定积分的应用
数学分析第十章 定积分的应用

x x(t) y y(t)
t [, ]
给出,在[, ]上y(t)连续, x(t)连续可微,
且x'(t) 0,记a x( ),b x( ),则
曲边梯形的面积
A y(t)x' (t) dt.
例2
求椭圆 x2 a2
y2 b2
1的面积.
解
椭圆的参数方程
x y
a cos t bsin t
对一个立体,如果知道该立体上垂直于一 定轴的各个截面面积,那么,这个立体的体积 也可用定积分来计算.
如图,设 A( x)
表示过点 x且 a o
垂直于 x轴的
x
bx
截面面积。
A( x)为 x的已知连续函数,
取积分变量为 x,变化范围[a,b]
相应于[a, b]上的任一小区间[ x, x dx],
立体位于该小区间部分而成的薄片的体积近似看成是 以 A(x) 为底面积、 dx 为高的扁圆柱体的体积,即
1.由连续曲线
y f ( x)( f ( x) 0)、x 轴与两条直线 x a、 x b所围成的平面图形
的面积。
y
y f (x)
oa
bx
2.如果y=f(x)在[a,b]上不都是非负时,如下图
1.定积分的应用(面积)

y = x2
A = ∫0 ( x − x 2 )dx
2 3 x 1 = x2 − = . 3 0 3 3
3 1
1
x
x+dx
求面积的一般步骤: 求面积的一般步骤: 1.作图(如果需要求出交点). 作图(如果需要求出交点) 作图 微元法 2.用定积分表示面积 用定积分表示面积. 用定积分表示面积 公式法
2)求出一个元素(如 f ( x )dx 称为量U 的元素 )求出一个元素( 且记作 dU ,即 dU = f ( x )dx );
3)化 为 定 积 分 U =
∫
b
a
du
定积分在几何 几何上的应用 第二节 定积分在几何上的应用
一、平面图形的面积 1.直角坐标系情形 直角坐标系情形
y
y = f ( x)
π
π
3
o π
6
x
3 0
6 0
= − ∫ π sin xdx + ∫ 6 sin xdx
− 3 0
π
= cos x − π + ( − cos x ) 06
3
0
π
3− 3 = 2
说明:注意各积分区间上被积函数的形式. 说明:注意各积分区间上被积函数的形式. 问题: 问题:积分变量只能选 x 吗?
例 3
相当于定积分的换元) 连续. y = ψ (t )连续 (相当于定积分的换元)
x2 y2 的面积. 例 5 求椭圆 2 + 2 = 1的面积 a b x = a cos t 解 椭圆的参数方程 y = b sin t
由对称性知总面积等于4倍第一象限部分面积. 由对称性知总面积等于 倍第一象限部分面积. 倍第一象限部分面积
定积分的几何应用(体积))

π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π
π
a
2
(t
sin
t)
2
a
sin
t
d
t
0
π a3
2π
(t
sin
t)2
sin
t
dt
0
注: 2 π (t sin t)2 sin t d t 0
2 π (t 2 sin t 2t sin 2 t sin3 t)d t (令 u t π) 0
V 2 1u[4 (u 3)2 ]du 5
令u x3
2 2 (x 3)(4 x2)dx 2
2 2 (3 x)(4 x2 )dx 2
(※)
补充 2. 如果旋转体是由连续曲线 y f ( x)、直 线 x a、 x b(0 a b)及 x轴所围成的曲边梯
形绕 x = m (>b) 旋转一周而成的立体,体积为
2
令u t 2
16 π a3 π (2u sin 2u) sin 4 u d u 0
令v u π
2
π
16 π
a3
2
π 2
(2v
π
sin
2v)
cos4 v
偶函数
d
v
奇函数
例 3 求由曲线 y 4 x2及 y 0所围成的图形 绕直线 x 3旋转构成旋转体的体积.
