动手操作。
4. 设置练习题,让学生独立完成,检测掌握程度。
5. 小组讨论:让学生结合实际情况,运用分式加减法解决问题。
6. 总结本节课所学内容,布置课后作业。
六、教学评价1. 通过课堂提问、练习题和小组讨论,评估学生对分式加减法的理解和运用能力。
2. 关注学生在解决实际问题时的思维过程,评价其数学思维水平。
3. 结合学生的课堂表现和作业完成情况,全面评价学生的学习效果。
七、课后作业1. 完成教材后的相关练习题,巩固分式加减法的运算方法。
2. 选择一道实际应用问题,运用分式加减法进行解答,并在下节课分享。
八、教学反思在课后,教师应反思本节课的教学效果,包括:1. 学生对新知识的接受程度和理解水平。
2. 教学方法是否适合学生的学习需求,是否需要调整。
3. 学生参与度和合作学习的情况,以及如何进一步提高。
九、课堂练习1. 简单分式加减法运算题。
2. 复杂分式加减法运算题。
3. 实际应用问题,涉及分式加减法的解决。
十、课程总结在课程的教师应引导学生总结本节课所学的内容,包括:1. 分式加减法的定义和运算规则。
2. 分式加减法在实际问题中的应用。
八年级数学下册分式加减法教案

一、教学目标1. 知识与技能:(1)理解分式的加减运算法则;(2)能够正确进行分式的加减运算。
2. 过程与方法:(1)通过实例演示,让学生掌握分式加减法的运算步骤;(2)培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣;(2)培养学生的团队合作精神,学会相互交流和分享。
二、教学重点与难点1. 教学重点:(1)分式的加减运算法则;(2)分式加减法的运算步骤。
2. 教学难点:(1)分式加减法运算中括号的处理;(2)分式加减法在实际问题中的应用。
三、教学准备1. 教具准备:黑板、粉笔、多媒体课件。
2. 学具准备:练习本、笔。
四、教学过程1. 导入新课:(1)复习上节课的内容,回顾分式的基本概念;(2)提问:分式加减法与整式加减法有何不同?2. 知识讲解:(1)讲解分式的加减运算法则;(2)演示分式加减法的运算步骤。
3. 例题讲解:(1)讲解典型例题,让学生跟随步骤进行解题;(2)强调解题过程中的注意事项。
4. 课堂练习:(1)布置练习题,让学生独立完成;(2)挑选部分学生的作业进行讲解和评价。
5. 课堂小结:(2)强调分式加减法在实际问题中的应用。
五、课后作业1. 完成课后练习题;2. 搜集生活中的分式加减法问题,进行分析和解答。
六、教学拓展1. 引导学生思考:分式加减法在实际生活中的应用场景;2. 通过实例,讲解分式加减法在实际问题中的应用,如溶液浓度问题、经济问题等。
七、课堂互动1. 学生分组讨论:分式加减法的运算规律;2. 各小组派代表进行分享,讲解本组的讨论成果;八、教学反思1. 教师对本节课的教学效果进行自我评价;2. 学生对本节课的学习效果进行自我评价;3. 针对教学过程中的不足,提出改进措施。
九、教学评价1. 课后对学生进行测试,了解学生对分式加减法的掌握情况;2. 关注学生在课堂上的表现,如参与度、理解力、表达能力等;3. 综合评价学生的学习成果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课内容:
分式的加减法
教学目标:
1、掌握同分母分式的加减运算法则,会进行同分母分式的加减运算.
2、理解通分的概念,能对异分母的分式进行通分.
3、掌握异分母分式的加减运算法则,会进行异分母分式的加减运算.
4、会进行分式的混合运算.
教学重难点:通分
授课内容:
1、同分母分式的加减(这是重点)
法则:
同分母的分式相加减,分母不变,分子相加减.
用式子可以表示为:
c
b a
c b c a ±=± 注意:同分母分式的加减运算法则和分数的加减运算法则在实质上是相同的,但分式的分子常常是一个多项式,“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,尤其是相减时,要注意避免符号错误,分子相加减的实质就是整式的加减.最后结果要求是最简分式.
2、通分(这是重点、难点)
根据分式的基本性质,异分母的分式可化为同分母的分式,这一过程称为分式的通分.为了计算方便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的共同分母.
确定最简公分母的方法:
先对分式的分母进行分解因式,如果分母中含有相同字母,则取相同字母的最高次幂作为最简公分母的一个因式,如果只在一个分母中出现的字母,则连同它的指数作为最简公分母的一个因式.
举例说明:
ab a
3,22 最简公分母:b a 2. 16
24,432--x x 最简公分母: (x+4)(x -4) 3、异分母分式的加减(这是重点、难点)
法则:
异分母分式相加减,先通分化为同分母的分式,然后再加减.
注意:异分母分式的加减必须转化为同分母分式的加减,然后按照同分母分式加减法的法则进行计算,转化的关键是通分.异分母分式的加减运算综合性较强,运算时要用到前面的一系列知识,如整式的四则运算、因式分解、约分、通分等. 其一般步骤为:
①通分:将异分母的分式化成同分母的分式;
②写成“分母不变,分子相加减”的形式;
③分子去括号,合并同类项;
④分子、分母约分,将结果化成最简分式的形式.。