解(一) 取积分变量为y , y [0,4]
c
o
x
例2. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y
试论定积分在物理及其他领域的应用

试论定积分在物理及其他领域的应用1. 引言1.1 定积分的基本概念定积分是微积分的一个重要概念,它在数学中有着广泛的应用。
定积分的基本概念可以简单地理解为一个函数在一定区间内的累积效果。
在几何学中,定积分可以用来计算曲线下面积,图形的面积和体积等问题。
在数学上,定积分可以看作是不定积分的反运算,通过定积分我们可以求解函数的定积分值。
在实际应用中,定积分被广泛运用于物理、工程、经济等领域。
它的应用使得复杂问题的计算变得简单清晰。
通过定积分,我们可以计算出物体的质量、力的大小、功的大小等物理量。
在力学中,定积分可以用来描述物体的运动规律,计算出物体的位置、速度和加速度等。
在电磁学中,定积分常常用来计算电场强度、磁场强度等问题。
在热力学中,定积分可以用来计算热量、熵等热力学量。
在工程学中,定积分可以帮助工程师计算出工程设计中的各种参数。
在经济学中,定积分在求解供求关系、成本、收益等问题上起着重要作用。
定积分在各个领域中都有着重要的应用价值。
它的基本概念对于理解定积分的应用具有重要意义。
通过深入研究定积分的基本概念,可以更好地理解其在不同领域中的具体应用。
1.2 定积分在物理领域的重要性定积分在物理领域的重要性体现在多个方面,首先在力学中,定积分可以用来描述物体的质量、速度、加速度、力和能量等物理量随时间的变化,从而帮助解决力学中的各种问题。
在电磁学中,定积分可以用来描述电流、电荷、电场、磁场等物理量在空间中的分布和变化规律,从而帮助解决电磁学中的各种问题。
在热力学中,定积分可以用来描述热量、温度、熵等热力学量在空间中的分布和变化规律,从而帮助解决热力学中的各种问题。
在工程学和经济学中,定积分也有着重要的应用,可以用来描述工程和经济系统中的各种物理量的变化规律,从而帮助解决工程和经济学中的各种问题。
定积分在物理领域中的重要性不可忽视,它为我们理解和应用物理定律提供了重要的数学工具和方法。
2. 正文2.1 定积分在力学中的应用在力学中,定积分是一个非常重要的数学工具,它可以用来描述物体在运动过程中的各种性质和运动规律。
定积分的应用于物理学

定积分的应用于物理学定积分是微积分中一个极为重要的概念,它可以描述一个函数在一定区间内的面积。
除了数学上的应用之外,定积分在物理学中也有广泛的应用。
一、定积分在物理学中的应用1.速度和加速度在物理学中,速度和加速度是两个基本的物理量。
对于一个以某个加速度运动的物体,我们可以通过求解其速度关于时间的定积分来得到运动过程中的位移。
而得到位移后,我们还可以对它进行求导来获得速度和加速度的函数式。
2.质量和质心质量是物理学中另外一个基本的物理量,而质心则是一个系统的重心。
对于一个由若干个质点组成的系统,我们可以将每个质点的质量加起来,然后用质心的坐标来描述整个系统。
这个质心的坐标可以用各个质点坐标的定积分来求解。
3.力和功在物理学中,力是另一个基本的物理量。
对于一个物体在某个力场中做功,我们可以通过对力在某段距离上的积分来得到。
与此同时,我们也可以通过对某个物体所受多个力的叠加效应进行积分来得到最终的合力。
二、例子:牛顿第二定律牛顿第二定律是经典力学中的一个基本法则,它表明力等于物体质量乘以物体的加速度。
具体而言,我们可以用定积分来解决一个常见的牛顿第二定律问题。
假设一个物体受到一个恒定的力F作用,那么根据牛顿第二定律,我们可以得到以下方程:F = ma其中,a是物体的加速度,m是物体的质量。
为了求解这个方程,我们需要将其改写为以下形式:a = F/m这个定理告诉我们,当一个物体受到一个力的作用时,它的加速度是与它的质量成反比例的。
因此,我们可以用定积分来求解运动过程中的位移。
假设我们知道物体的初始速度v0和它所受的力F(t)关于时间t 的函数式,我们可以求出物体在某段时间内的加速度函数a(t)。
一旦我们知道了加速度函数,我们就可以将它关于时间的定积分求解出来,得到物体在受到力的作用下所走过的位移。
这个过程可以用以下公式来描述:x(t) = v0t + ∫0t a(t)dt其中,v0是物体的初始速度,a(t)是物体在受到力的作用下的加速度函数。
定积分应用方法总结(经典题型归纳)

定积分复习重点定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质1212(1)()()().(2)[()()]()().(3)()()()().bbaab bb aaab c baackf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+⎰⎰⎰⎰⎰⎰⎰⎰为常数其中a<c<b2.微积分基本定理如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么()()()baf x dx F b F a =-⎰,这个结论叫微积分基本定理,又叫牛顿—莱布尼兹公式。
3.求定积分的方法(1)利用微积分基本定理就定积分 ①对被积分函数,先简化,再求定积分.例如:230(1-2sin)2d πθθ⎰注:322()3x x '=,(-cos )sin x x '=②分段函数,分段求定积分,再求和.(被积函数中带有绝对值符号时,计算的基本思路就是用分段函数表示被积函数,以去掉绝对值符号,然后应用定积分对积分区间的可加性,分段进行计算)1.计算积分⎰---322|32|dx x x解1. 由于在积分区间]3,2[-上,被积函数可表示为⎩⎨⎧≤<-----≤≤---=--.31,)32(,12,32|32|222x x x x x x x x 所以⎰---322|32|dx x x 13)32()32(312122=-----=⎰⎰---dx x x dx x x .(2)利用定积分的几何意义求定积分如定积分12014x dx π-=⎰,其几何意义就是单位圆面积的14。
(课本P60 B 组第一题) (3)利用被积函数的奇偶性a. 若()f x 为奇函数,则()0aa f x dx -=⎰;b. 若()f x 为偶函数,则0()()a aa f x dx f x dx-=⎰⎰2;其中0a >。
定积分的应用(体积、旋转体的侧面积)
2 1 2 cos cos
1 解: 利用对称性 , 所求面积 ( 1 cos 2 ) 2 12 1 2 2 2 a ( 1 cos ) d A a 2 2 2 1 1 2 2 3 2 cos cos 2 ) d a a ( 2 2 2 2 y 1 2 23 a a( 2 ) 2 4 a 2a x o 5 2 a 2 a2 4
0
y d x
2
y
o
a
2 a x
t ) 2
5 a
14
t) x a(t sin (a0 ) 1cos t) y a(
绕 y 轴旋转而成的体积为
2 V x (y )d y y 2 0 2 a
2a
y
x x ( y ) 2
o
2 a
32 2 a ( t sin t ) sin t d t 0
高为 h , 求 它 的 体 积 。
解 : 如 图 选 择 坐 标 系 , 母 线 A B 的 方 程 为
h y0 (xr 2) r r 1 2 r r2 1 x yr2 h
y
h
A (r ) 1,h
B (r ) 2,0
h2 h r r 2 1 V x dy ( 2 y r ) dy 2 0 0 h
( x ,0 ,0 ) ( a x b )且 于 x 轴 过 点 垂 直 的 平 面 所 截 得 的 截 面 面
积A 为 ( x ) A ( x ) 是 x 立体 的体 V , 假 定 的 连 续 函 数 , 求 。
A(x)
ax xdxbxA(x)a
定积分及其应用(思维导图)
条件:f(x)在[a,b]连续 结论:区间内存在ξ使,f(x)在区间的积分结果=(b-a)· f(ξ)
积分中值定理可以去掉积分限
牛莱公式
凑微分法
凑微分法不会改变上下限的所属关系,上下限仍旧属于最简字母
分部积分法
第二类换元积分法
换积分上下限 换被积函数 换积分变量
几何意
比较定理
正的积分限
积分限相同,积分变量不同,用比较定理 仅需比较两个被积函数的大小 一个比你大,就绝对比你大
考研中常用的函数大小比较
定积分的应用
定积分的计算
对称区间,偶倍奇零
周期性
三角函数的周期 上下限的长度为(n)T,永远可以在保证长度的情况下,变换积分起点终点→(对称区间或许为最优解)
积分中值定理
下限为0时候,牛逼爸➡奇偶互换
存在原函数F(x)为 f(x)的变上限函数
若f(x)连续
自变量位于上下限中,其核心思维在于求导→见到变限函数就想求导
上限求导*f(上限)- 下限求导*f(下限) 能拉出来就来拉出来 不能拉出来,就代换
标准型 非标准型
求导法则
无穷区间的反常积分 ∞
无界函数的反常积分 瑕点
①求和形式 ②提出来1/n
③找项【左端点】【右端点】【区间中点】
定积分的几何意义
“绝对面积”
考研中常考的圆 画图确定定积分
加“-”变换积分上下限 可加性:拆分区间积分 定积分是一个数,与积分变量的字母选取无关
利用定积分定义求极限
求和形式、数列极限→首先定积分定义,再去夹逼
定积分及其应用
定积分的性质
加减法中都存在才能拆 可加性按照瑕点进行拆分
拆开
①找瑕点 ②区间中间是否存在瑕点
定积分的应用公式总结
定积分的应用公式总结定积分是微积分中的重要概念,它在许多领域都有着广泛的应用。
在本文中,我们将对定积分的应用公式进行总结,并举例说明其在实际问题中的应用。
1. 面积与定积分。
定积分最基本的应用之一就是计算曲线与坐标轴之间的面积。
设函数f(x)在区间[a, b]上连续,且f(x) ≥ 0,则曲线y = f(x)与x轴所围成的图形的面积为。
A = ∫[a, b] f(x) dx。
这就是定积分的几何意义,它表示曲线与x轴之间的面积。
2. 物理学中的应用。
在物理学中,定积分常常用来计算曲线下方的面积,从而得到某一变量的总量。
例如,如果我们知道一个物体在 t 时刻的速度 v(t)(单位时间内的位移),则该物体在时间区间 [a, b] 内的位移为。
S = ∫[a, b] v(t) dt。
这里的 S 就表示了物体在时间区间 [a, b] 内的总位移。
3. 概率统计中的应用。
在概率统计中,定积分也有着重要的应用。
例如,如果我们知道某一随机变量X 的概率密度函数为 f(x),则 X 落在区间 [a, b] 内的概率为。
P(a ≤ X ≤ b) = ∫[a, b] f(x) dx。
这里的 P(a ≤ X ≤ b) 表示了随机变量 X 落在区间 [a, b] 内的概率。
4. 工程中的应用。
在工程领域,定积分也有着广泛的应用。
例如,在计算流体的体积、质量、密度、压力等问题时,定积分常常是不可或缺的工具。
另外,在电路分析、信号处理、控制系统等领域,定积分也有着重要的作用。
5. 经济学中的应用。
在经济学中,定积分常常用来描述某一商品的总收益、总成本、总利润等。
例如,如果知道某一商品的需求函数为 D(p),则该商品在价格区间 [a, b] 内的总收益为。
R = ∫[a, b] p D(p) dp。
这里的 R 表示了商品在价格区间 [a, b] 内的总收益。
总结。
定积分的应用远不止以上几个领域,它在数学、物理、工程、经济等众多领域都有着重要的作用。
定积分的应用教案
定积分的应用教案第一章:定积分的概念1.1 引入定积分的概念解释定积分的定义:定积分是函数在区间上的积累效果,表示为∫ab f(x)dx。
强调定积分表示的是函数在区间上的面积或长度。
1.2 定积分的性质介绍定积分的性质:线性性质、保号性、可积函数的有界性等。
通过示例说明定积分的性质在实际问题中的应用。
第二章:定积分的计算方法2.1 牛顿-莱布尼茨公式介绍牛顿-莱布尼茨公式:如果F(x) 是函数f(x) 的一个原函数,∫ab f(x)dx = F(b) F(a)。
解释原函数的概念:原函数是导函数的不定积分。
2.2 定积分的换元法介绍换元法的步骤:选择适当的代换变量,求导数,计算新积分。
通过具体例子演示换元法的应用。
第三章:定积分在几何中的应用3.1 平面区域的面积解释平面区域面积的概念:平面区域内所有点的坐标的绝对值的平均值。
利用定积分计算平面区域的面积,示例包括矩形、三角形、圆形等。
3.2 曲线围成的面积介绍利用定积分计算曲线围成的面积的方法:选择适当的上下限,计算定积分。
通过具体例子演示计算曲线围成的面积。
第四章:定积分在物理中的应用4.1 定积分与力的累积解释力的累积概念:力在一段时间内的积累效果。
利用定积分计算力的累积,示例包括恒力作用下的位移、变力作用下的位移等。
4.2 定积分与功的计算介绍利用定积分计算功的方法:计算力与位移的乘积的定积分。
通过具体例子演示计算功的应用。
第五章:定积分在经济学中的应用5.1 定积分与总成本解释总成本的概念:企业在生产一定数量产品所需的成本。
利用定积分计算总成本,示例包括固定成本和变动成本的情况。
5.2 定积分与总收益介绍利用定积分计算总收益的方法:计算产品的售价与销售数量的乘积的定积分。
通过具体例子演示计算总收益的应用。
第六章:定积分在概率论中的应用6.1 定积分与概率密度解释概率密度的概念:随机变量在某个区间内的概率。
利用定积分计算概率密度,示例包括均匀分布、正态分布等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分的应用
在微积分中,定积分是一种重要的概念和工具。
它不仅可以用于求
解曲线下的面积,还可以应用于多个领域,包括物理、经济学和工程
学等。
本文将介绍定积分的应用,并通过实际问题进行说明。
一、曲线下的面积
定积分最基本的应用之一是求解曲线下的面积。
假设有一个函数
f(x),我们想要计算其在区间[a, b]上的曲线下的面积。
我们可以将[a, b]的区间划分为若干小区间,然后在每个小区间上取一个点,通过计算
这些小区间的面积之和来逼近整个曲线下的面积。
随着小区间数目的
增加,逼近的精度也会提高,最终可以得到非常准确的结果。
二、物理学中的应用
定积分在物理学中有广泛的应用。
例如,在力学中,我们可以利用
定积分来计算物体的质量、速度和加速度等。
通过将物体运动过程中
的力和加速度关系用函数表示,然后对这个函数在一定时间内的积分,就可以得到物体在该时间内的位移。
同样地,通过对速度函数在一段
时间内的定积分,可以计算出物体在该时间内的位移。
三、经济学中的应用
定积分在经济学中也有重要的应用。
一种常见的应用是计算曲线下
的总收益或总成本。
假设有一个企业的收益函数为R(x),我们可以通
过对该函数在某个时间段内的定积分,得到该时间段内企业的总收益。
同样地,如果有一个成本函数C(x),我们可以通过对该函数在某个时
间段内的定积分,得到该时间段内企业的总成本。
这种方法可以帮助经济学家更好地了解企业的经营状况并作出相应的决策。
四、工程学中的应用
定积分也在工程学中有广泛的应用。
例如,在建筑工程中,我们可以利用定积分来计算建筑物的体积。
假设有一个建筑物的截面曲线为f(x),我们可以通过对该曲线在一定范围内的定积分,得到该范围内建筑物的体积。
同样地,在水力学中,我们可以利用定积分来计算河流的流量,以便更好地了解水流情况并采取相应的措施。
综上所述,定积分是一种重要的工具,可以应用于求解曲线下的面积、物理学、经济学和工程学等多个领域。
通过对函数在一定范围内的定积分,我们可以得到与实际问题相关的重要信息,从而更好地理解和解决问题。